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Abstract—Rock bolt and lining are very common and effective support ways, and they are often used
together in many projects because their bearing and reinforcement effects. However, the mechanism
of the two support methods in the surrounding rock is not clear, especially the theoretical analysis.
Therefore, a model is put forward to analyze the mechanical behavior of a deeply buried circular
hydraulic tunnel jointly supported by double-linings and point anchored rock bolts, in which rock
mass, double linings and bolts maintain elastic state and are in full contact with each other. And point
anchored rock bolts are creatively replaced by pairs of concentrated forces of equal magnitude and
opposite direction. By using the complex function method, the linear equations for solving the axial
force of the bolts and the relevant analytical function coefficients can be established, based on the
stress condition of the inner boundary of the secondary lining, continuity condition between the pri-
mary lining and the surrounding rock, and continuity condition between the primary lining and the
secondary lining, as well as the compatibility condition of the displacement between the bolts and the
surrounding rock. Then, using the analytical functions, the stress and displacement of any point in the
double linings and surrounding rock can be calculated. Besides, the influence of inner hydrostatic
pressure and exchange of Young’s modulus of double linings are discussed, in which the support laws
and mode of load transmission are analyzed. The results are in line with actual laws and can provide
guiding suggestions for the design and construction of support works.

Keywords: circular hydraulic tunnel, point anchored rock bolt, double linings, combined support,
axial force of bolt, stress and displacement solution
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1. INTRODUCTION

In the 1950s, the New Austrian Tunneling Method (NATM) (Rabcewicz) was proposed and has been
widely used in geotechnical engineering around the world, whose idea is to mobilize the strength and self-
bearing capacity of surrounding rock as much as possible [1—7]. Therefore, shotcrete (lining) and bolts
are widely recognized as effective support methods and are often used in support engineering at the same
time, which can effectively restrict the deformation and improve the stress state of surrounding rock [8].

The lining (shotcrete) is a ring-shaped supporting structure close to the tunnel, which deforms harmo-
niously with the surrounding rock. It can not only limit the deformation of rock mass and provide support
force for tunnel wall, but also close the surrounding rock and prevent its weathering. Through field test,
model test, theoretical analysis and numerical simulation, scholars have been exploring the support prin-
ciple of lining [2—5, 9—14]. These studies confirmed the role of lining, and considered various influencing
factors, such as the roughness of contact surface, the development degree of rock joints, the spatial effect
of excavation surface and the supporting time. Among them, the complex function method proposed by
Muskhelishvili is a useful analytical method to analyze the interaction between rock mass and lining [11—-16].
At present, the analytical solutions of stress and displacement for an arbitrarily shaped tunnel with lining
in infinite domain can be obtained [13, 14]. Similar method will be used in this paper, and double linings
are taken into consideration. As for bolting support, by placing rod-shaped reinforcement in the surround-
ing rock and grouting, the bolts and the rock mass are bonded together. The integrity and strength of the
surrounding rock are enhanced by making full use of the characteristics of large stiffness and tension of
the bolts, so as to maintain the stability of the excavated tunnel. Two types of rock bolts can be distin-
guished [17]: (1) point anchored rock bolts; and (2) fully grouted rock bolts. And there have been a lot of
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Fig. 1. The equivalent action of point anchored rock bolts.

researches on the anchoring principle of bolts [18—28]. Farmer [24] studied the shear stress distribution
of anchorage interface and axial force of bolts by pull-out test. Freeman [25] proposed the neutral point
theory through field observations. Bjurstrom [26] studied the effect of bolt on increasing the strength of
jointed rock mass through shear test. Benmokrane et al. [27] proposed bond-slip model of rock bolt to
establish the relationship between generated shear bond stress and relative displacement at the anchorage
interface. Bernaud et al. [28] presented the numerical modelling of bolts with homogenization approach
in a finite element procedure. In 2006, Bobet [29] first proposed an analytical method for analysis of point
anchored rock bolts in circular tunnel in elastic ground. Similarly, in 2019, Lu [23] obtained the analytical
method for analysis of the point anchored rock bolts in elliptical tunnel by using the complex function.
Their common idea is to simplify the load acting on the surrounding rock by the point anchored rock bolt
into a pair of concentrated forces with the equal magnitude and opposite direction, then solve the axial
forces of bolts. This paper will also continue this idea to solve the interaction problem between rock mass
and bolts.

NATM combines the advantages of bolt and lining and has been widely used. And researchers have
been doing works on its mechanical mechanism and obtained many important conclusions by different
ways. Chen et al. [30] presented the an equivalent constitutive model for jointed rock masses reinforced
by bolt and lining and its implementation in a finite element program. They discussed the effect of the
bolts and lining to the stiffness and shear resistance of the jointed rock mass. Holmgren and Ansell [31]
studied the bolt anchored reinforced shotcrete lining subjected to impact loading. They pointed out that
impact load caused the lining bond failure. And bolts can effectively absorb the impact load, but it needs
a certain anchorage length. Sun and Zhang [32] established a circle model of composite support system
consist of preliminary reinforcement, initial supports, secondary lining ring retainers and gave the internal
force and deformation expression of arbitrary circle model by solving the problem of concentric composite
rings. Ren et al. [33] conducted a three dimensional geomechanical model test based on similarity prin-
ciple and numerical simulation. They found segmental lining played a major bearing role, while bolts
played a role in strengthening rock mass. In addition, they discussed the influence of fault and plastic
zone. Despite all this, the bolt-lining support design still mainly bases on engineering analogy method and
engineering rock mass classification nowadays [34, 35], because the interaction mechanism between
anchorage body and surrounding rock under complex geological conditions is not clear. The model estab-
lished in this paper is based on the complex function method, which is a supplement to the principle
research of bolt-linings combined support and can provide guidance for the early design of support.

As shown in Fig.1, the model adopted in this paper is to firstly install the point anchored rock bolts
perpendicular to the tunnel wall,and then double linings support are applied. For the convenience of the
analysis, it is assumed that the bolts and the double linings are installed at the same time. After the bolts
are installed, they will deform along with the surrounding rock. Compared with the scale of surrounding
rock, the influence of rock bolt diameter can be ignored. So the interaction between point anchored rock
bolts and surrounding rock in deeply buried circular tunnel is simplified to a problem that multiple pairs
of concentrated forces act on the vicinity of circular hole in an infinite domain. Besides, hydrostatic pres-
sure p, acts on the inner boundary of the secondary lining.

This paper assumes that the tunnel is deeply buried, rock mass, double linings and rock bolts are always
in elastic state under the in-situ stress, and the strain along axis direction of tunnel is zero. That is to say,
it is plane strain condition. The primary lining and surround rock is complete contact, which means the
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Fig. 2. Lined circular tunnel and ring-shaped region in the { plane.

contact stress and the displacement at their interface is continuous. And the contact relationship between
the primary lining and the secondary lining is the same. In addition, the action positions of the concen-
trated forces are assumed to be at the two effective ends of the bolts, that is, at the tunnel wall and the mid-
point of the anchorage section. Despite some assumptions, the solution also has practical significance
because the key variables, which influence the combined support system, can be readily identified and
their relative importance can be quickly estimated.

2. FUNDAMENTAL PRINCIPLES AND EQUATIONS
2.1 Analytic Functions Considering Lining Installation Process

Firstly, we recur to the conformal transformation to map the double linings and the outer region of the
tunnel into concentric circles and the outer region of a unit circle, respectively. See Fig. 2. And the map-
ping function is as follows

¢= Q) =R, 1)

where Ry, R,, R, is the radius of the circular tunnel,primary lining and secondary lining, respectively; L?,

L', L%is the inner boundary of the secondary lining, contact interface of primary lining and secondary lin-
ing, contact interface of surrounding rock and primary lining, respectively. E;, E,, E, is the Young’s mod-

ulus of the rock mass, primary lining and secondary lining, respectively. { = pe®, i = x/—_l; p is the radius
in the { plane and p = r/R,, where r is the polar radius in the z plane; 0 is the polar angle in the { plane,
the same with the polar angle in the z plane. After mapping, the radius of the circular tunnel, primary lining
and secondary lining is set to 1, R(R,/R,), R'(R,/R,), respectively. And L?, L', L° corresponds to ¥, ¥', .

After the primary lining support is applied, the surrounding rock interacts with the primary lining. The
two analytic functions corresponding to the surrounding rock mass under the action of primary lining can
be expressed as:

0 =a+ > al™, w© =58+ bL" (2.2)
k=1 k=1

On the other hand, the two analytic functions corresponding to the primary lining can be expressed by
as:

0 =dy + Zeka + kaCk, Wi (0) =g + Zkafk + ZCIka- (2.3)
=1 =T = =

And similarly, the two analytic functions corresponding to the secondary lining can be expressed by as:
0,0 =1hy + zmkffk + anCk, W) =rn+ zskak + szCk- (2.4)
k=1 k=l k=1 k=1
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The above ay, ay, by, by, do, €x, fr> & Pr> Di> Po> My> P> Fo» Sk, i are all real numbers to be determined by
the boundary conditions given below. The series is taken as a finite term Ne in this paper, as long as the
value of Ne is large enough, the result can be also accurate enough.

Using @y(€) and yy (%), ¢,(8) and y,(£), ¢,({) and y,({), the displacement at any point within the sur-
rounding rock restricted by the primary lining and the displacements at any point within the double lin-
ings can be solved respectively as follows:

26yl + iul) = §| g'{ 000~ “"é))cpo@ wo@} 2.5)
2Gl<uf’+iuf’)=5%{m<pl<c>—%<pxc> wo} 2.6)
26,8 + i) = C| Eg{ 2<p2(c>—°’(é))<p2<c> Wz(C)} @.7)

where u” u are the radial and tangential displacement components, respectively, in the z plane; K, = 3—
4, K, = 3—-4u,, K, = 3—4u,; (W, Gy, £y), (U4, Gy, E)), (L,, Gy, E,) are Poisson’s ratio, shear modulus and
Young’s modulus of the rock mass, primary lining and secondary lining, respectively. And G, = E,/[2(1 +

Ho)l, G = E,/12(1 + w1, Gy = Ey/[2(1 + Wy)].

2.2. Analytic Functions Considering Bolts Installation Process

The tunnel excavation brings about the deformation of surrounding rock, and the rock bolts installed
within the rock mass will restrain the deformation. At the same time, the deformation of surrounding rock
will exert loads on the bolts, so the axial forces are generated. As mentioned above, the effect of point
anchored rock bolts on the surrounding rock can be regarded as pairs concentrated forces with the equal
magnitude and opposite direction along the length of the bolts. The analytic functions corresponding to
the surrounding rock under the action of j-th concentrated force can be expressed as follows [22]:

0 (©) = X;) { ROC] Mln[l+ﬁ%

2n(l + K 21(1 + ) C;
2 J (2.8)
N X; —-iY; Cjcj__RO g
mA+x)\ ¢, R +TE
S =) R KT R
Vo) = 2n(1 + %) [H -Cj 2n(1+1<0)1n( < C]
_Xj+l'Yj ¢ N X; +iY, &l_Ko(Xj+’Yj) R, 2.9)

2n(l+ ko) e, + RE 2n(l+x0) ¢, & 2ml+1%) & (R +2,8)

X; —iY; ¢, —R02 R,
k) ¢ C(Ry+el)

where X;, Y; are the component forces of j-th concentrated force acting on the surrounding rock on x and
y axis respectively; ¢; is radius vector from the position of the concentrated force to the center of circle tun-
nel. For the case that the concentrated force acts on the tunnel boundary, Eq. (2.8) and (2.9) are valid as

well, namely |c| = R,.

Based on the simplified bolts model, one of the concentrated forces acts outwards at the boundary of
the tunnel, and the other one acts inwards at the midpoint of bond length (see Fig. 1). Let N, denote the
axial force of the j-th rock bolt. If the spacing of the rock bolts in the axial direction of the tunnel is .S, then
we have the following equations:

X;=N,cosa,;/S; Y;=N;sina,;/S
X, =-N,cosa,;/S; Y,,=-N;sina,;/S

J

(j=12-n), (2.10)
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¢; =(—Rycosa;) +i(—Rysina.;)
Cion = [~(Ry + L)cos o]+ i[~(R, + L)sina,;
where o is the j-th (j =1, 2, ..., n) rock bolt installment angle, namely the angle between the outwards

direction of the bolt and the x axis; # is the installation number of the point anchored rock bolts; L is the
length between the effective ends of the bolts.

] (j=12--n), (2.11)

According to the superposition principle of elasticity, the analytic functions corresponding to the sur-
rounding rock under the action of point anchored rock bolts can be obtained as follows:

2n 2n
0:0) = D 0,8, Wi @) =D v, (©). (2.12)
J=1 J=1

Therefore, the displacements at any point within the surrounding rock under the action of the bolts can
be solved as follows:

2G0(u3 + iu, ) C

o g'{ ocpg@)—‘”(é))cpxo %(C)} 2.13)

where uf , u? are the radial and tangential displacement components, respectively, in the z plane.

Combining Egs. (2.8—2.13), the radial displacement #} in any point (r, 0) can be given as follows:

n

10
o) =— SN WP, o,r0) | 2.14
Ll3(l’ ) 4TE(1+K0)G()SJZ—:|: J/Z:l: [(BJ " ) ( )
where:

B, = |Cj+n )

__R_ K
h@B,,0,r,0) = . 5
2Ryrsin’(® - o) _ Byrsin’®0-a)
R, —2Ryrcos(®@—o,)+r° Pi—2B,rcos(®—o,)+r"
KoRo [Ry cos(0 —at;) — rcos(20 — 20.)]
RO2 —2Ryrcos(0 —a;) + r
_ KRy [R; cos(8 — o) —B,;rcos(20 - 2a.,)]
Bj - 2BI.R02r cos(6— o) + Birz
Kor(B] = R)I=R; +B,rcos(® — 0,))]
B./.[Ré - 2R§Bjr cos(0—a;) + BirZ] ’
KRy [Ry cos(8 — ot;) — r cos(20 — 20t,)]
[RO2 —2Ryrcos(0—a;) + )
s KoRy[R; cos(8 — a.;) — B,r cos(20 — 20.,)]
[R0 —2R0B rcos(0—o; )+B I

Rgr(Bj RO)[ RO +2R0[3/rcos(6 o) — Br cos(20 - 20a.;)]

B[Ry —2R,B,rcos(®—a;) + BT ’

Ry (B} — R)[-Ry +2R,B,r cos(® — o) — B7r* cos(20 — 20.,)]
Bjr[Rg - 2R§Bjr cos(6—a;) + Bir2 2

hP,,a;,r,0) =

h3(Bj’ajarae) =

5

hB;,0;,7,0) =

hS(Bjaaj:rae) ==

hﬁ(Bjaaj:r:e) =-

h7(Bj:(xj,r,e) =

b
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. 2 .
hs(BjaOCj,r,G)=(K§—l)sin(e—ocj){tan_{ Rysin(6 - 0,) }—tan"[ Ry sin(6 - ) }

—Rycos(0—a;) +r —R§ 008(9—%)"'[3/”

2,2 )
hy(B;,0;,7,0) = K,cos(0— ;) In {B/ (Ry —2Ryrcos(®@—o;) +r )}

Ry (B’ —2B,rcos(®@—a,) + ) |

1 Bi(Rg —2Ryrcos(®-o;) + r?)
(B t;,7,6) = 5(1 +19)c0s(@ - 01)ln {Rﬁ —2R,B,rcos(®—o.;) + BirJ'

2.3. Analytic Functions Considering the Excavation of the Tunnel

The displacement } and uff at any point in the surrounding rock mass due to circular tunnel excavation
can be obtained by two analytic functions [15]:

0, -0,

04(0) = - X Ry, (2.15)
_R(o,+0, 0,—-0,
y,(0) = ( + j (2.16)
g g
p 1 @) I (SIRPPN
Uy +l”4 26, p —| (C){ 0104(0) (C)(P4(C) W4(§)} (2.17)

where G, and o, are vertical and horizontal in-situ stress, respectively. The displacement shown in
Eq. (2.17) is the total displacement in the surrounding rock when the tunnel is unsupported. If the tunnel
displacement is supported after 1} (0 <m < 1) times of the total displacement, the displacement of the sur-

rounding rock before the support is 1( + iu‘ﬁa ). M is the displacement release coefficient [12—14], which
is determined by the distance between the working face and the lined section.

2.4. Equations of Solving ©y(C), Wo(C), ¢,(C), wi(C), 9,(0), w,(C) and N

2.4. 1. Stress Condition of Inner Boundary of the Secondary Lining

Suppose that a uniform hydrostatic pressure p, acts on the inner boundary of the secondary lining L2,
the stress boundary conditions along * in the { plane can be expressed as:

oo
®:(R'0) + “’((R /))cpzue /6) + Wa(R' /0) = pyXR' 0). (2.18)

Substituting Eq. (2.4) into Eq. (2.18) leads to:

Ne

hy + kaR' *ot 4+ Z nR*c" + Z( om R 6"+ km R 67
k=1

(2.19)

+r0 + zskR'_k Gk + Zth'k G_k = poRz.
k=1 k=1

By comparing the coefficients of o™ - c™in Eq. (2.19), the relationship of the coefficients can be
obtained as follows:
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By + 2R+ 1, = 0,

2nR'+ s,R™" = p,R,,

mR?+ 5,R™ =0,

—~(k = 2m R P+ n R*+ ;R =0; 3< k< Ne, (2.20)
m R+ (k + Qm R 7+, R* =0, 1<k < Ne-2,

My R+ 1y R =0,

2.4.2. Contact Stress Continuity Conditions at the Interface Between
the Primary Lining and the Surrounding Rock

Since the analytic function corresponding to the interaction between the surrounding rock and the lin-
ing are @y(£) and y,({), the stress continuity conditions along the interface L°, corresponding to ¥’ in the
{ plane, can be expressed as:

@y(0) +

‘”(( ))(PO(G) +5(0) = ¢,(0) + %cpl(c) + V(0. .21)

Substituting Eq. (2.2) and Eq. (2.3) into Eq. (2.21) leads to:

ay+by,=d,+2f, + g,

b =2f+p,

b, = fo+ P

—(k=2a,_,+b, = f, —(k—2e,_,+p; 3=<k< Ne, (2.22)
a,=¢e +k+2)fr+q; 1<k< Ne—-2,

Ape1 = €Ne-1 T Ane-15

Aye = €ne T qpe-

2.4.3. Displacement Compatibility Conditions at the Interface Between
the Primary Lining and the Surrounding Rock

After the linings and rock bolts are applied, the surrounding rock and the primary lining still keep full
contact with each other along the contact surface L°, we can get the following equation by displacement
compatibility condition:

A= +iud) = @ +iud) — @ +iud) = @ + iu). (2.23)

Substituting Egs. (2.5), (2.6), (2.13) and (2.17) into Eq. (2.23), through sorting we have:

n N 1 Ne
[Km —(cosO+isinO);, —w; |+ ——{ Ko + ¥ [Ky(cos kO —isinkB)
ZZGOS 0 J J 2G0 0“0 ; 0

Ne
+ k(cos(k +2)0 +isin(k + 2)9)] a, — by — Zbk(cos kO + isin ke)}
k=1
1 Ne
_E{Kldo + Z[Kl(cos k6 — isin k0)+k(cos(k + 2)0 + i sin(k + 2)0)] e,
1

N k= (2.24)
+Z[K1(cos kO + isin k) —k(cos(2 — k)0 + isin(2 — k)e)] Ji —
k=1
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—Z (coskB +isinkO)p, — Z (cos kB —isin k0B)g,

_a 42)R0 [K,(0, — G,)(cos® —isin®) — (G, + G,)(cos O + isin 0)],
0

where
_cosa, +isinay,, (R | _Ko(cosa, +isinay) Ryl
2m(1 + ) c, 2m(1 + )
m. =
! cosa; lSlI’lOC/CjC/ R s
21(1 + ) ¢; Ry +co (2.25)

_cosy Hisingy, R o) Kolcosa, Hisiney), fyy R 1
21(1 + %) 2n(l + 1) Cjn O

Cj+,, j+n

2
CosSOL; —isinQ; ¢ ,,C iy, — Ry G
21l + ;) Ciin Ry +c¢;.,0

R, +K0(cosocj—isinocj) RO’

cosa, —isinocj
211 + K,) R\ +¢;

2nl+x,) Ry+co
t, =
! cosa; +151nocjcjcj RO2 Rc
2n(l + K c; o+c)
( 0) J (RO . c/) ) (226)
Ro +K0(cos(xj—ism0cj) R,c

2l +xy) Ry + c/:c 211 + %) R +¢)y,

cos +zs1nocjcj+,, n RO RoG

COSOC/» —lSll’lOCj

2n(1 + 1) Cin (RO +¢,,)
Ko(cosocj+isinocj)ln 1+_& +cos(x +isino; i1n Roo
211 + ;) c,0 21l + K,) ¢;
coso; —isino; ¢;0 coso; —isinQ; R,G
w, = - = =
! 2n(l+%)) ¢,0+R, 2l +%) ¢
Kp(cosa, —isina) Ro'  coso +zsm0cjcjcj R, RG
2l + K c+c; 2n(l + c; c+c;)
i (+Kk) RO+, (+%) ¢ (Ro+c)'] 02
Ko(coso; +isina; cosQ; +isina;
o(COSaL + IS 11y 4 Lo |, COSO HIsinGy |y Koo
2n(1 + ) Cj+nO 21(1 + ) Ciin
cosocj—isinocj CisnO cosocj—isinOLjRoc
21+ %K)  ¢;,,0+ Ry (1 +K) €
Ko(cosa,; —isina,)  Ro’  cosa +zsmocjcj+,,;—R§ R,
(RS + ;1) |

21(1 + K,) R +cyy 21(1 + Ky) Ciin

Besides, the effect of the lining on the surrounding rock decreases as { increases, that is, as { — oo
corresponding to the infinity in the z plane, we have 4§ — 0 and ug — 0. According to Eq. (2.5), the fol-

lowing equation can be obtained:

11m[2G0 (ub + iu, )]

'©) o'(0)
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Since 11m[(p0(§)] = q, llm{m(é) (po(g)} 0 and %i_l)l}o[\llo(C)] = d,, according to Eq. (2.28),we have:

a, = do/Ko. (229)

2.4.4. Displacement Compatibility Condition Between the Bolts and the Surrounding Rock

Due to the excavation of the tunnel, point anchored rock bolts interact with the surrounding rock.
Before the failure of bolts, the points of connection (bolt head and midpoint of the anchorage section)
between the surrounding rock and the adjacent bolts will always be bonded and deform together. Based
on the displacement compatibility condition, we have:

(A =mAuf — Auf — Al = Au(8); B=1,2,---n), (2.30)
where Au(d) is the elongation of the 8-tk rock bolt, which can be calculated as follows:
Au(®) =L (5212, m), (2.31)
Esmd

where Fj, d represent the Young’s modulus and the diameter of the rock bolt, respectively.

Combine Egs. (2.2), (2.5), (2.14—2.17) and (2.30—2.31), the displacement compatibility condition
between d-14 rock bolt and the rock mass can be obtained:

n

10
. . . DR o
4m(l + Ko)GoS;{Nj;[hI(B”a”RO’%) W@, Ry + L, 065)]}

Ne
+ D ac [+ L/Ry) ™ (cos ko — isin kotg)

k=1

COsOlg — Sin Olg
2G,

+k(1+ L/Ry) (cos(k + 2)ois + i sin(k + 2)og)]

Ne
= > b1+ L/Ry) ™ (cos ko —isin kocs)]}
k=1

(2.32)

. Ne
cosoL; —sin oL, ..
_ a, [cosko; —isin kostk(cos(k + 2)a

. {Z Al 5 sTk(cos(k +2)ot;

k=1

- u - 4N;L
+ isin(k + 2)0i5)]- Y b (cos kot — i sin koig) p — .
k=1 End

_d —n){_l K RO, =0)) o RO =) ey Ra(O, + cn)}
2G, 2 (A+L/R) 21+ L/RO) 2(1+ L/Ry)

—%[—HTKORO(GV —0,)cos20;5 + RO(G G")cos 205 + WJ.

2.4.5. Contact Condition Between the Primary Lining and the Secondary Lining

Since the primary lining and the secondary lining maintain complete contact at the interface, the fol-
lowing displacement coordination equation is satisfied:

Léﬂ[m@—“‘—%@ %(C)}

26, p|w'(Q) '(©) (2.33)
_ 1 Le0 { o0 o) } - Re"
2, p|0)(C)| ,0,(0) - (C) (Pz(C) W,(0) ¢ e .

Substituting Eqgs. (2.3), (2.4) into Eq. (2.33), through sorting we have:
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1 2 1 2
—Ixdy + gy + 2R | —— [ + 1 +2n,R° ] =0,
2G1[ 190 T 8o SLrR'] 202[ Wy + 1y LR

1 -1 1 1
—[(x; + DRf; + R ——[(x, + DRn, + R 5] =0,
2G1[(1 )RS nl 2G2[( 2 )Rn, 1

1 2 -2 1 2 -2
— (KR L+ R ——[KR'n + R “s5,] =0,
2G1(1 g D) 2G2[ 2 /) )1

1 i N\ p2-i i
—I[KR f,+2—-0)R ¢_,+ R p
<2G1[1 Ji+( ) i—2 pil

—%[@R’hi +Q-0DR'm_,+R's)] = o>; 3<k < Ne, (2.34)

2

LR + 2+ DR™ £y, + Rig)]
2G,

L QR Tm + @+ DR, + Rt = 0>; 1<k < Ne-2,

2G,

1 1-Ne Ne—1 1 1-Ne Ne—-1
—[x,R ey, + R et —— KR “my,, + Rty ]1=0,
2G1[ 1 Ne—1 qne-1] 2G2[ ) Ne—1 ‘Ne-1]

1 —Ne Ne 1 —Ne Ne

—[,R ey, + R l——[KR my, + Rty ] = 0.

2G1[ 1 Ne—1 qnel 2G2[ 2 Ne el

For the same reason, the interface between the primary lining and the secondary lining meets the stress
continuity condition:

00+ 29 60 + v © = 0,0 + XL G, +va©), L = Re. (2.35)
®'(€) '(0)

Substituting Egs. (2.3), (2.4) into Eq. (2.35), through sorting we have:

dy+ g, + 2R —hy—ry—2mR° =0,

2Rf, + R 'p,—2Rn —R's, = 0,

R f,+R’°p,—R’ny,—R7s, =0,

Rf+Q—-)R"¢ ,+ R p,—kRn—Q2-DR"'m_,—R's,=0;, 3<k< Ne, (2.36)
Re+Q+DR" fiy+ Rqg —kyR'm —Q+ )R 1y — R, =0, 1<k < Ne-2,

R ey, + R qye s = R my,, — Rty =0,

R ™ey, + R qy. — R my, — Rt = 0.

To solve @y({) and y,(0), ¢,(§) and y,(0), ¢,(C) and yy({), and N, G =1, 2, ..., n), I0Ne + 6 + n
unknown numbers need to be solved, that is: a,, a, by, by, dy, €x, fr> L0> Pi> Qic> Po> Mis Py Fo» Sier B (K =1, 2,
..., Ne),aswellas N; (j = 1, 2, ..., n). Accordingly, 10Ne + 6+ n linear equations can be established to solve
these unknown numbers. That is: 2Ne + 1 liner equations about stress condition of inner boundary of the
secondary lining in Eq. (2.20); 2Ne + 1 liner equations about contact stress condition at the interface
between the primary lining and the surrounding rock in Eq. (2.22); 2Ne + 1 liner equations about dis-
placement compatibility condition of the interface between the primary lining and the surrounding rock
in Eq. (2.24) {let 6 = 2kn/(2Ne + 1), (k =1, 2, ..., 2Ne + 1) respectively, note that: avoid being too close
to the anchoring head}; 1 liner equation about the effect of the primary lining on the surrounding rock at
infinity in Eq. (2.29); n liner equations about the displacement compatibility condition between the bolts
and the surrounding rock in Eq. (2.32) (Let d be equal to 1, 2, ..., n, respectively); 2Ne + 1 liner equations
about displacement compatibility condition of the interface between the primary lining and the secondary
lining in Eq. (2.34); and 2Ne + 1 liner equations about contact stress condition of the interface between
the primary lining and the secondary lining in Eq. (2.36).

MECHANICS OF SOLIDS  Vol. 58 No.1 2023



MECHANICAL ANALYSIS OF POINT ANCHORED ROCK BOLT 291

2.5. Solutions for the Stresses and Displacements in the Linings and Surrounding Rock

Since the analytic functions @y({) and (), @,({) and y,(£), 0,() and y,({) are derived, with given

values of (Ry, R;, Ry, G,, Gy, Po» Lo» Uys Wa, £y, Ey, By, E5, M, Ne, S, n, L, d), the stresses and displacements
in the linings and surrounding rock can be obtained.

2.5.1. Stress and Displacement Components in the Linings

For primary lining:

o} + o} = 4Re[@, (/0 (©)], (2.36)
» 280 1 == Q@) - Q') .
_ 2 = _ - . 2.37
Op —0,0p t+ 21T pz 0O {OJ(C) [0)'((;)]2 + ‘~I’1(C)} ( )
For secondary lining:
o, + 0, = 4Re[g(0)/@ (D)1, (2.38)
c R G T e Y (40N (S BN (SO (S B
- 2 == ) 2.39
Op — 0p0p t+ 21T p2 0O {OJ(C) [(D,(O]z + \Ifz(Q} ( )

where Gy, G, T, are the stress components in orthogonal curvilinear coordinates in the z plane. And the
displacement for any point within the primary lining and secondary lining can be solved by substituting

©,(8) and y,(0), 9,(8) and y,({) into Eq. (2.6) and (2.7), respectively.

2.5.2. Stress and Displacement Components in the Surrounding Rock

The stress component at any point in the surrounding rock can be solved as follows:

o, + 04 = 4Re[ps(§)/0' ()1, (2.40)
b 201 = 05(Q0' Q) - 9O ()
Oy — 0. + 2T, =2 + , (2.41)
0 p l po p2 m,(c) {OXC) [m'(C)]z WS(C)}
where
95(0) = Tax(Q) + @y (C) + @;(0) + 94 (0), (2.42)
vs(0) = T oX§) + Wo(0) + w3(0) + W, (0). (2.43)

I'=(, +0,)/4and "' = (6, —6,)/2. The first term of Egs. (2.42) and (2.43) represent the correspond-
ing analytic function before excavation, and the remaining terms reflect the effects of the primary lining,
bolts, and the excavation on the surrounding rock mass, respectively.

3. EXAMPLE AND ANALYSIS

Use the following values for the relevant parameters: the radius of circular tunnel R, = 2.3 m; the thick-
ness of primary lining is 0.3m (R, = 2.0 m); the thickness of secondary lining is 0.4 m (R, = 1.6 m); the

vertical in-situ stress 6, = 3 MPa; the horizontal in-situ stress 6, = 2 MPa; the inner hydrostatic pressure
po= 0.1 MPa; the Young’s modulus of the rock mass, primary lining and secondary lining are £, =5 GPa,
E, =20 GPa, E, = 10 GPa, respectively; the Poisson’s ratio of the rock mass and the double linings are
W, = W, = us= 0.25; the coefficient of displacement released n = 0.0; the terms of the series Ne = §; 12
bolts are installed into the tunnel, and each bolt is arranged every 30° from the horizontal; the length of
bolts L = 1.5 m; the diameter of bolts d = 2.5 cm; the row spacing of bolts S = 1.0 m; the Young’s modulus
of the bolts is £; = 210 GPa. And Fig. 3 present the displacement solution and stress solution on the

boundary of secondary lining and primary lining (both inner and outer). Due to symmetry, results from
0 = 0° to 6 = 90° are shown.
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Fig. 3. Displacement and stress solution within the double linings.

It can be seen from the Fig. 3a, the closer to the center of the hydraulic tunnel, the greater the displace-
ment of the lining boundary, and the displacement of the linings in the direction of the maximum in-situ
stress (90°) is the largest, the displacement of the lining in the direction of the minimum in-situ stress (0°)
is the smallest, which is consistent with the actual situation. From the Figs. 3a and 3d, it can be found that
the radial stress and shear stress of the inner boundary of the secondary lining is 0.1 MPa and 0 MPa,
respectively, which conforms to our preset boundary conditions. In addition, by comparing the results of
radial displacements, radial stresses and shear stresses of contact interface of double linings in Figs. 3a, 3b
and 3d, we can easily find that they are basically equal (green symbol and black line basically coincide),
that is, they meet the displacement and stress continuity condition, that is so called “complete contact”.

Besides, the axial force of 12 point anchored rock bolts can be calculated by the method proposed in
this paper. Similarly, due to symmetry, only the axial force of bolts installment in the direction of 0°, 30°,
60° and 90° are provided here, that is: 7.53 kN, 11.26 kN, 18.80 kN and 22.68 kN respectively. From these
data, we know that the axial forces distribution of the bolts obtained are in line with the actual laws: the
bolt with the maximum axial forces is in the direction of the maximum in-situ stress, and the bolt with the
minimum axial force is in the direction of the minimum in-situ stress.

To a large extent, the effectiveness of this modeling is proved.

3.1.The Effect of Inner Hydrostatic Pressure

Use the same values for the relevant parameters, except for hydrostatic pressure on the inner boundary
of the secondary lining. Let p, = 0.1 MPa, 0.3 MPa, 0.5 MPa respectively. And then adopt the proposed
approach, the axial forces of the bolts at different angles, radial displacement, and difference between
maximum principal stress and minimum principal stress 6,—0; for the points at the boundary of the dou-
ble linings can be plotted as follows.

It can be seen from the Fig. 4a, the axial forces of the bolts drop with the increase of the hydrostatic
pressure, which is the same with the radial displacement for the points at the boundary of the double lin-
ings with different p, in Fig. 4b. Similarly, 6,—06; of the points on different boundary decrease with the
increase of inner hydrostatic pressure p,. By the way, since the radial displacement of the interface between
primary lining and primary lining is continuous, only the results of one boundary are showed in Fig. 4b.

R, and R/ means at the outer boundary of the secondary lining and inner boundary of the primary lining,
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Fig. 4. Results with different inner hydrostatic pressures (a) axial force; (b) displacement (c) 6,—03.
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Fig. 5. Comparison of results before and after exchange of Young’s modulus of double linings (a) axial force; (b) displace-

ment (¢c) 6;—03.

MECHANICS OF SOLIDS  Vol.58 No.1 2023



294 LIU et al.

respectively. The fact is that the smaller the difference (6,—063), the less prone to yield and failure. There-
fore, the internal water pressure in a certain range can support the lining and surrounding rock.

3.2. The Effect Young’s Modulus of the Linings

Similarly, use the same values for the relevant parameters, except for the Young’s modulus of the dou-
ble linings. Exchange the Young’s modulus of primary lining and secondary lining, that is: £, = 10 GPa,
E, = 20 GPa. And then adopt the proposed approach, compare the results after changing the Young’s
modulus with the results in example.

It can be seen from the Fig. 5a, after exchange of Young’s modulus of double linings, the change of
axial force of bolts is not obvious with only slightly reduce. The same law with the displacement results in
Fig. 5b. But the displacements of points on the outer boundary of primary lining exceed that of interface
of double linings. And as for 6,—G; of the points within secondary lining, no matter outer and inner
boundary, it increases a lot. On the contrary, 6,—05 of the points within primary boundary decreases.
That is to say, after exchange of Young’s modulus of double linings, the support provided by the linings for
the surrounding rock doesn’t not change much. Only the stress distribution is adjusted in the two-layer
lining itself. The one with large Young’s modulus, that is, relatively hard, bears more loads.

4. CONCLUSIONS

A mechanical model for a deeply buried circular hydraulic tunnel supported by double linings and
point anchored bolts is proposed by using the complex function method. The surrounding rock, primary
lining and secondary lining, as well as bolts are linked together based on the complete contact condition.
Through the contact surface continuity conditions and boundary conditions, the coefficients of the rele-
vant analytical functions are solved, which attributes to the establishment of relevant linear equations.
And then the axial forces of bolts, displacement and stress components of any point in the surrounding
rock and double linings are derived.

Besides, the effect of inner hydrostatic pressure on the inner boundary of secondary lining and the
influence of exchange of Young’s modulus of double linings are discussed and achieve the following con-
clusions: (1) the internal water pressure can help support the lining and surrounding rock, decreasing the
axial force of bolts, the displacement and 6,—G; of linings and surrounding rock. But it needs to be within
a certain range, otherwise there will be a negative effect with generating tensile stress. (2) the exchange of
Young’s modulus of double linings, the support provided by the linings for the surrounding rock doesn’t
not change much. But the stress distribution will adjust itself within the two-layer lining. The one with
larger Young’s modulus, that is, relatively hard, bears more loads.
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