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Abstract—Analyzing the dynamic characteristics of an aero-engine rotor-bearing system helps profes-
sionals predict and judge the dynamic behavior of aero-engines. It is different from the traditional
dynamic analysis of rotor system with fixed foundation, this paper considers the dynamics of the rotor-
bearing system caused by the horizontal yawing maneuver load. This paper establishes a finite element
model of a double-disc rotor-bearing system, and use the Newmark-β algorithm to solve the system.
The model established in this paper is compared with the model established in ANSYS software, and
the correctness of this model is verified. The influence of the maneuver load on the nonlinear dynam-
ics of the rotor-bearing system under horizontal yawing is analyzed in detail. The study found, the
maneuver load can suppress nonlinear vibration; the increase of maneuver load can reduce the non-
linear influence of the system caused by changes in relevant bearing parameters; and between two
times the critical speed and three times the critical speed, the system will produce rich and complex
nonlinear dynamic phenomena such as single periodic motion, multi periodic motion, and quasi-
periodic motion.
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1. INTRODUCTION
Maneuver f light refers to the f light process in which the aircraft constantly changes its motion state

(including speed, acceleration, angular velocity, angular acceleration and other f light parameters) in
space, it is the unique operating environment of the aircraft rotor system, it is also an important indicator
for evaluating the performance of aero-engines [1]. With the continuous development and upgrading of
modern warplanes, the concept of “super maneuver f light” has been raised [2], the aircraft is required to
have the ability to carry out some maneuverable tactical maneuvers after exceeding the stall angle of
attack, so as to allow the aircraft to occupy a favorable position in aerial combat. When the aircraft is
maneuvering, the engine rotor system will be subject to additional excitation force, namely maneuver
load. The maneuver load will cause vibration instability of the system, which will threaten the safety and
stability of the aero-engine [3]. Horizontal yawing is a kind of maneuver f light. Therefore, the nonlinear
analysis of the rotor system [4] and the study of the dynamic behavior of aero-engine under horizontal yaw
additional maneuvering load can provide a theoretical basis for the optimal design of aero-engine rotor
bearing system and maneuvering load control.

Many studies on the dynamic characteristics of a rotor-bearing system have assumed that the rotor sup-
port is on a stationary basis, whether it is elastic support or rigid support [5]. Many scholars have studied
the rotor system with fixed foundation. Banakh and Nikiforov [6] studied the dynamic characteristics of
high-speed rotor system with f loating seal ring, and obtained the motion analysis law of rotor and seal ring
through curve fitting method. In order to study the motion types of nonlinear Jeffcott rotor system in a
specific parameter range, Xu et al. [7] obtained the bifurcation tree of periodic 1 to periodic 8 motion in
nonlinear Jeffcott rotor system by discrete mapping method, and discussed the bifurcation and stability of
602



NONLINEAR VIBRATION BEHAVIOR 603
periodic motion on the bifurcation tree. Ma et al. [8, 9] established the differential equations of motion
and dynamics models of the internal and external dual rotor system, it shows that the unbalance of the
rotor system is the main factor causing the vibration of the aero-engine. In order to analyze the lateral
vibration of rotor system caused by rotating stall, Fan et al. [10, 11] used Mansoux model to couple unbal-
anced friction load, established the dynamic model of rotor system with transverse load caused by pressure
and f low coefficient f luctuation, and studied the vibration characteristics of rotor system with and without
transverse load by numerical calculation technology. In order to study the bifurcation, stability and cha-
otic path of nonlinear f lexible rotor bearing system, Phadatare and Pratiher [12] established a large deflec-
tion model and discussed the nonlinear dynamic analysis of rotor-disc-bearing system with geometric
eccentricity and mass imbalance. Cao et al. [13, 14] put forward a new dynamic modeling method of roll-
ing bearing-rotor system based on rigid element (RBE) and analyzed the nonlinear behavior of rotor bear-
ing system. In order to diagnose the crack in the uncertain environment, Fu et al. [15] used the combina-
tion of finite element method (FEM) and harmonic balance method (HBM), focusing on the vibration
behavior of the spindle rotor system in the presence of crack under the inherent model uncertainty.
In order to analyze the stability of a rigid rotor supported by ball bearings, Harsha et al. [16, 17] established
a rotor rolling bearing system considering bearing clearance and waviness, and used a numerical method
to analyze the non-linear dynamic effects of different parameters on the rotor-bearing system.

However, with the increasing requirements for maneuverability, f lexibility and stability of military
fighters in f light, it is necessary to study the dynamic behavior of aero-engine rotor system under maneu-
ver load. In other words, in this case, the foundation of the rotor-bearing system is moving. In this regard,
many scholars have also made a lot of contributions. Xu et al. [18, 19] established the transient vibration
model of Jeffcott rotor system during maneuver f light, and discussed the dynamic characteristics of the
rotor system during maneuver f light. Lin and Meng [20] used a Jeffcott rotor model, and studied the influ-
ence of aircraft maneuvering at constant angular velocity or constant acceleration in vertical or horizontal
plane on the dynamic characteristics of aero-engine rotor system, and analyzed the influence of different
flight conditions on the rotor system. In order to study the vibration characteristics of aero-engine rotor
system during maneuver f light, Zhu and Chen [21] established the general motion equation of f lexible
rotor system under maneuver f light conditions by using Lagrange equation, the influence of aircraft
maneuvering on the dynamic characteristics of rotor system was studied by numerical method. Hou et al.
[22–24] established the dynamic differential equations of rotor-bearing systems with different types of
supports (fixed support, cubic nonlinear elastic support and rolling bearing support) under maneuver
flight conditions, and consider the faults such as rubbing and cracking, researched the effects of maneuver
load on the nonlinear dynamics of the system by numerical method. In order to study the dynamic char-
acteristics of rotor system under large maneuver conditions, Zhang et al. [25] deduced the finite element
modeling method of rotor system, studied the response law of linear rotor system and nonlinear rotor sys-
tem with bearing under large maneuver conditions. Gao et al. [26] established a f lexible asymmetric rotor
system model considering the nonlinear support of ball bearing and squeeze film damper, and systemati-
cally studied the dynamic characteristics of the rotor system under maneuver f light.

From the above research, it can be seen that many scholars do not consider the base movable condition
in the research of rotor system. However, if the maneuver condition is considered, the real rotor system
should move with the aircraft. At the same time, it can be seen from the third paragraph of the review that
although many scholars have used different methods to study the dynamic characteristics of the rotor sys-
tem under the condition of base motion, the rotor system model is a simple single-disc rotor system, and
many strong nonlinear factors are not considered. In addition, the complex dynamics of an aero-engine
cannot be described by a single disc rotor model. Therefore, it is necessary to establish a general analysis
model considering multiple nonlinear factors. The main contributions of this paper are as follows: (1) a
general aero-engine rotor-bearing-disc system model is established, which takes into account horizontal
yawing maneuver load, nonlinear contact force of rolling bearing, eccentric unbalance force of disc, grav-
ity field and gyro effect; (2) the responses of the system under maneuver loads are analyzed in detail; (3)
the nonlinear response law of different bearing parameters with or without maneuver load is analyzed in
detail.

This paper is mainly composed of four parts. In the Section 2, the rolling bearing model and the finite
element model of the rotor-bearing system under horizontal yawing are established, which provide a the-
oretical basis for the dynamic analysis of the whole paper. In the Section 3, the Campbell diagram and
mode shapes are compared and verified by using ANSYS finite element method, which fully proves the
correctness and effectiveness of the modeling method in this paper. In the Section 4, the nonlinear
dynamic behavior of the dual-disc rotor-bearing system under horizontal yawing maneuver load is stud-
ied, the influence of the maneuver load on rotor system is discussed. Section 5 presents the conclusions.
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Fig. 1. Rolling bearing model.
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2. FINITE ELEMENT MODELING AND SOLUTION
OF THE SYSTEM UNDER HORIZONTAL YAWING

2.1. Rolling Bearing Modeling
Figure 1 is a schematic diagram of the rolling bearing model. The rolling bearing consists of inner ring,

outer ring, cage and rolling element. Set the balls evenly arranged between the inner and outer raceways,
there is pure rolling between the ball and the raceway. Suppose the linear velocity of the contact point
between the ball and the bearing outer ring is , the linear velocity of the contact point with the inner ring
of the bearing is , the rotation speed of the outer ring of the bearing is ωo, the rotational angular velocity
of the inner ring is ωi, the radius of the outer raceway is Ro, the radius of the inner raceway is Ri, then  =
ωoRo,  = ωiRi.

The linear velocity of the roller center is . Because the fixed bearing outer ring does not
rotate with the rotor, then  = 0, that is , so the rotation speed of the cage is .
The inner ring is fixed on the shaft, so ωi = ω. The number of bearing balls is Nb, suppose the angular posi-
tion of the j-th ball is θj. Then there is

(1)

Suppose the vibration displacement of the bearing inner ring center is x, y, the bearing radial clearance
is δ0, then the contact deformation between the j-th ball and raceway is ,
according to the Hertz contact theory, the bearing force can be obtained as

(2)

where Kb is the Hertz contact stiffness, Hf is the Heaviside function. The value of Hf is

(3)

2.2. Dynamic Differential Equation of Rotor-Rolling Bearing System under Horizontal Yawing
2.2.1. Theoretical Basis of Finite Element

In this paper, the shaft of rotor-bearing system is modeled by Rayleigh beam. There are four degrees of
freedom at each node of the Rayleigh beam element. Figure 2 is the finite element model of the rotor ele-
ment shaft section. Its generalized coordinate is as follows.
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Fig. 2. The finite element model of the rotor element shaft section.
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The corresponding element mass matrix, element stiffness matrix and gyro force matrix of the Rayleigh
beam [27] can be obtained in the form as follows.
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Fig. 3. Physical model of the rotor-rolling bearing system.
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where E is the elastic modulus of the material, ρ is the density of the material, ro and ri are the outer radius
and the inner radius of the shaft respectively, l is the length of the element shaft section.

2.2.2. Modeling the Rotor-Bearing System under Horizontal Yawing

Figure 3 shows the physical model of the rotor-rolling bearing system. An angular velocity  around
the y axis is the horizontal yawing f light. m1, m2, mbl , mb2 are the lumped masses of disc 1, disc 2, left end
bearing outer ring, and right end bearing outer ring respectively; e1, e2 are the eccentricity of disc 1 and
disc 2 respectively; Jpi and Jdi (I = 1, 2) are the polar moment of inertia and diameter moment of inertia of
disc 1 and disc 2, respectively; kb1 and kb2 are the connection stiffness of the bearing seat and the outer ring
of the left end bearing and the outer ring of the right end bearing respectively; Cb1 and Cb2 are the connec-
tion damping of the bearing seat and the outer ring of the left end bearing and the outer ring of the right
end bearing respectively.

According to the structural characteristics of the rotor-bearing system, the rotor-bearing system is
divided into 5 elements and 6 nodes. Two rolling bearings are located at node 1 and node 6.

By using the finite element method, the above finite element model group of rotor-bearing system is
integrated into the following dynamic differential equations.

(9)

where M is the mass matrix, C is the material damping matrix, G is the gyroscopic matrix, K is the stiffness
matrix, ω is the rotor speed, Fe is the unbalanced force vector of centrifugal force, Fb is the nonlinear Hertz
contact force vector of the rolling bearing, Cb and Kb are the additional damping matrix and stiffness
matrix due to maneuver f light, Fh is the maneuver load vector, G1 is the gravity field vector. Displacement
vector X =[u1 u2 … u6]T, among them ui = [xi yi θxi θyi], i = 1, 2, …, 24, xi, yi and θxi, θyi are the vibration
displacement and angular displacement of the i-th node on the x axes and y axes respectively.
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System material damping considers the proportional damping (also known as Rayleigh damping)
widely used in engineering. The following relationships exist.

(10)

where , , ω1 and ω2 are the first two nat-
ural frequencies of the system, ξ1 and ξ2 are damping coefficients of the system.

Solving the dynamic equation of the outer race of rolling bearing with Newton’s second law is as fol-
lows.

(11)

where Fxri and Fyri (i = 1, 2) are the non-linear Hertz contact forces in the x and y directions on the outer
rings of the left and right bearings respectively, they are opposite to the bearing support forces on both ends
of the shaft.

Assuming that the outer ring of the bearing is firmly connected to the bearing seat, the inner ring
rotates with the shaft. Let the displacement of the m-th node of the rotor be xrm and yrm, x = xrm – xbi, y =
yrm – ybi. Substituting x and y into Eq. (11) obtains the bearing force acting on the i-th support by the rotor.

(12)

Based on Eq. (9), considering the degree of freedom of the outer ring of the supporting bearing at both
ends of the rotor system, the dynamic equation of the whole system can be obtained as follows.

(13)

where,

where  is the maneuver load vector.
This paper only discusses the influence of the maneuver load on the disc and bearing, regardless of the

effect of the maneuver load on the shaft, so when the aircraft is in horizontal yawing motion, the maneuver
load vector is [3].
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Table 1. Simulation parameters of the rotor-bearing system

Parameters Value

E (GPa) 209
0.3

ρ (kg/m3) 7850

m1, m2 (kg) 15, 20
r (mm) 20

Jd1, Jd2 (kg/m2) 0.0375, 0.2

kb1, kb2 (N/m) 2.5e6
cb1, cb2 (N m/s) 1050

l1, l2, l3, l4, l5 (m) 0.1, 0.2, 0.15, 0.05,0.1
0.02,0.04

v

ξ ξ1 2,

Table 2. Natural frequencies of different models

Mode No.

ANSYS model The present model

ωn/Hz ωn/Hz ωn/Hz ωn/Hz

(0 r/min) (2000 r/min) (0 r/min) (2000 r/min)

Mode 1 96.384 94.88 96.03 94.22
96.386 97.682 96.04 97.89

Mode 2 182.02 173.08 182.15 179.56
182.04 190.2 182.15 184.78

Mode 3 294.49 277.64 295.36 291.20
294.6 315.4 295.36 299.59
(14)

where ωB, y is the yawing angular velocity, v is the navigation speed.

3. MODEL COMPARISON AND VERIFICATION

In order to test the validity of the model in this paper, in this section, the modal results obtained by the
finite element calculation of ANSYS R2018 software and the modal results of the dynamic model built in
this paper are compared and verified. In order to facilitate a better comparison between the modal results
of the ANSYS model and the modal results of the model in this paper, the solid modeling of the bearing
is ignored, and only the stiffness and damping in the x and y directions of the bearing are considered.
The specific model and model parameters are shown in Fig. 3 and Table 1 below.

The natural frequency and mode shape of a rotor-bearing system are very important to the validity test
of the model. The natural frequencies obtained based on the dynamic model method established in this
paper and the natural frequencies obtained by the ANSYS model simulation are shown in Table 2.
The Campbell diagram and the first three-order mode shapes are shown in Figs. 4 and 5 respectively.
It can be seen from Table 2 and Fig. 4 that the first-order natural frequency of the present model is almost
the same as that of the ANSYS model, and the relative error between the second and third-order natural
frequencies is small, and the Campbell diagrams of the two models are basically similar. At the same time,
it can be seen from Fig. 5 that the first three-order mode shapes of the two different models are also con-
sistent.

Through the above comparison, it can be seen that the simulation results of the models built by the two
different methods are basically the same, which fully verifies the effectiveness of the dynamic model
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Fig. 4. Campbell diagrams of two models. Note: FW indicates forward whirl and BW backward whirl.
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Fig. 5. Mode shapes of two models at ω = 2000 rad/s: (a)ANSYS model; (b) the present model.
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method built in this paper. Therefore, in the next sections, we will use the dynamic model established in
this paper to carry out numerical simulation.

4. NONLINEAR DYNAMICS ANALYSIS OF ROTOR-BEARING SYSTEM UNDER 
HORIZONTAL YAWING

In the study of nonlinear characteristics of rotor system, the vibration and bifurcation characteristics
of the system are very worthy of attention. This section studies the vibration and bifurcation characteristics
of the rotor system of an aircraft under the condition of maneuver f light in order to reveal the influence of
maneuver loads on the nonlinear vibration and bifurcation characteristics of the rotor system. In essence,
maneuver f light is a transient process, but compared with the vibration frequency of high-speed rotating
rotor system, the change of maneuver load is very slow, which can be regarded as a slowly varying param-
eter. Due to the large complex nonlinear dynamic equation cannot give a clear analytical solution, this
section uses MATLAB numerical simulation to analyze the nonlinear dynamic phenomenon of the sys-
tem.

In order to more clearly express the main content of the latter part, Fig. 6 shows the detailed simulation
process.

The simulation parameters of the rotor-bearing system are shown in Table 3.
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023
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Fig. 6. The flow chart of simulation analysis.
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4.1. Global Bifurcation Characteristics of The Rotor System With or Without Maneuver Load

In this paper, let  be the horizontal yawing maneuver load (g = 10 m/s2). Figure 7 is the
bifurcation diagram of the rotor-bearing system without maneuver load (H = 0). It can be seen the system
moves in single-periodic when ω = 500~700 rad/s. When the speed is around ω = 625 rad/s, the system
jumps to the maximum amplitude, it is known to be the first order critical speed ωc. The system moves in
single-period between ω = 700 rad/s and ω = 1025 rad/s, and perform multiple period bifurcation between
ω = 1050 rad/s and ω = 1150 rad/s. When the system reaches two times the critical speed, that is the veloc-
ity is in the range of ω = 1225~1800 rad/s, at this time, the main motion forms of the system are quasi-
period and single-period, accompanied by multiple periods. When ω = 1450 rad/s, the system moves in
two-period. When ω = 1800 rad/s, the system moves in triple period. When ω > 1800 rad/s, the system
moves in quasi-periodic.

Figure 8 shows the bifurcation diagram of the rotor-rolling bearing system with maneuver load (the
maneuver load is H = 0.4). It can be seen the rotor-bearing system goes into single-periodic motion and
multi-periodic motion alternately when ω < 1275 rad/s. The motion interval of single-periodic motion of the
rotor-bearing system are ω = 500 rad/s~675 rad/s and ω = 825 rad/s~1025 rad/s. The system goes into quasi-
periodic motion and single-periodic motion successively between ω = 1300 rad/s and ω = 1450 rad/s.
The rotor system goes into quasi-periodic motion when ω = 1450~1900 rad/s, and the rotor-bearing sys-
tem goes into quasi-periodic bifurcation when ω = 1850 rad/s. The rotor system enters two-periodic
motion after ω = 1925 rad/s, and then goes approximate single-periodic motion when ω = 2000 rad/s.
The rotor system goes quasi-periodic motion when ω > 2250 rad/s.

= ωyH V g
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Table 3. Simulation parameters of the rotor-bearing system

Parameters Value

E (GPa) 209
0.3

ρ (kg/m3) 7850

m1, m2, mb1, mb2(kg) 15, 20, 2
e(mm) 0.02
r(mm) 20

Jd1, Jd2 (kg m2) 0.0375, 0.2

kb1, kb2 (N/m) 2.5e7
cb1, cb2 (N m/s) 1050
l1, l2, l3, l4, l5(m) 0.1, 0.2, 0.15, 0.05,0.1

ri, ro(mm) 20.1, 43.9
δ0(mm) 0.05

Kb(N/m) 5e9
Nb 9

ωH(rad/s) 0.05
 (m/s) 100

g (m/s2) 9.8

v

v

Compared with the rotor-bearing-rotor system without maneuver load, the rotor-bearing system with
maneuver load is relatively stable at high speed and has small amplitude. This is a consequence of the fact
that the sum of the maneuver load excitation and the unbalanced excitation is greater than the nonlinear
force of the rolling bearing at high speed.

4.2. The Influence of Maneuver Load on the Bifurcation Characteristics of the Rotor System
When the maneuver loads are H = 0, H = 0.4, H = 1 and H = 1.5, the bifurcation diagrams of the rotor-

bearing system at general engine speed (1000 rad/s~2000 rad/s) are shown in Figs. 9a, 9b, 9c and 9d.
Compared with the without maneuver load in Fig. 9a, the system with maneuver load has a large nonlinear
dynamic change, it can be seen the maneuver load has a very significant effect on the nonlinear vibration
characteristics of the rotor system. With the increase of H, the amplitude of the rotor-bearing system is
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023

Fig. 7. Bifurcation diagram without maneuver load.

2.5

A

� = 625 rad/s

C C
C C

A�Single-periodic motion
B�nT-periodic motion
C�quasi-periodic motion

A A A B
B

2.0

1.5

1.0

0.5

0

�0.5

�1.0
0 1000 1500 2000 2500

Relative rotation speed �, rad/s

A
m

pl
itu

de
 x

, m



612 PAN et al.

Fig. 8. Bifurcation diagram with maneuver load.
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getting smaller and more stable, the quasi-periodic bifurcation point of the rotor-bearing system moves
back. The proportion of quasi-periodic motion between ω = 1000 rad/s and ω = 2000 rad/s decreases, the
proportion of single-periodic motion and multi-periodic motion increased. It is known that the critical
speed of the primary resonance increases, it can be seen the existence of maneuver load is equivalent to
increasing the stiffness of the shaft. But with the increase of maneuver load H, the stability of the system
has improved, the proportion of quasi-periodic motion decreases gradually, the proportion of single-peri-
odic motion gradually increases. For example, when there is no maneuver load, the system mainly moves
in quasi-period. When the maneuver load H reaches 1.5, the system is mainly single-periodic motion. This
is because the maneuver load excitation is greater than the non-linear force of the rolling bearing, which
suppresses the nonlinear vibration of the system.

In order to analyze the complex nonlinear phenomenon in bifurcation diagram, the spectrum cascade as
shown in Fig. 10 is given. It can be seen from the figure that the whole system is mainly low-frequency vibra-
tion, and there are low-frequency components such as 0.33fr, 0.48fr, 0.5fr, and 0.56fr when H = 0. When the
system speed reaches twice the first-order critical speed (ω = 2ωc), the first-order vibration frequency com-
ponent of the rotor appears in the system, which indicates that 1/2 subharmonic vibration occurs in the sys-
tem at this moment. Subharmonic vibration is very common in the rotor-bearing system. And with the
increase of maneuver load H, the low frequency component of the system frequency decreases gradually, the
overall system frequency will increase, and the system nonlinearity will decrease. Therefore, it is concluded
that the reduction of the system non-linear vibration is due to the increase of the maneuver load.

4.3. Nonlinear Influence of Different Bearing Parameters on the System
4.3.1. Nonlinear Influence of Bearing Stiffness on the System

This section analyzes the vibration response of different bearing stiffness changes with or without
maneuver load. Figures 11 and 12 respectively show the bifurcation diagram and three-dimensional spec-
trum diagram of bearing stiffness changes with or without maneuver load. It can be seen from Fig. 11a that
the single periodic region is ([0.1e9,0.5e9]; [1.8e9,2.6e9]; [3e9,4.3e9]), and the double periodic region is
([1e9,1.1e9]; [2.7e9,2.9e9]), and the quasi periodic region is ([0.6e9,0.9e9]; [1.09,1.7e9]; [4.4e9,8e9]).
It can be seen from Fig. 11b that the single periodic region is ([0.1e9,0.4e9]; [1.6e9,4e9]), and the double
periodic region is ([0.5e9,1.5e9]), and the quasi periodic region is ([4.1e9,8e9]). As can be seen from Fig. 12,
there are more frequency division components in the system when there is no maneuver load, and the move-
ment is more chaotic. Through comparative analysis, it can be seen that when the system has a maneuver
load value, the single periodic region increases, the quasi periodic region decreases, the frequency division
decreases, and the vibration displacement of the system decreases with the increase of bearing stiffness in the
single periodic region. This indicates that maneuver load can reduce the nonlinear influence of bearing stiff-
ness change on the system, so that bearing stiffness has a wider range of values, and the nonlinear behavior
of the system gradually becomes complex with the increase of bearing stiffness. when the bearing stiffness is
large, the system shows chaotic motion, that is, the greater the bearing stiffness, the more complex the vibra-
tion response of the system. The specific periodic changes are shown in Table 5.
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023
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Fig. 9. Bifurcation diagram of the rotor system under different maneuver loads.
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Fig. 10. Three-dimensional spectrogram of rotor system under different maneuver loads.
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Fig. 11. Bifurcation diagram of bearing stiffness change with or without maneuver load.
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Fig. 12. Three-dimensional spectrum diagram of bearing stiffness change with or without maneuver load.
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In order to better analyze the dynamic response law of bearing stiffness change with or without maneu-
ver load, Fig. 13 shows the axis trajectory diagram with or without maneuvering load. As can be seen from
Fig. 13, the vibration displacement in the x direction of the system with maneuver load is smaller than that
without maneuver load, and the movement period is approximately elliptical, and the movement behavior
of the system becomes more complex with the increase of bearing stiffness. This fully shows that the
maneuver load can reduce the dynamic response of bearing stiffness changes to the system, and that larger
bearing stiffness will make the motion behavior of the system more complex.

4.3.2. Nonlinear Influence of Bearing Clearance on the System
This section analyzes the vibration response of different bearing clearance changes with or without

maneuver load. Fig. 14 and Fig. 15 respectively show the bifurcation diagram and three-dimensional spec-
trum diagram of bearing clearance changes with or without maneuver load. It can be seen from Fig. 14a
that the single periodic region is ([0,0.3e-5]; [0.21e-5,0.36e-5]), and the double periodic region is
([0.06e-5,0.18e-5]), and the quasi periodic region is ([0.39e-5,2e-5]). It can be seen from Fig. 14b that the
single periodic region is ([0,1.17e-5]), and no double periodic region, and the quasi periodic region is
([1.5e-5,2e-5]). It can be seen from Fig. 15 that there are more frequency components when there is no
maneuver load than when there is maneuver load, and the motion behavior of the system is more chaotic,
and with the increase of bearing clearance, the vibration response of the system becomes more complex.
Through the comparative analysis of bearing clearance changes with or without maneuver load, it can be
seen that the maneuver load increases the single periodic region and decreases the quasi periodic region,
effectively reducing the bifurcation type of the system, so that the bearing clearance has a wider range of
values. It is shown that maneuver load can reduce the system nonlinear response caused by bearing clear-
ance change. The specific periodic changes are shown in Table 6.
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023
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Table 4. Frequency characteristics under different maneuver loads

Maneuver loads Relative rotation speeds(rad/s) Frequency characteristics

H = 0 1000 ≤ ω < 1050 fr

1050 ≤ ω < 1250 0.5fr, fr

1250 ≤ ω < 1350 0.48 fr, 0.5fr, 0.56 fr, fr

1350 ≤ ω < 1575 fr

1575 ≤ ω < 1600 0.33 fr, fr

1600 ≤ ω < 1650 0.48 fr, 0.56fr, fr

1650 ≤ ω < 1750 fr

1750 ≤ ω < 1775 0.33 fr, fr

1775 ≤ ω ≤ 2000 0.5fr, fr

H = 0.4 1000 ≤ ω < 1050 fr

1050 ≤ ω < 1200 0.5fr, fr

1200 ≤ ω < 1275 0.24fr, 0.5fr, fr

1275 ≤ ω ≤ 1350 0.44fr, 0.5fr, 0.57fr, fr

1350 < ω < 1450 fr

1450 ≤ ω ≤ 1475 0.48fr, 0.5fr, fr

1475 < ω ≤ 1600 0.44fr, 0.62fr, fr

1600 < ω < 1725 0.44fr, 0.57fr, fr

1725 ≤ ω ≤ 2000 0.5fr, fr

H = 1 1000 ≤ ω < 1100 fr

1100 ≤ ω < 1200 0.5fr, fr

1200 ≤ ω ≤ 1250 0.23fr, 0.43fr, fr

1250 < ω < 1325 fr

1325 ≤ ω < 1425 0.43fr, 0.62fr, fr

1425≤ ω < 1525 fr

1525 ≤ ω < 1550 0.5fr, fr

1550 ≤ ω < 1675 0.43fr, 0.62fr, fr

1675 ≤ ω < 1800 fr

1800 ≤ ω ≤ 2000 0.5fr, fr

H = 1.5 1000 ≤ ω < 1150 fr

1150 ≤ ω < 1200 0.5fr, fr

1200 ≤ ω < 1400 fr

1400 ≤ ω < 1450 0.37fr, 0.63fr, fr

1450 ≤ ω < 1550 fr

1550 ≤ ω < 1600 0.5fr, fr

1600 ≤ ω < 1675 fr

1675 ≤ ω < 1700 0.37fr, 0.63fr, fr

1700 ≤ ω < 1950 fr

1950 ≤ ω < 2000 0.5fr, fr
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Table 5. Comparison of periodic region of bearing stiffness change with or without maneuver load

Maneuver load Single periodic region Double periodic region Quasi periodic region

H = 0 [0.1e9,0.5e9]; [1.8e9,2.6e9]; 
[3e9,4.3e9]

[1e9,1.1e9]; [2.7e9,2.9e9] [0.6e9,0.9e9]; [1.e9,1.7e9]
[4.4e9,8e9]

H = 1 [0.1e9,0.4e9]; [1.6e9,4e9] [0.5e9,1.5e9] [4.1e9,8e9]

Table 6. Comparison of periodic region of bearing clearance change with or without maneuver load

Maneuver load Single periodic region Double periodic region Quasi periodic region

H = 0 [0,0.3e-5]; [0.21e-5,0.36e-5] [0.06e-5,0.18e-5] [0.39e-5,2e-5]
H = 2 [0,1.17e-5] None [1.5e-5,2e-5]
In order to better analyze the dynamic response law of bearing clearance change with or without
maneuver load, Fig. 16 shows the axis trajectory diagram with or without maneuvering load. As can be
seen from Fig. 16, the axial trajectory range of the system with a maneuver load is always smaller than the
axial trajectory range without maneuver load, and the movement period of the system changes from single
periodic to quasi periodic with the increase of bearing clearance. This shows that the better the vibration
response of the system under maneuver load, the dynamic load can reduce the nonlinear response of the
system caused by the change of bearing clearance.

4.3.3. Nonlinear Influence of the Number of Bearing Balls on the System
This section analyzes the vibration response of different bearing ball numbers changes with or without

maneuver load. Figs. 17 and 18 respectively show the bifurcation diagram and three-dimensional spec-
trum diagram of different bearing ball numbers changes with or without maneuver load. It can be seen
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023

Fig. 13. Axis trajectory diagram of bearing stiffness change with or without maneuver load.
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Fig. 14. Bifurcation diagram of bearing clearance change with or without maneuver load.
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Fig. 15. Three-dimensional spectrum diagram of bearing clearance change with or without maneuver load.
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from Fig. 17a that the single periodic region is ([5]; [13,30]), and no double periodic region, and the quasi
periodic region is ([4], [6, 12]). It can be seen from Fig. 17b that the single periodic region is ([7, 10], [15,
30]), and double periodic region is ([10, 14]), and the quasi periodic region is ([4, 5]). It can be seen from
Fig. 18 that when the number of balls is small, the system has more frequency division components.
Through the bifurcation diagram and three-dimensional spectrum diagram with or without maneuver
load, it can be clearly seen that the system behaves as a single periodic motion when the number of balls
is taken at a larger value, and the system behaves as a quasi-periodic motion when the number of balls is
taken at a smaller value, and the maneuver load increases the single periodic region, that is, the maneuver
load reduces the nonlinear vibration response of the system caused by the change of the number of balls.
The specific periodic changes are shown in Table 7.

In order to better analyze the dynamic response law of different bearing ball numbers change with or
without maneuver load, Fig. 19 shows the axis trajectory diagram with or without maneuvering load. As
can be seen from Fig. 19, the maneuver load makes the axis motion trajectory more regular, and the vibra-
tion displacement in the y direction of the system is smaller than the vibration displacement in the y direc-
tion without the maneuver load, and the axis trajectory is approximately circular when the number of balls
is larger. Therefore, the maneuver load and the large number of balls can reduce the nonlinear response
of the system caused by the change of the number of bearing balls.

5. CONCLUSIONS

In this paper, the non-linear dynamic characteristics of an aero-engine rotor system under horizontal
maneuver f light are studied in detail. The main research results of this paper are as follows.
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023
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Fig. 16. Axis trajectory diagram of bearing clearance change with or without maneuver load.
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Fig. 17. Bifurcation diagram of different bearing ball numbers change with or without maneuver load.
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(1) Under the condition of the horizontal yawing maneuver f light, when the rotation speed of the rotor
system is between one critical speed and two times critical speed, the system movement is relatively sim-
ple, with only single-periodic motion and multi-periodic motion; when the speed of the rotor system is
MECHANICS OF SOLIDS  Vol. 58  No. 2  2023

Table 7. Comparison of periodic region of different bearing ball numbers change with or without maneuver load

Maneuver load Single periodic region Double periodic region Quasi periodic region

H = 0  [5]; [13,30] None  [4], [6, 12]
H = 1.5  [7, 10], [15, 30]  [10, 14]  [4, 5]
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Fig. 18. Three-dimensional spectrum diagram of different bearing ball numbers change with or without maneuver load.
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Fig. 19. Axis trajectory diagram of different bearing ball numbers change with or without maneuver load.
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between two times critical speed and three times critical speed, the system will produce rich and complex
nonlinear dynamic phenomena, such as single-periodic motion, multi-periodic motion and quasi-peri-
odic motion.

(2) With the increase of the maneuver load H, the low frequency component of the system frequency
decreases gradually, the overall system frequency increases, the nonlinear vibration of the system is weak-
ened, due to the increase of the maneuver load.

(3) The larger the bearing stiffness and bearing clearance will enhance the nonlinear vibration response
of the system, the larger the number of bearing balls will weaken the nonlinear vibration response of the
system, and the increase of maneuver load can reduce the nonlinear influence of the system caused by
changes in relevant bearing parameters.
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