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Abstract⎯The problem of a wave front in an anisotropic elastic layer is studied. It is shown that in the
case of elastic isotropy, a uniform wave with a plane front in the layer is possible only in one particular
case, at zero Poisson’s ratio. In other cases, for the existence of a wave with a f lat front, the wave must
be inhomogeneous with respect to the transversal coordinate. An analytical solution providing the
existence of a plane shock wave front has been obtained for the first time.
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1. INTRODUCTION
In [1–17], the problems of propagation of harmonic dispersive and nondispersive waves in linearly

elastic media were studied. A certain part of the research is carried out by numerical methods based on
finite elements with spectral properties [18–21]. To solve wave problems, finite difference methods are
also used [22–26], methods of boundary integral equations [27–29], as well as various variants of mesh-
less methods are used, the most common of which are SPH and DEM methods [30–32]. The problem of
determining the propagation velocities of elastic waves becomes especially difficult when dispersion
occurs in the medium or structure and the wave profile begins to blur due to the difference in the propa-
gation velocities of the frequency components of the wave profile. Apparently, this fact was first theoreti-
cally studied in [33], and further studies in this direction were continued in [34–39]. As applied to the dis-
persive waves in plates studied below, a large number of works are devoted to studying the long-wavelength
limits of the Lamb, Rayleigh–Lamb, and Love waves [40–43], which are essentially dispersionless in the
vicinity of zero frequency (for the symmetric fundamental mode) [44, 45].

It should be noted that there are a significant number of experimental studies devoted to studying the
propagation of shock waves in rods [46–48], and there are studies on the formation and propagation of a
shock front in one-dimensional waveguides made of bimodular materials [49, 50].

In this regard, it is of particular interest to study the conditions under which “plane” waves can prop-
agate, the transverse profile of which remains f lat during the motion. Below, in a linear formulation, we
study the existence of waves in an elastic anisotropic layer with wave polarization independent of the
transverse coordinate. Based on the potentials for the displacement field, analytical solutions are con-
structed that make it possible to describe the conditions for dispersive waves, in which, despite the disper-
sion, the wave front remains f lat. The conditions for the existence of such waves, as a review of the litera-
ture shows, have been obtained for the first time.

2. WAVE FRONT IN AN INFINITE MEDIUM
The problem of the propagation of a plane shock wave front is considered in an elastic infinitesimal

setting.

2.1. Anisotropic Environment.
The equations of motion in a linearly elastic anisotropic medium can be represented as

(2.1)− ⋅ ⋅∇ =ρ��

1( , ) div ( , ) 0,x xt tu x C u x
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PROPAGATION OF A FLAT SHOCK FRONT 1079
where  is the displacement field,  is the spatial coordinate,  is time,  is the density of the medium, 
is the quadrivalent symmetric elasticity tensor

(2.2)

Conditions (2.2) exclude micropolar media from consideration.
Considering the tensor  as an operator in the six-dimensional space of symmetric tensors of the sec-

ond rank, let us write the condition for its strict ellipticity
(2.3)

Condition (2.3) is satisfied for any nonzero decomposable tensors of the form , where  and  are
arbitrary nonzero vectors.

Let us introduce the wave potential for a plane traveling wave

(2.4)

In representation (2.4),  is the wave vector that determines the direction of wave propagation, c is the
velocity,  is the normalized polarization of the wave ( ), which determines the motion at the wave
front,  is the scalar potential, which is used to set the wave profile. It is assumed below that the potential

 is sufficiently smooth [48]

(2.5)

Let us note that the following classification is applied to wave fronts: in the case when k = 1, that is, the
potential  is continuous, and its first derivative is discontinuous, the wave front is considered strong; in
this case, when the wave propagates, the stresses are discontinuous at the wave front, while displacements
are continuous functions of the spatial coordinate. In the case when , the wave front is considered
weak, for a weak wave front both stress and displacement are continuous functions of the spatial coordi-
nate. In the case when , the wave front is considered superstrong, such a wave front is accompanied
by discontinuities in displacements. In addition to condition (2.5), the following condition is usually
introduced, which assumes the absence of displacements ahead of the wave front and the nonzero curva-
ture of the wave potential behind the wave front

(2.6)

Thus, it is assumed that the material ahead of the front is in a natural undeformed state. In addition,
the motion of the plane wave is described by the condition

(2.7)
The equations of motion (2.1), together with representation (2.4) and condition (2.6), give the alge-

braic Christoffel equation for determining the vector amplitude 

(2.8)

In Eq. (2.8),  is the unit tensor (the unit diagonal matrix),  is the acoustic tensor determined by
the wave vector

(2.9)
Equation (2.8) shows that for any wave vector the acoustic tensor (2.9) is symmetric and strictly elliptic.

This ensures the existence of three real and positive eigenvalues in the Jordan normal form of the tensor
(2.9)

(2.10)

where  is an orthogonal tensor depending on the vector , and  is a diagonal tensor consisting of
the eigenvalues of the acoustic tensor, the superscript in (2.10) denotes the transposition of the corre-
sponding tensor (matrix). Returning to the Christoffel equation, we note that the polarization (vector
amplitude) is the eigenvector of the acoustic tensor and the root eigenvector of the tensor on the left side
of Eq. (2.8). The symmetry of the acoustic tensor ensures the existence of three mutually orthogonal
eigenvectors and, consequently, the polarizations corresponding to the eigenvalues of the acoustic tensor
are mutually orthogonal. Moreover, even in the case when the acoustic tensor is not simple, for example,

u x t ρ C
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in the case of an isotropic medium, it is semisimple, nevertheless it has three mutually orthogonal eigen-
vectors.

Remarks 2.1. (a) Equations (2.4)−(2.8) ensure the constancy of propagation velocities, in the case of
strong or weak shock wave fronts.

(b) The equations of motion (2.1) and the representation for the displacement field (2.4) show that
whatever the function , which, generally speaking, may not satisfy the conditions given by equations
(2.5), (2.6), it determines a certain field of motion in a limitless environment. However, if the body has
boundaries, then the function  is no longer arbitrary.

(c) Keeping Remark 2.1.b in mind, let us consider the function  as a function harmonic in time and
space variables

(2.11)
where  is the wave number. Function (2.11) describes a plane harmonic wave of circular frequency 
and length . Note that in the case of a harmonic wave, the wavefront is defined in space  as

(2.12)
d) Of particular interest is the stress field at the wave front

(2.13)
Substituting into expression (2.13) the displacement field determined by representation (2.4), we

obtain

(2.14)

2.2. Elastic Isotropy.
The elasticity tensor, considered as an operator in the space of symmetric tensors, can be written as a

nondegenerate symmetric matrix of dimension 6 × 6

(2.15)

In representation (2.15),  and  are the Lame constants

(2.16)

where  is the modulus of elasticity,  is Poisson’s ratio. The elasticity tensor (2.15) makes it possible to
write Hooke’s law in terms of the corresponding six-dimensional vectors 
and .

The vector Christoffel equation (2.8) for the elasticity tensor of an isotropic medium (2.15) takes the
form

(2.17)

The Christoffel equation in the form (2.17) has eigenvalues that determine the velocities of the longi-
tudinal wave  and two transverse waves 

(2.18)

Remarks 2.2. (a) The matrix on the left side of Christoffel’s equation (2.17) is not simple because its
two eigenvalues are the same. However, this matrix remains semi-simple because there are no Jordan
blocks in its structure.
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(b) An analysis of equations (2.14), (2.17) shows that the stresses at the wave front can be represented as

(2.19)

Expression (2.19) shows that the stresses at the longitudinal wave front coincide in direction with the
displacements. At the same time, on planes orthogonal to the wave front, i.e. on planes with a normal

, normal stresses  are, generally speaking, also present

(2.20)

For , there are no stresses on the planes .
(c) In the case of a transverse wave, the stresses at the wave front are determined by the expression

(2.21)

showing that the stresses  are orthogonal to the wave vector  and coincide with the direction of the dis-
placements. On orthogonal planes  with normal  (let us recall that in the case under consideration

) the stresses  can be represented as

(2.22)

(d) If  the elasticity tensor (2.15) is diagonal and the tensor  takes the form
(2.23)

In addition, at  on the planes orthogonal to the wave front, both the normal and tangential com-
ponents of the surface stresses turn out to be zero.

3. WAVE FRONT IN THE LAYER
Let us consider a plate with free surfaces of thickness . Let the origin of coordinates be located on the

middle surface of the plate and the wave vector  be in the middle plane, and  be the vector of the unit
normal to this plane.

3.1. Elastic Anisotropy.
The conditions on the side surfaces of the plate, which express the absence of the corresponding

stresses, can be represented as

(3.1)

where it is denoted that .
The displacement field for a shock wave propagating in the direction  and having a f lat front is deter-

mined by the expression
(3.2)

where  is the displacement field,  is an as yet unknown function characterizing the variation of the
wave amplitude in the transversal direction. Boundary conditions (3.1), when (3.2) is taken into account,
take the form

(3.3)

Equations (2.1) and the representation of the displacement field (3.2) give the differential equation of
the second one, which makes it possible to determine the polarization of the wave front , and this equa-
tion includes two, generally speaking, unknown functions  and 

(3.4)

In Eq. (3.4)
(3.5)
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1082 ILYASHENKO
Remarks 3.1. (a) In the case when the wave profile  is known in advance (this is often the case when
modeling shock waves), the differential equation (3.4) becomes a second-order ordinary differential equa-
tion with respect to the function .

(b) If the function  is harmonic, for example, defined by expression (2.11), Eq. (3.4) takes the form

(3.6)

3.2. Isotropy, .

In the isotropic case, conditions (3.3) of zero stresses at the corresponding layer boundaries take the
form

(3.7)

Equation (3.4) is transformed in a similar way:

(3.8)

In (3.8) it is denoted

(3.9)

Remark 3.2. For a longitudinal wave with polarization coinciding with the direction of propagation,
equations (3.8) take the form

(3.10)

Equations (3.10) show that for an arbitrary function  such that  and  are not iden-
tically zero, they can be satisfied for  only if

(3.11)

However, it should be noted that conditions  contradict conditions (3.7) at the boundary.

3.3. Isotropy, .

Conditions (3.3) for  take the form
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Equation (3.8) is transformed in a similar way:
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(3.14)

The last expression shows that conditions (3.12) at the boundary and differential equations (3.13) are
satisfied for a wave with longitudinal polarization and a f lat front with a constant cross-sectional function
ϕ. The latter, taking Remark 3.2 into account, gives

Proposition (a) In the case of an isotropic layer, a plane longitudinally polarized wave exists only when
the condition  is satisfied.

(b) In the general case, when , a longitudinally polarized shock or harmonic wave exists if (i) the
wave front is non-planar, or (ii) the polarization of the wave is not constant in the layer cross section:

.

4. CONCLUSIONS
The constructed solutions show that a plane wavefront of a longitudinal wave in an isotropic linear

elastic layer with free boundary surfaces can propagate
(1) either under the condition of zero Poisson’s ratio, which is equivalent to zero Lame constant ,

and then the amplitude of the longitudinal wave is necessarily constant in the cross section;
(2) either with a non-zero Poisson’s ratio and, accordingly, a non-zero Lame constant , but a variable

amplitude in the cross section.
Thus, the initially f lat shock front of a longitudinal wave in an isotropic elastic layer in the case of an

arbitrary and non-zero Poisson’s ratio must be transformed into a wave profile with an amplitude variable
in the transversal direction. It seems interesting to generalize the obtained results to shock waves propa-
gating in stratified and functionally graded plates.

In conclusion, it is necessary to note recent studies on the propagation of dispersive harmonic waves
in rods [51–54], where the existence of plane shock fronts also plays an important role.
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