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Abstract—On the basis of a nonlinear model of deformation of a crystalline medium with a complex
lattice, the problem of the stationary propagation of a Griffith crack under the action of homogeneous
expanding stresses is posed and solved. It is shown that the stressed and deformed states of the medium
are determined both by external influences on the medium and by the gradients of the optical mode
(mutual displacement of atoms). The contributions from these factors are separated. Finding the com-
ponents of the stress tensor and macro-displacement vector is reduced to solving Riemann–Hilbert
boundary value problems. Their exact analytical solutions are obtained.
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1. INTRODUCTION
In [1, 2], a nonlinear model of deformation of crystalline media with a complex lattice is proposed.

It describes many physical and mechanical processes that are realized in experiments (the formation of a
superlattice, the appearance of defects, martensitic-type phase transitions, etc.), but which are not
described by the classical linear model. Based on the general solutions of the dynamic equations of plane
deformation of the nonlinear model [3], many dynamic problems (propagation of concentrated forces,
stamps of different profiles, etc.) can be solved. In the classical formulation, these problems have been
solved and studied by many authors [4–6]. Nevertheless, their solution based on a nonlinear model is of
particular interest. It is due to the fact that the results of the study of plane dynamic problems are used in
solving many fundamental problems, for example, in constructing the theory of fracture and long-term
strength of solids. Local criteria for the destruction of solids determine the local stress and strain fields,
and the nonlinear model describes them more adequately. Below, on the basis of a nonlinear model, the
problem on the propagation of a Griffith crack in a field of uniform tensile stresses is solved.

2. GENERAL SOLUTION OF DYNAMIC EQUATIONS 
OF PLANE DEFORMATION OF A NONLINEAR MODEL

In the nonlinear model, the deformation of the medium is described by the vector of macro-displace-
ments  (acoustic mode) and the vector of micro-displacements  (optical mode). The
deformation is considered to be plane, parallel to the OZ axis if

(2.1)

(2.2)

For plane deformation, the equations of motion of the nonlinear model take the form [7, 8]
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(2.4)

Here,  are the macro- and micro-stress tensors,  are the average and reduced atomic mass den-
sities, respectively,  and summation is implied by repeated indices. The function  describes
the interaction energy of sublattices. In the fundamental study [9] and most of subsequent ones [10], it is
assumed that

(2.5)
where B is the reciprocal lattice vector. Factor

(2.6)

is the activation energy of bonds. The term p is the half of the activation energy of the hard shear of the
sublattices, and  is the nonlinear striction tensor.

We confine ourselves to consideration of crystalline media of cubic symmetry, consisting of two sub-
lattices. For them, the material relations of the nonlinear model are written as follows [7, 8]

(2.7)

(2.8)

Tensors ,  are the coefficients of elasticity and microelasticity, respectively. These tensors are
symmetrical to the permutation of pairs of indices and indices of the pair among themselves. In the case
of crystalline media of cubic symmetry, the nonzero components are only

(2.9)

(2.10)
For independent components, we use the matrix notation introduced by Voigt [11]

(2.11)

(2.12)

In the general case,  and  have the form of the Huang tensor [12]

(2.13)

Here,  is the unit tensor, and  if all indices are the same (it is equal to zero in other cases). The
last term in (2.13) describes the anisotropy of the medium. In solid state physics [13], the medium anisot-
ropy factor  is introduced

(2.14)

For media with weak anisotropy ,  and cubic symmetry , material relations (2.7),
(2.8) take the form

(2.15)

(2.16)

The components of the stress tensor  must satisfy the Beltrami-Michell conditions [14]
For a plane deformation of a nonlinear model, this is one equation
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(2.17)

(2.18)

Here,  is the velocity of the longitudinal wave, and  is the shear velocity. The tensor  and vector 
are expressed in terms of an arbitrary function  [3]:

(2.19)

(2.20)

If we substitute (2.19) into (2.17), then we obtain an equation for finding the function 

(2.21)

It can be seen from (2.21) that it is a dynamic analogue of the Airy function, which is introduced to
solve static problems of classical plane deformation. The function , unlike the Airy function, sat-
isfies the inhomogeneous dynamic biharmonic equation. The function  plays the role of bulk sources
of macro-stresses and macro-strains. The general solution of Eq. (2.21) can be written as the sum of two
terms

(2.22)
The function  satisfies the homogeneous biharmonic equation

(2.23)

and  is a solution of the inhomogeneous equation

(2.24)

The resulting general solution of the macrofield equations (2.3), (2.4) makes it possible to formulate
and find exact analytical solutions of various dynamic problems based on a nonlinear model. Among
them, the most simple, but of great interest, are stationary problems (the movement of concentrated
forces, stamps and cracks of various profiles, etc.). As an example, we consider the solution of the problem
of propagation of a finite cut (y = 0, ) in a plane under the action of constant tensile stresses.

3. SOLUTION OF THE PROBLEM ON GRIFFITH CRACK PROPAGATION

Let the final cut be located on the  axis (y = 0, ), and the plane (X, Y) be in the field of uni-
form tensile stresses. Then the tensor  must satisfy the boundary conditions

(3.1)

(3.2)

We assume that the crack propagates along the  axis with velocity C. Then it is expedient to switch
to a moving coordinate system ( , ). In  coordinates, Eqs. (2.23), (2.24) take the form
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(3.3)

(3.4)

(3.5)

We set that

(3.6)
Then the solution of (3.3) is

(3.7)

Here,  and  are arbitrary analytic functions of the corresponding complex variables ( ). The
overline denotes complex conjugation. The tensor  and the vector Ui can be expressed in terms of the
functions ,  and , if (2.22) and (3.7) are taken into account in (2.19), (2.20). Finally we
get

(3.8)

(3.9)

Hereinafter, the prime denotes the derivative with respect to the argument. In deriving formulas (3.8)
and (3.9), we use the partial derivatives
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boundary condition (3.12) can be written as follows

(3.14)

It can be seen from the boundary conditions (3.12) and (3.14) that in the nonlinear model the stressed
and deformed states of the medium are determined by both external influences ( ) and optical mode

gradients . It seems appropriate to consider these contributions separately. For this pur-

pose, we represent the functions  and  as the sum of two terms

(3.15)

and require that the functions ( , , , ) satisfy the boundary conditions
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(3.21)

Then the boundary conditions (3.16) take the form

(3.21)

From (3.22), we find the boundary conditions for  and :
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(3.28)

Relations (3.28) correspond to the solution of the Griffith crack propagation problem based on the
classical linear model. This problem was solved by Ioffe [16]. If we accept that the crack propagation
velocity C = 0, then, assuming  in (3.28) and passing to the limit , we obtain the stress
field in the plane with a cut y = 0  in the static case

(3.29)

Expressions (3.29) coincide with the results obtained by S. Inglis [17].

The tensor  and macro-displacement vector  components can be found if the optical mode us is
known. It is found from the micro-field equations (2.4).

3.1. Solution of Micro-Field Equations
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is substituted into equation (2.4) and the form of the tensor  is taken into account:
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(3.32)

It can be seen that equations (3.32) are related. They are separated if . We accept this condition
and instead of the variables (ξ, η) we introduce

(3.33)

Via variables ( ), Eqs. (3.32) take the form

(3.34)

(3.35)

From relations (2.6), (2.15) we find

(3.36)

Taking into account (3.36), Eq. (3.34) takes the form

(3.37)

Equation (3.37) differs from the classical double sine-Gordon equation in that the amplitude  is not
a constant value, but a function . There are no analytical methods for solving such an equation
in the literature. For this reason, the assumptions that transform (3.37) to equations with exact analytical
solutions are justified. For media for which  it is possible to accept  and .
Then equation (3.37) becomes the classical sine-Gordon equation

(3.38)

If , but  is not a negligible quantity, then (3.37) takes the form of
a sine-Gordon equation with a variable amplitude

(3.39)

The sine-Gordon equation (3.38) has been studied in detail in the literature. For the sine-Gordon
equation with variable amplitude, analytical solutions are constructed only for a particular form of func-
tions  [18]–[20]. Since finding the optical mode involves overcoming significant difficulties, to
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illustrate the method of finding ( ) we chose the simplest solution of . If we accept that equation
(3.38) is valid, and , then the solution of the equation (3.38) is as follows

(3.40)

We find ( ) for the optical mode (3.40).

3.2. Finding Stresses and Displacements due to the Optical Mode
For optical mode (3.40)

(3.41)

and the function Q0 is found from equations (2.24), (3.4)

(3.42)

Taking into account (2.19), (3.24), (3.42), we find

(3.43)

(3.44)

The functions  and  are solutions of the corresponding Riemann–Hilbert problems with
boundary conditions (3.44) and are found by formula (3.26)

(3.45)

(3.46)

(3.47)

After substituting the functions  and  into the corresponding expressions of formulas
(3.19) and (3.20), the components of the tensor  and the macro-displacement vector  can be found.

4. CONCLUSIONS
The stated general method for solving nonlinear equations of plane deformation is an effective method

for solving dynamic problems. It reduces finding exact analytical solutions of dynamic problems to the
problems of the theory of boundary value problems of analytic functions (Riemann, Riemann-Hilbert,
Keldysh-Sedov). The stressed and deformed states of the medium are obtained as the sum of two terms.
The first one describes the action of external forces, and the second one describes the optical mode. These
factors are taken into account separately; which makes it possible to investigate the influence of the optical
mode on the deformation of the crystalline medium and to refine such important quantities as stress
intensity, local stress criteria, etc.
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