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Abstract⎯Equations of motion of a gyrostat around a fixed point under the action of a moment of
gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that,
unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can
provide complementary results. Conditions have been found under which parametric families of par-
ticular solutions expressed in terms of elliptic functions can be constructed. Six types of stationary
solutions are singled out, and the conditions for their stability are obtained using the method of the
Chetayev integral connections.
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1. INTRODUCTION

In the dynamics of a rigid body with a fixed point, of significant importance are both the classical cases
of complete integrability (Euler, Lagrange, and Kovalevskaya cases) and cases of partial integrability in
which parametric families of accurate solutions can be obtained. Such a partially integrable case with a
three-parametric family of solutions was found in 1893 independently by Bobylev [1] and Steklov [2].
Although the approaches proposed in [1, 2] are formally different, they are essentially equivalent so the
monographs on the dynamics of a rigid body use a unified term, the “Bobylev–Steklov case”, and pres-
ently only one of these approaches: for example, monograph [3] describes Steklov’s approach, mono-
graph [4], Bobylev’s approach, and in monograph [5], the Bobylev–Steklov case is presented on the basis
of the Bobylev approach using the Hamiltonian.

The studies commenced in [1, 2] are now successfully developed in several directions. Study [6] exam-
ined asymptotic motions of a heavy rigid body the limiting motion of which is described by the Bobylev–
Steklov solution. Work [7] studied the problem of orbital stability of periodic solutions for a heavy rigid
body with a fixed point in the Bobylev–Steklov case. Kovacic algorithm [8] was applied in the problem,
which made it possible to determine, under certain conditions, properties of the solutions of the periodic
linear-approximation system and make on this basis conclusions about its stability.

Bobylev’s approach was generalized by Kharlamov [9] for a gyrostat represented as a rigid body with
cavities filled-in with an ideal liquid. Under certain conditions [9], it is possible to derive a system of solu-
tions for the equations of motion of the gyrostat, which are expressed in terms of elliptical functions. An
analog of the Bobylev–Kharlamov case was obtained [10] for the equations of motion of the gyrostat in a
pseudo-Euclidian space.

Studied here are equations of motion of a gyrostat with a fixed point under the effect of the moment of
forces (potential, gyroscopic, or circular gyroscopic). The primary goal was to obtain an analog of the
Bobylev–Steklov case for the gyrostat under the action of the moment of gyroscopic forces. In this case
Bobylev’s and Steklov’s approaches are not equivalent and yield the results that are complementary for the
construction of parametric families of particular solutions. The construction of stationary solutions and
the obtainment of the conditions of their stability using the method of Chetayev integral connections [11]
are discussed.
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1634 KOSOV
2. EQUATIONS OF MOTION, FIRST INTEGRALS, AND DESCRIPTION OF THE PROBLEM
We consider the vector form of the equations of motion of the gyrostat with a fixed point under the

action of moment of forces

(2.1)

(2.2)

Here,  is the angular speed vector;  is the unit vector of the force field

symmetry axis, which is specified by projections on the axes of the body-fixed reference frame; 
is the symmetric positive-definite matrix of the tensor of inertia with respect to the fixed point;

 is the gyrostatic moment vector; and  is the vector of the moment of the
force acting on the gyrostat. Following [12–14], we consider as the first integrals the following functions

(2.3)

(2.4)

(2.5)

where  is a symmetric matrix.
It should be noted that geometric integral (2.5) is available for any choice of moment .

However, for system (2.1) and (2.2) to have energy integral (2.3) and area integral (2.4), moment
 may not be arbitrary but should fulfill certain conditions. These necessary and sufficient

conditions are specified by the following assertion proven in [15].
Assertion 1. For functions (2.3) and (2.4) to be the first integrals for system (2.1) and (2.2), it is neces-

sary and sufficient that moment M is representable in form

(2.6)

where  is an arbitrary function.
This assertion shows that first integrals (2.3) and (2.4) determine moment M in the right side of Eq. (2.1) in

a unique way with an accuracy of a circular gyroscopic component . The first two compo-

nents in the formula for moment (2.6) are, respectively, the moment of potential forces  with a

potential  and the moment of gyroscopic forces , specified by matrix S.

Everywhere below we consider the matrix of inertia a diagonal one  and the potential,
linear  (this corresponds to a heavy rigid body), and consider the matrix that sets gyro-
scopic forces also diagonal . We represent system (2.1) and (2.2) in coordinate form

(2.7)

(2.8)

Here,  is a continuous function of  and ω.
The goal of this study was to:
(1) Find analogs of the Bobylev–Steklov case [1, 2] for system (2.7) and (2.8) and perform integration

of the equations of motion for these cases.
(2) Identify stationary solutions specified by the constants that the right sides of equations of motion

(2.7) and (2.8) are zero.
(3) Employ the first integrals to obtain, using the method of Chetayev integral connection [11], suffi-

cient conditions for the stability of the identified stationary solutions.
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ON ANALOGS OF THE BOBYLEV–STEKLOV CASE FOR A GYROSTAT 1635
The analysis has shown that the analogs of the Bobylev–Steklov case for system (2.7) and (2.8) can
only be obtained under the following additional conditions: , , , . Equa-
tions of motion (2.7) can be represented then in form

(2.9)

If the gyrostatic moment is absent ), the moment of gyroscopic forces is not operative
, and the moments of inertia satisfy conditions , system (2.8) and (2.9) corresponds to the

classical Bobylev–Steklov case [1, 2].
Integrals (2.3) and (2.4) for system (2.8) and (2.9) are represented then in the following way

(2.10)

(2.11)

3. CONSTRUCTING SOLUTIONS USING THE STEKLOV METHOD

In this section, to construct solutions of the gyrostat equations with the moment of gyroscopic forces
(2.8) and (2.9), we apply the method proposed by Steklov [2] for equations of a heavy rigid body (see also
[3]). Following [2], we seek the solution of (2.8) and (2.9) in form

(3.1)

where  are some real constants to be determined (it is assumed [2, 3] that ). Substituting (3.1)
into system (2.9) we arrive at identities

Substituting (3.1) into system (2.8) we obtain a system of three differential equations from which 
and γ3 should be found,

(3.2)

It follows then that  should satisfy a system of three algebraic equations

(3.3)

Depending on the conditions set for parameters  and k1 system (3.3) has the following
solutions  and a1:

If , , then , , and  is any real number.

If ,  , , ,  is any real
number.

If  , , then q0 may be any of the numbers q0 =
 that are other than zero and , while a0 and a1 are calculated using

formulas , .

We now carry out integration of system (3.2). This system has integrals  and J4 =

. Using these integrals we represent  and  in terms of :
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1636 KOSOV
The  function can now be found from the first equation of system (3.2) by inverting elliptic inte-
gral

(3.5)

This procedure shows the validity of the assertions below.
Assertion 2. If , , system (2.8) and (2.9) has a family of solutions (3.1), (3.4), and

(3.5), where  is any real number and , .

Assertion 3. If ,  , system (2.8) and (2.9) has a family of solu-
tions (3.1), (3.4), and (3.5), where , , and  is any real number.

Assertion 4. If  , , system (2.8) and (2.9) has a family of

solutions (3.1), (3.4), and (3.5), where  may be any of the two numbers 
that are other than zero and , while numbers  and  are given by formulas  =

, .
We have found in this way that under conditions of assertions 2–4 the solutions of system (2.8) and

(2.9) included in them are expressed in terms of elliptic functions of time. Assertion 2 yields a three-para-
metric family of solutions (parameters ); assertion 3, a three-parametric family of solutions
(parameters ); and assertion 4 yields two two-parametric families of solutions (parameters ).

It is known [3] that an elliptic integral of form (3.5) can be represented in terms of elementary functions
only provided that the fourth-power polynomial in the radicand has multiple roots. Sometimes this fea-
ture enables obtainment of an accurate solution of the system of equations for gyrostat (2.8) and (2.9)
explicitly represented in terms of elementary functions.

Example 1. We consider a three-parametric family of the systems of form (2.8) and (2.9), where free
parameters are  and λ2, which fulfill inequalities , while other coefficients,

 and b, are expressed in terms of the parameters using formulas

It follows then from assertion 4 that each system in the family described above has accurate solution

(3.6)

It is apparent that for all components of solution (3.6) there are limits

Summarizing, this solution describes the case of such a motion of the gyrostat when the remote past
and the remote future are absolutely symmetric. The system slowly “quits” the Lyapunov-unstable sta-
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ON ANALOGS OF THE BOBYLEV–STEKLOV CASE FOR A GYROSTAT 1637
tionary state , in which it stayed in the infinitely remote past (at ), performs
an intense motion in the present (on a relatively short interval near t = 0), and slowly returns to the same
unstable stationary state in the infinitely remote future (at ). The system is continuously under the
action of both a moment of potential forces ( ) and a moment of gyroscopic forces ( ); a con-
stant gyrostatic moment is also in effect ( ).

It should be noted that unlike the classical Bobylev–Steklov case [1, 2] for the heavy rigid body, for a
gyrostat subject to the action of the moment of gyroscopic forces (i.e., for ), it is no longer possible
to obtain in assertions 2 and 3 a family of solutions with any . However, they do not require the con-
ditions on the moments of inertia  to be fulfilled.

4. CONSTRUCTING A SOLUTION USING THE BOBYLEV METHOD
In this section, to construct solutions of the gyrostat equations with a moment of gyroscopic forces

(2.8) and (2.9), we apply the approach proposed by Bobylev [1] for equations for the heavy rigid body and
extended to the gyrostat (without a moment of gyroscopic forces) by Kharlamov [9]). Following [1], we
seek solution of system (2.8) and (2.9) in form

(4.1)

Substituting (4.1) into system (2.9), we arrive at identity

We then find

(4.2)

Using equality (4.1) we obtain from integral (2.10)

(4.3)

The first equation of system (2.9) is now represented in form

(4.4)

where the fourth-power polynomial  is represented with consideration for (4.2) and (4.3) as

However, Eq. (4.4), which is reduced to inverting an elliptic integral, can only be used under some
additional conditions for the parameters of system (2.9). These conditions originate from the requirement
to fulfil area integral (2.11). Substituting  from (4.2) and (4.3) into integral (2.11) and taking into
account (4.1), we represent this integral as a polynomial in power of p in the following form

(4.5)
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For polynomial (4.5) to be an integral, i.e., to preserve a constant value for any solution p(t), it is nec-
essary and sufficient that coefficients satisfy equalities , . It follows from these formulas that
either

(4.6)

or

(4.7)

Using three different solutions of system of equations (4.6) for parameters and Eq. (4.4), we conclude
that the following three assertions are valid.

Assertion 5. If , , system (2.8) and (2.9) has a family of solutions for which q(t) =
, , and p(t) is found by inverting the elliptic integral

after which ,  are determined using Eqs. (4.2) and (4.3), and  is found by differentiation

. Here, q0 is any real number.
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, , , and p(t) is found by inverting elliptic integral
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by differentiation .

Assertion 5 yields a three-parametric family of solutions (parameters ). Assertions 6 and 7 yield
two-parametric families of solutions (parameters ).

Using the solution of system of equations (4.7) for parameters and Eq. (4.4), we conclude that the fol-
lowing assertion is valid.
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family of solutions for which , , and p(t) is found by inverting elliptic integral
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where . Functions ,  are

determined using Eqs. (4.2) and (4.3), and  is found by differentiation  = . Here, q0 may

only be that of the two numbers  +  which are different from
.

Assertion 8 yields two two-parametric families of solutions (parameters ).
We have found in this way that under conditions of assertions 5–8 the solutions of system of equations

(2.8) and (2.9) contained in them are expressed in terms of elliptic functions of time. It should be noted
that the conditions of assertions 2 and 5 coincide, so they yield virtually the same family of solutions
(except the case  not covered by assertion 2). In the case of the heavy rigid body, when in
addition to the conditions of assertions 2 and 5 we have also , the Bobylev [1] and Steklov [2] meth-
ods are equivalent, so in monographs, only one of these methods is usually presented under the common
name of the Bobylev–Steklov case. In a more general case of a gyrostat with the moment of gyroscopic
forces when , assertions 3, 4, 6, 7, and 8 show that the Steklov and Bobylev methods do not follow
from each other and may yield complementary results. In particular, the solutions obtained above in
example 1 on the basis of assertion 4 cannot be obtained from assertions 5–8, since in this example all
parameters are not zero.

Example 2. We consider system (2.8) and (2.9) under the following values of parameters ,
, ,  and seek a solution on the zero level of energy integral  using assertion 7.

We find then a solution in terms of Jacobi functions  ≡ 0, p(t) =

, , . It should be noted that this solution

cannot be found using the Steklov method since the parameters do not satisfy system (3.3).
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(d) If , , system (2.8) and (2.9) has stationary solution
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In cases (a)–(e) the stationary solutions are calculated in terms of the parameters using explicit formu-
las.

(f) If , the stationary condition is constructed in the following way. We set ,  is
number but  and . Next, we calculate , a1 = (b +

 and consider equation

This equation always has either 2 or 4 real roots the absolute value of which does not exceed 1. We set

 for any of these roots and calculate , . Components , ,  of the stationary

solution turn out to be dependent on the selection of . Thus, in case (f) system (2.8) and (2.9) has a
continuum of stationary solutions.

6. ANALYSIS OF THE STABILITY OF STATIONARY SOLUTIONS
To obtain sufficient conditions of the stability of stationary solutions, we use the method of integral

connections proposed by Chetayev [11]. We introduce notations for deviations from stationary solution

In terms of these variables, the integrals of the equations of perturbed motion are represented in the
following way:

(6.1)

(6.2)

(6.3)

Here and below,  denotes the value of integral  on the stationary solution.
We consider first conditions of stability of stationary solutions for case (а). The Lyapunov function is

constructed as a linear connection (linear combination) of integrals (6.1) and (6.3), which for the solu-
tions of type (а) assumes form

To remove linear terms in the connection, we select coefficients  in the following way
. We obtain . For a stationary solution of type

(а), which satisfies condition , this function is positively defined. Thus, we have proven the
following assertion.

Assertion 9. The stationary solution of type (a), which corresponds to  is Lyapunov stable.
We now consider the issue of the necessary conditions for the stability of stationary solutions. Let Q be

a 6 × 6 matrix of linear system  obtained by linearizing system (2.8) and (2.9) in the vicinity of sta-
tionary solution . Matrix  is a Jacobi matrix composed of partial derivatives of right sides
of (2.8) and (2.9) calculated on stationary solution . The explicit form of matrix Q is cum-

bersome and not presented here. The characteristic equation of matrix Q has form  = 0

λ ≠1 0 = γ =3 0r ∈q R
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where coefficients  and  depend on the parameters of system (2.8) and (2.9) and the selected stationary
solution.

The necessary conditions of the stability of stationary solution  are set by inequalities

, , . If at least one of these three inequalities is violated, the characteristic equa-
tion has at least one root with positive real part, which, due to the Lyapunov theorem, results in the insta-
bility of the corresponding solution.

For the stationary solution of type (а), which corresponds to , the necessary conditions
of stability are definitely fulfilled. For the stationary solution of type (а), which corresponds to

, we obtain the following coefficients of characteristic equation

Therefore, this stationary solution will be unstable if at least one of the three inequalities below

is fulfilled.

For  and small |b| the first inequality is fulfilled while for large |b|, the second inequality is satis-
fied. In the case when gyrostatic momentum is absent, , the second inequality is fulfilled.
However, there are no reasons to assert that the stationary solution of type (a), which corresponds to

, is always (i.e., for any values of the parameters) unstable in linear approximation. For exam-
ple, for the following values of parameters , , , , ,  at ,
coefficients of the characteristic equation are  and , and it does not have roots with a
positive real part.

We now proceed to deriving conditions of stability of stationary equations  =
 of type (b) assuming that .

Following the Chetayev method [11], we construct the Lyapunov function as a connection of the inte-
grals of the equations of perturbed motion (6.1)–(6.3)

To remove linear terms in the linear connection, we select coefficients in the following way

We obtain

For quadratic part  of integral V to be positively defined for sufficiently large  it
is necessary and sufficient [16] that V2 is positively defined on set  = 0}.
On set  we obtain

Applying the Silvestre criterion to two quadratic forms the sum of which constitutes V2, we obtain the
conditions for integral  to be positively defined:
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(6.4)

It follows now from the Lyapunov theorem that the following assertion is valid.
Assertion 10. Each stationary solution  of type (b), for which inequalities (6.4) are ful-

filled, is Lyapunov stable.
It should be noted that a violation of conditions (6.4) does not imply yet that the corresponding solu-

tion is unstable, since conditions (6.4) are only sufficient ones. To compare the sufficient conditions of
stability (6.4) with the necessary ones, we note that for a stationary solution of type (b inequality 
for the coefficient of the characteristic equation  = 0 is presented in the following form

 ≥ 0.
Similar to the proof of assertion 10 based on the Chetayev method, the following assertions can be

proven.
Assertion 11. Each stationary solution  of type (c), for which inequalities

are fulfilled, is Lyapunov-stable.
Assertion 12. Each stationary solution  of types (d)–(f), for which inequalities

are fulfilled, is Lyapunov-stable.
Note. The second inequality in the conditions of assertion 12 is definitely fulfilled for those stationary

solutions of types (d)–(f), for which inequalities   hold true.
We now consider a system of equations (2.7) and (2.8) more general compared to (2.8) and (2.9), which

additionally contains the moment of circular gyroscopic forces, and parameters satisfy conditions

We denote the system constructed in this way as the system (2.7а) and (2.8). It follows from assertion
1 that system (2.7а) and (2.8) has the same first integrals (6.1)–(6.3) as system (2.8) and (2.9). It is also
apparent that system (2.7а) and (2.8) has the same stationary solutions of types (a)–(f) under the condi-
tions specified in Section 5. Therefore, assertions 9–12 are also valid for more general system (2.7а) and
(2.8).

CONCLUSIONS
In conclusion we outline the directions in which the results obtained in this study could be extended.

It is helpful to determine whether analogs of the Bobylev-Steklov case exist for a nonlinear potential
 specified by an analytic function. It is also reasonable to consider moment  as a con-

trol action that conserves the first integrals to clarify additional dynamic properties that can be maintained
by selecting such a control. A set of stationary solutions has been found and their stability has been ana-
lyzed using the Chetayev method. It would be of interest to extend the list of stationary solutions and carry
out a more detailed analysis of the solutions similar to that carried out in [17–19] for a gyrostat with only
potential forces or using the Raus method [20] for a rigid body in the Hess case.
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