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Abstract⎯Parts made of elastomers usually work in a temperature range in which they exhibit highly
elastic deformation. Thermal expansion is not a highly elastic deformation and is present in the entire
temperature range in which the elastomer exists. These types of deformation react differently to tem-
perature changes. The aim of this article is to elucidate, within the framework of the phenomenologi-
cal approach, the influence of the temperature dependences of these deformations on the temperature
dependence of the stress tensor components describing the stress state of an incompressible elastomer
at finite deformation using a specific problem as an example. A variant of the formulation of the prob-
lem of statics of a homogeneous isotropic incompressible material at finite deformations is used, which
makes it possible to take into account thermal expansion as a self-sufficient process, independent of
highly elastic deformation. Within the framework of this formulation, a new exact solution of the cou-
pled problem of thermoelasticity of a finite longitudinal shear of a long cylindrical bushing with the
Gent-Thomas strain energy potential in a non-uniform temperature field is obtained. It is shown that
the temperature dependence of the shear stress causing longitudinal shear is determined only by ther-
mal expansion, while the temperature dependence of normal stresses is significantly determined by
thermal expansion, and to a lesser extent by the temperature change of highly elastic deformation.
The temperature dependence of the shear stiffness is mainly determined by the temperature change of
the highly elastic deformation.
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1. INTRODUCTION
For engineering applications of elastomers operating in a wide temperature range, methods for calcu-

lating the temperature dependence of the stress-strain state are important. Typically, elastomers are used
in the temperature range at which highly elastic deformation occurs. Thermal expansion is not a highly
elastic deformation and is present in the entire temperature range in which the elastomer exists. These
types of deformation react differently to temperature changes. The aim of this article is to elucidate, within
the framework of the phenomenological approach, the influence of the temperature dependences of these
deformations on the temperature dependence of the stress tensor components describing the stress state
of an incompressible elastomer at finite deformation using the example of a specific problem.

In the last century, a statistical theory of the high elasticity of polymers was developed. The history of
the issue can be found in [1–4]. An important result of this theory, from the point of view of engineering
applications, was the existence of a single strain energy potential (Treloar potential, neo-Hookean poten-
tial)

(1.1)

Here μ is the shear modulus, ρ is the mass density,  is the universal gas constant,  is the average
molecular mass, T is the absolute temperature, I1 is the first of the three principal strain invariants
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702 ZHUKOV
where  are the multiplicities of stretching along the main strain directions. Further experiments [5]
showed that  and it decrease with increasing I2. A problem arose, consisting in describing the
general form of the strain energy function that explains this fact. This problem has not been solved so far,
which manifests itself in a variety of forms of the strain energy function proposed by different authors [6].
A realistic formula that reasonably approximates the general data on rubber deformations given in [5] was
put forward by Gent and Thomas [7]. This expression has the form

(1.3)

The form (1.3) was chosen mainly because of the mathematical simplicity [1] and the transition for
 and  to expression (1.1). Differentiation gives the relations

corresponding to a nonlinear dependence of  on I2. In Eq. (1.1), the temperature dependence of
the strain energy potential manifests itself through the dependence of the shear modulus on temperature.
We emphasize that in (1.1) thermal expansion is not taken into account, that is, this equation describes the
temperature dependence of highly elastic deformation. This approach will be used below to describe the
temperature dependence of potential (1.3), which is more complex than (1.1).

The proposed work belongs to the phenomenological. A variant of the formulation of the problem of
statics of a homogeneous isotropic incompressible material under finite deformations is used, which
makes it possible to take into account thermal expansion as a self-sufficient process, independent of highly
elastic deformation. It differs from other works on the thermoelasticity of rubber by specifying the method
for taking into account thermal expansion. The paper considers the standard problem of the finite longi-
tudinal shear of a hollow cylinder, but within the framework of the proposed formulation, a new exact
solution of the coupled problem of thermoelasticity is obtained. Solutions are given both in an inhomo-
geneous axisymmetric temperature field and in its absence, both with and without thermal expansion.
A comparison is made with the solution within the potential (1.1).

2. GOVERNING EQUATIONS
When considering problems of thermoelasticity, it is usually assumed that stress, increments of free

energy and entropy caused by deformation disappear in the reference configuration [8]. When thermal
expansion is taken into account, the difference temperature  is introduced, where T is the abso-
lute temperature of the deformed configuration, and T0 is the homogeneous absolute temperature of the
reference configuration. In this case, it is assumed that there is no thermal expansion at  [8–10].
Taking these provisions into account, the following version of the formulation of problems of static ther-
moelasticity of a homogeneous isotropic incompressible material under finite deformations is proposed.

We will describe the final deformation of the elastomer using the strain gradient tensor F given by the
expression

(2.1)

Here, r and R are the position vectors of the points of the body in the deformed (current) and undeformed
(reference) configurations, respectively. The dot means dot product (convolution over one tensor index).

According to rational continuum mechanics [12, 13], for a simple homogeneous material with a mass
density of free energy , the equations of state (governing equations) take the form

(2.2)

Here,  is the mass density in the reference configuration, P is the Piola stress tensor [12] (according to
[13] this is the transposed first Piola–Kirchhoff tensor),  is the entropy mass density. If the material is
initially isotropic, then . Here , ,  are

the principal algebraic invariants of the tensor , which is the left Cauchy-Green deformation
tensor [13] (in [12] this is the Finger deformation measure), 1 is the unit tensor. The sign T denotes trans-

λi

∂ ∂ ≠2/ 0W I

( )  = − + − 
 

2
1 1 2 1 23 ln , , const.

3
IW c I c c c

=2 0с = μ1 /2с

∂ ∂= =
∂ ∂

2
1

1 2 2

, cW Wc
I I I

∂ ∂ 2/W I

θ = − 0T T

θ = 0

= ⋅ .d dr F R

( )Ψ = Ψ ,TF

∂Ψ ∂Ψ= ρ η = −
∂∂0 ˆ, .T T

P
F

ρ0
η̂

( )Ψ = Ψ 1 2 3, , ,I I I T = ⋅ ⋅1I 1 B = − ⋅ ⋅2 2
2 11/2( )I I 1 B = =2

3 detI J B

= ⋅ TB F F
MECHANICS OF SOLIDS  Vol. 57  No. 4  2022



THERMOELASTIC BEHAVIOR 703
position, and a pair of dots denotes a double scalar product (meaning a variant of sequential multiplica-
tion, when nearest vectors are scalarly multiplied). These invariants coincide with (1.2).

Assuming that the change in volume occurs only due to thermal expansion, we choose the equation for
the change in volume in the form [8–10]

(2.3)

Here, g(θ) is some monotonic function of the temperature increment θ, with g(0) = 1. The expressions
 are commonly used, where α is the linear coefficient of thermal expansion. It was shown in

[10] that from (2.3) and (2.2) follows the expression for the Cauchy stress tensor S

(2.4)

where the specific energy of elastic deformation (strain energy potential) W, per unit volume of the refer-
ence configuration, is related to the mass density of free energy by the relation , γ is a function
of hydrostatic pressure. Expressions (2.3) and (2.4) take into account thermal expansion.

The temperature dependence of highly elastic deformation is taken into account through the tempera-
ture dependence of the elastic moduli [1, 11]. Thus, the influence of the temperature field on the strain
energy potential manifests itself in two ways, through the dependence of the elastic moduli and, implicitly,
through the mechanism of thermal expansion, which affects the tensor invariants. The Gent-Thomas
potential (1.3) is taken as the strain energy potential. In [14], an expression for this potential is given in a
form that transforms into Hooke’s law at small strains

Here, the shear modulus μin accordance with [1] has the form

(2.5)

In other words, the shear modulus depends on temperature both explicitly and implicitly through ther-
mal expansion. Thus, we get

(2.6)

At , expression (2.6) goes over into the Treloar potential

In the absence of body forces, the equilibrium equation will be written in the form [12]

Here,  is the Hamilton operator in the reference configuration, Rk is the reciprocal basis with
the basis Rk, that is, , where  are the material coordinates of the points

of the body,  is the Kronecker symbol. This equation can also be expressed in terms of the Cauchy stress
tensor [12] as

(2.7)

Here,  is the Hamiltonian operator in the deformed configuration, rk is the reciprocal basis
with the basis rk, i.e.

(2.8)

According to (2.7), from (2.4) we obtain
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704 ZHUKOV
(2.9)

Here, the designations  are introduced. Eliminating the function  in (2.9),
we will have

(2.10)

Among simple, homogeneous, and initially isotropic materials, we will consider materials that obey
the Fourier law

(2.11)

Here, q is the specific heat f lux in the current configuration,  is a constant thermal conductivity coeffi-
cient. In the absence of internal heat sources for a stationary heat f lux, the heat balance equation has the
form [12]

(2.12)
Equation (2.12) and expression (2.11) imply the stationary heat conduction equation

(2.13)
which is supplemented by boundary conditions. Equations (2.3) and (2.13) form a connected system of
equations describing the temperature field and thermal expansion, regardless of the highly elastic defor-
mation.

3. SOLUTION OF THE PROBLEM OF THERMOELASTICITY OF A FINITE LONGITUDINAL 
SHEAR OF A LONG CYLINDRICAL BUSHING WITH THE POTENTIAL

OF THE GENT-THOMAS DEFORMATION ENERGY
IN A NON-UNIFORM TEMPERATURE FIELD

On the inner side surface, the bushing is glued to a fixed rigid cage. A longitudinal shear force with
modulus Q and zero normal and circumferential forces act on the outer side surface. It is assumed that the
load is “dead”, that is, the vector  does not change its magnitude and direction during deformation
(  is the unit basis of the cylindrical coordinate system). Temperature  is maintained on the inner
side surface, and  on the outer.  and  denote the inner and outer radii of the elastomeric sleeve, and
H denotes its length. This problem for various strain energy potentials, both in linear and non-linear for-
mulations, was solved by many authors. In the framework of coupled thermoelasticity, this problem was
investigated in [8] with an original thermoelastic analog of the one-constant Gent-Thomas strain energy
potential. For the proposed statement with two-constant Gent-Thomas potential, the exact solution is
obtained for the first time.

3.1. General Formulation of Problems within the Framework of the Semi-Inverse Method
The material coordinate system is chosen to coincide in the reference configuration with the cylindri-

cal system , and the OZ axis coincides with the axis of symmetry of the sleeve. The sleeve is
assumed to be long enough to ignore end effects and consider the stress-strain state to be independent of Z.

Under these conditions, it is possible to use the kinematic hypothesis of coaxial sections, that is, the
cylindrical and coaxial sections before deformation remain the same after deformation (the same axis for
all such sections coincides with the axis of symmetry of the bushing). In a cylindrical coordinate system,
due to axial symmetry, the place vector in the deformed (actual) configuration is given by the relation

(3.1)

Here,  are the coordinates of the points in the actual configuration in a
cylindrical coordinate system, and  and f(R) are the functions to be determined. The boundary con-
ditions for these functions take the form . The temperature field is also assumed to
be axisymmetric . The Hamilton operator of the material coordinate system in the reference
configuration is written in the form
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(3.2)

In the current configuration, it can be written as

(3.3)

Equation (2.13) in a cylindrical coordinate system has the form

(3.4)

The transposed strain gradient tensor by (3.1) and (3.2) is obtained in the form

(3.5)

So that the incompressibility condition  takes the
form of a differential equation

(3.6)

where the prime denotes the derivative with respect to R. Equations (3.4) and (3.6) form a connected sys-
tem of equations. This system describes the thermal expansion and the temperature field, regardless of the
strain energy potential. We will look for a solution to the system in a parametric form. The solution of
Eq. (3.4) supplemented by the boundary conditions  has the
form

(3.7)

Here,  is the dimensional integration constant, which plays the role of a parameter.

From (3.7) we calculate , and substitute in (3.6). We get
. The solution of this equation with the boundary condition  has

the expression

(3.8)

and (3.7) can be rewritten

(3.9)

Functions (3.8) and (3.9) describe the process of thermal expansion and the temperature field in a
parametric form. You can also rewrite the expression for B(R)

Using (3.6), from (3.5) we obtain the expressions
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706 ZHUKOV
The inverse tensor to F is calculated using the corollary of the Hamilton-Cayley theorem

(3.11)

These expressions are used to calculate
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(3.13)

(3.14)

Using (2.4), (3.12), and (3.13) (the hydrostatic pressure function is considered to depend only on R),
we obtain
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where

Using (3.3) and (3.15), we rewrite (2.7) in the components
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(3.19)

And from (3.15) and (3.18) we obtain the equation for finding the longitudinal displacement

(3.20)

Based on Eq. (3.19), shear stresses do not depend on the form of the strain energy potential, and the
dependence on temperature is determined only by thermal expansion. According to Eq. (3.20), the longi-
tudinal displacement corresponding to the shear stress depends on the type of strain energy potential, and
its temperature dependence is determined not only by thermal expansion, but also by the temperature
dependence of highly elastic deformation.

Let us turn to Eq. (3.17). By (2.8), using (3.10) and (3.11), we write

and obtain the Hamilton operator in the material coordinate system  in the actual configuration

(3.21)

Comparing (3.21) and (3.3), we obtain

using which we rewrite Eq. (3.17) in the form
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Here, Δ is the longitudinal displacement of the outer side surface of the sleeve relative to the inner one.
Using these relations, we get 

• expression characterizing the temperature field

(3.22)

• expressions describing the stress-strain state
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Fig. 1. Dependences  (a) and  (b) on .
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3.2. Calculations Results

In this article, the linear coefficient of thermal expansion , which is characteristic of
elastomers, is adopted. The undeformed configuration corresponds to a uniform temperature  K.
The value of the difference temperature on the inner surface  is assumed to be 0°C. The value
of the difference temperature on the outer surface  is assumed to be 100°C. The case of no
heating corresponds to the difference temperature on the outer surface .

Equation (3.28) has real coefficients and for the accepted values q, w it has one real and two complex
conjugate roots. Only the real root has physical meaning.

All calculations were carried out for κ = 2. The dependences of the dimensionless stresses on the
dimensionless radius were calculated for q = 0.8.

Figures 1a ans 2b show the dependences of  and  on η. Equality  for κ = 2 is
achieved at , and  at .

Having the analytical solution (3.22)–(3.25) in the form of functions depending on  and  as param-
eters, it is easy to find out the degree of influence of thermal expansion and the temperature dependence
of the highly elastic component on the properties of this solution.

Below are the results of calculations in the form of graphs. Each figure shows three curves. Curve 1 cor-
responds to  (no temperature field). Curve 2 corresponds to  (temperature
field is present, but thermal expansion is absent). Curve 3 corresponds to 
(temperature field and thermal expansion are present).

−α = ° 10.0002 C
=0 293T

θ = −1 1 0T T
θ = −2 2 0T T

θ = °2 0 C

( )υ κ ( )θ = θ κ2 θ = °2 100 C
η = °141.448 C θ = °2 0 C η = 0
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Fig. 2. Dependences  on . (a) Dependences  on  at . (b) (1) – , (2) – , , (3) –
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Fig. 3. Dependences  on  at . (a) Dependences  on  at . (b) (1) – , (2 )– , ,
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Figure 2a shows the dependences . All three curves visually coincide, since the tempera-
ture dependence of this stress is determined only by a very slight temperature change in the area of the
cylindrical surface (3.24) due to thermal expansion. Figure 2b for β = 0.6 shows the dependencies 
(stiffness characteristics). An increase in temperature increases the shear stiffness, and the coincidence of
curves 2 and 3 indicates that the process is more strongly influenced by the temperature dependence of
the highly elastic component of deformation.

Figure 3a shows the dependence curves of  at β = 0.6. The closeness of curves 1 and 2
indicates that the temperature dependence of the highly elastic deformation is weak. The significant dif-
ference between curve 3 and curves 1 and 2 shows that the temperature dependence of the radial stress is
mainly determined by thermal expansion. Figure 3b shows the curves  for β = 0 (Tréloar
potential). Here, the highly elastic deformation does not contribute to  at all, and these stresses arise
exclusively due to thermal expansion. A similar situation is also true for the temperature behavior of the

 dependence, which is illustrated in Fig. 3a with β = 0.6 and Fig. 3b with β = 0.

CONCLUSION

Within the framework of the phenomenological approach, a variant of setting the problems of static
thermoelasticity of a homogeneous isotropic incompressible material at finite deformations is proposed,
which allows taking into account both thermal expansion and temperature changes in stresses caused by
highly elastic deformation in an inhomogeneous temperature field. The problem of a finite longitudinal
shear of a hollow cylinder in an axisymmetric temperature field is considered. Within the framework of

( )Σ = Σ ρRZ RZ

( )δ = δ q

( )Σ = Σ ρRR RR

( )Σ = Σ ρRR RR

RRΣ

( )ΦΦ ΦΦΣ = Σ ρ
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the proposed formulation with the Jent-Thomas potential, a new analytical solution of the coupled prob-
lem of thermoelasticity is obtained. The general result of thermoelastic analysis is that the temperature
dependence of different characteristics of the stress-strain state can be controlled by different mecha-
nisms. Thus, the temperature dependence of shear stress, which causes longitudinal shear, is determined
only by thermal expansion, while the temperature dependence of shear stiffness is determined mainly by
the temperature change in highly elastic deformation. The temperature dependence of normal stresses is
significantly determined by thermal expansion, and to a lesser extent by the temperature change of highly
elastic deformation at . At W2 = 0, the highly elastic deformation does not contribute to the normal
stresses at all, and they arise exclusively due to thermal expansion. Such information is of particular inter-
est in the design of rubber-metal parts, since the thermal expansion is affected by the presence of free sur-
faces that can be specified constructively.
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