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Abstract—The article considers the problem of the motion of a gyrostat under the action of potential
and gyroscopic forces in the case of a variable gyrostatic moment. The conditions for the existence of
semi-regular precessions characterized by the constancy of their own rotation rate are studied. A new
solution of the equations of the Kirchhoff–Poisson class is constructed, based on a special type of
three invariant relations with respect to the main variables of these equations.
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INTRODUCTION

The precessional motions of rigid bodies occupy a special place in the classical problem of the motion
of a heavy solid and its generalizations. Applied problems related to the study of precessions of gyroscopic
instruments are considered by Ishlinsky [1]. In the dynamics of a solid, precessions were studied by Grioli
[2], Klein and Sommerfeld [3], the author of this article [4], and many other authors (see [5, 6]). Mono-
graph [7] is devoted to the study of the conditions for the existence of precessional motions of a gyrostat
with a variable gyrostatic moment. It provides an overview of the results obtained in this problem and for-
mulates the main definitions of a gyrostat. The approaches adopted in the works of Wittenburg [8],
Rumyantsev [9], Kharlamov [10] are of great importance in setting the problem of the motion of a gyro-
stat. Precessional motions are characterized by the property of constancy of the angle between two axes

 passing through a fixed point, one of which (l1) is connected to the carrier body, and the other (l2) is
motionless in space. In the case when one of the axes of the moving coordinate system contains the l1 axis,
then it is advisable to call such a coordinate system a precessional coordinate system [11]. According to
[2, 4], precession motions are divided into classes: if the speeds of precession and proper rotation are con-
stant, then the precession is called regular; if the precession rate is constant, then the precession is called
semi-regular of the first type; if only the speed of its own rotation is constant, then the precession is called
semi-regular precession of the second type; in other cases, the precession is called a general type preces-
sion. The largest number of gyrostat precession movements was established for classes of regular and semi-
regular precessions of the first type. It should be noted that the unique cases of precessions of a heavy rigid
body described by the Euler–Poisson equations are the regular precessions obtained by Grioli [2] relative
to an inclined axis and the case of Dokshevich [12], for which the product of the precession velocities and
own rotation. Semi-regular precessions of the second type of a solid and a gyrostat are among the smaller
number of precessions found. For example, it was proved in [4] that semiregular precessions of the second
type are dynamically impossible in the classical problem. Despite this, in the problem of the motion of a
gyrostat with a variable gyrostatic moment, some solutions have been obtained that have this property [7].

In this article, the conditions for the existence of semi-regular precessions of the second type of gyro-
stat with a variable gyrostatic moment under the action of potential and gyroscopic forces are investigated.
The conditions on the parameters of the equations of motion and precession, under which the gyrostat
performs a precession of the second type, are indicated.
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1. STATEMENT OF THE PROBLEM
When studying the equations of motion of a gyrostat with a constant gyrostatic moment, we should take

into account the well-known property of the analogy of the problem of the motion of a gyrostat under the
action of potential and gyroscopic forces and the problem of the motion of a body in an ideal f luid, which
was proved in a particular case by Steklov [13] and Kharlamov [14], and in the general case by Yahya [15].
For the case of a variable gyrostatic moment , there is no such analogy. Therefore, in this article we
will use differential equations in the following form [6, 7, 15]:

(1.1)

(1.2)

where the notation is introduced:  is the angular velocity vector; 
is the gyrostatic moment vector;  is the gyrostat inertia tensor;  is
a matrix characterizing gyroscopic forces;  is a matrix that determines terms that are
quadratic in terms of the components of the vector ;  is the vector of the gener-
alized center of mass of the gyrostat; the dot over the variables  denotes differentiation with
respect to time t.

Equations (1.1), (1.2) have first integrals

(1.3)

where k is an arbitrary constant. All the above quantities are given in the principal moving coordinate sys-
tem with unit vectors .

System (1.1), (1.2) is a non-autonomous system of differential equations with respect to the variables
. Its integration can be based on several approaches. In this article, we will assume that the

rotor , which carries the carrier body , lies on the third coordinate axis, that is, .
Then, by virtue of [10], we will consider system (1.1), (1.2) together with the equations

(1.4)

here  is the speed of rotation of the rotor ;  is the moment of inertia of the rotor  relative to the
axis of rotation ; L(t) is the projection of moments and forces onto the -axis from the side of the car-
rier body. Equations (1.4) can be studied using two approaches: if the function L(t) is given, then first the
function  is found from the first equation of system (1.4) and equations (1.1), (1.2) are integrated, and
then from the second equation (1.4) the function  is defined; if  is given and the function  is
known, then the function  is found from (1.4).

The problem of the motion of a gyrostat with a constant gyrostatic moment based on the Lagrange
function was studied in [16].

We will study semiregular precessions using the method [17, 18]. According to this method, the gyro-
stat angular velocity vector can be represented as

(1.5)

where  is a differentiable function;  is a constant unit vector;  is a constant parameter.
The case , where  is a constant, was considered in [19].

We substitute the value (1.5) into equation (1.2):

(1.6)
From equation (1.6) the first integral follows

(1.7)

which in vector form can be represented as follows: , where  is a constant. That is, due to the
equalities , , the parameter  satisfies the condition . It follows from (1.5) that the pre-
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ON A CLASS OF SEMI-REGULAR GYROSTAT PRECESSIONS 477
cession rate is equal to , and the intrinsic rotation rate is . That is, the precession of the gyrostat
belongs to the type of semi-regular precession of the second type. We write (1.5), (1.6) in scalar form:

(1.8)

(1.9)

Using the equalities  and (1.7), we find the functions , :

(1.10)

where , and the function  is

(1.11)

Substituting ,  from (1.10) into the third equation of system (1.9), we obtain that the function
 can be obtained by inverting the integral [17]

(1.12)

Then the functions  ,   are found from equations (1.10), (1.8). Since the func-

tion (1.11) satisfies the condition  for , then for a real value of the parameter 
the roots of the equation  are real. That is, from (1.11), (1.12) we find

(1.13)

where, by virtue of the third equation from (1.9), . Choosing the plus sign in (1.13) for definiteness,
from (1.13), (1.10) we obtain

(1.14)

Here we introduced the notation

(1.15)

Let us note the form of solution (1.14) and notation (1.15) in the case of , which was considered
in [19] when studying regular gyrostat precessions ( ):

(1.16)

Let us pose the problem: to determine the conditions for the existence of a solution (1.8), (1.14) of
equation (1.1).

2. STUDY OF EQUATION (1.1)
Let us write equation (1.1) in scalar form:
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(2.1)

(2.2)

(2.3)
Let us substitute expressions  from (1.8) into (2.1)–(2.3) and use equations (1.9). Then we get a sys-

tem of three differential equations

(2.4)

(2.5)

(2.6)

The choice of the form of differential equations (2.4)–(2.6) is related to the applied technique for
studying them in further transformations.

In some cases, it is advisable to use equations (2.1), (2.2), excluding the function  from them:

(2.7)

In the general case, substituting functions (1.14) into equations (2.4), (2.5) and excluding the function
 from the obtained equations, we arrive at a Riccati type equation, the solution of which is not pos-

sible to establish. Therefore, in further transformations, we assume that following conditions hold:

(2.8)
In addition, we will consider two independent options for additional restrictions on parameters:

(2.9)

(2.10)
where d0 is a parameter. In case (2.9), we transform equation (2.7) on the basis of (1.8), (1.9) to the form

(2.11)

By virtue of (2.8), (2.9), these equalities can be interpreted as generalized S.V. Kovalevskaya condi-
tions.

When conditions (2.10) are satisfied, we represent equation (2.7) as follows:

(2.12)

Analogues of the first integrals following from (2.12) were considered in [20]. We write equation (2.3)
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(2.13)

where  is an arbitrary constant. If we take into account conditions (2.10) in equation (2.3) and the third
equation from (1.9), then we obtain

(2.14)
Here, l0 is an arbitrary constant. The analogy of equations (2.11) and (2.12), as well as (2.13), (2.14) is obvi-
ous.

Let us consider a linear combination of equations (2.4), (2.5), multiplying equation (2.4) by , equa-
tion (2.5) by , and adding the left and right parts of the resulting equations. Then, by virtue of the equa-
tion , we find

(2.15)

In case (2.9), (2.13), it follows from (2.15)

(2.16)

where E0 is an arbitrary constant and  are:

(2.17)

Let us write equation (2.15) under conditions (2.10), (2.14):
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where G0 is an arbitrary constant and  have the form
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It follows from (2.17) and (2.19) that the quantity  at  will take the value , and to obtain the value
 from (2.17), we must assume . However, equations (2.11), (2.12) do not have such an analogy.

3. CASE (2.9)
At the first stage, we will study this case under the condition
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be an identity with respect to the variable . Then we obtain the following algebraic system for the param-
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(3.4)

(3.5)

(3.6)

We shall considered equation (3.3) as a condition on the parameters . The first equality from
(3.4), due to (2.17) and assumption (3.1), for which the value of q has the form

(3.7)

let’s write it like this

(3.8)

Based on the value (3.8), we express the parameter E1 from (2.17) in terms of the parameters of the
problem:
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(4.1)

We introduce the function (2.16) into equation (4.1). It is convenient to present the result as follows:

(4.2)

where

(4.3)

Let us require that equation (4.2) be an identity in the variable . The zero coefficient of  has the
form

(4.4)
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is of no interest for the dynamics of a gyrostat under the action of potential and gyroscopic forces.

6. CONCLUSIONS
When considering the conditions for the existence of semi-regular precessions of the second type of
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constructed, in which the property of variability of the gyrostatic moment is taken into account. This solu-
tion is characterized by three invariant relations: (1.8) and formulas (1.14). The key conditions for the exis-
tence of this solution are equalities (2.8), (2.9), which characterize the mass distribution, which can be
attributed to the generalized S.V. Kovalevskaya conditions. The solution is described by elementary func-
tions of time, and the carrier body precession rate is a linear-fractional function of the trigonometric func-
tion . In the general case, the solution of the problem posed is quite difficult. It can be described as fol-
lows: at the first stage of studying the existence conditions, based on the second integral from (1.3), using the
invariant relation (1.8) and solving (1.14), (1.15) (in a particular case, instead of (1.14), (1.15) we can draw (1.16))
the function  is defined; at the second stage, this function is substituted into equations (2.4)–(2.6) and
three differential equations for the function  are found (obviously, they will be dependent); at the third
stage, the problem of conditions for integrating the obtained equations in quadratures is studied.
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