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Abstract⎯The article considers the problem on assessing the kinetics of the stress-strain state and the
process of damage accumulation in polycrystalline structural materials of units and assemblies of engi-
neering objects, the operational impacts of which are characterized by a highly loaded state under the
influence of non-stationary long-term thermal force loading, where the main degradation mechanism
is material creep. A mathematical model is presented. It is based on the concepts of the mechanics of
a damaged medium and makes it possible to describe processes during unsteady creep under complex
loading conditions and the main hypotheses underlying the mathematical model. By comparing the
results of a numerical simulation with experimental data, a proof of the applicability of the mathemat-
ical model for uniaxial and multiaxial sign-variable loading conditions is given.
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1. INTRODUCTION
For critical objects of mechanical engineering that are operated under conditions of non-stationary

thermal and force effects with long periodic exposures at high temperatures and levels of acting stresses,
the degradation of the structural material as a result of creep becomes significant. The problem on deter-
mining the resource of such structures becomes much more complex under the influence of slowly sign-
changing loading by taking into account the presence of structural stress concentrators, where an accurate
description of the kinetics of the stress-strain state that is used as the basis for applying approaches to
assessing accumulated damage during operation is required [1–5]. For a reasonable description of rheo-
nomic deformation processes, it is necessary to use mathematical models that are able to describe the pro-
cesses of creep and damage accumulation in a structural material under the influence of a non-stationary
temperature field and complex disproportionate force loading.

The most of the existing studies dealing with the mathematical modeling of creep processes are based
on the use of one-dimensional models that describe the process of creep of materials by using basically
equivalent values of stresses and strains [5, 6]. Under conditions of alternating loading, models based on
strain hardening are used [3, 5, 6]. However, when performing estimates of the behavior of structures
under conditions of non-stationary loading, it is necessary to take into account the vector properties of the
parameters of the creep process, the effect of material damage on the kinetics of the creep process, and it
is necessary to take into account the effect of reverse creep during material unloading, which affects the
kinetics of the creep strain tensor under alternating loading with long-term unloading. As a result, it is nec-
essary to build more complex mathematical models that describe the kinetics of the creep process. Many
researchers believe that the application of the concept of introducing internal state parameters into the
mathematical model makes it possible to satisfactorily describe the kinetics of the creep process under
unsteady loading. These models allow describing both the scleronomic (loading time-independent) and
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rheonomic (loading time-dependent) parts of inelastic deformations of structural materials and are con-
venient for analyzing acting stresses by taking into account the effect of material damage.

In this article, based on the works of domestic and foreign authors [1–12], a mathematical model of
unsteady creep is developed and numerical studies of the process of high-temperature creep for
Kh18N10T steel under uniaxial loading and for steel 304 under multiaxial loading are presented. Based on
the comparison of numerical and experimental results, the reliability of the applied mathematical model
of non-stationary creep has been assessed.

2. MATHEMATICAL MODEL
The mathematical model of the damaged medium includes: equations describing the viscoelastic

behavior of the material and the kinetics of the process of damage accumulation, as well as the criterion
for the destruction of the degrading material.

The model is based on the following provisions [5]:
− structural material has initial isotropy of properties;
− processes of deformation of structural materials are characterized by small deformations;
− yield surfaces and creep strain rates are determined by the Mises form;
− change in equipotential surfaces of creep strain rates is determined by the displacement of the coor-

dinates of the center  and the value of the radius cc;

− change in the yield surface is determined by the displacement of the coordinates of the center  and
the value of the radius Cp;

− plasticity and creep strain rates are determined from the associated f low law;

− change in the volume of the material is elastic (plastic incompressibility  is assumed);
− degree of damage for the material is taken into account by the damage parameter ω, which varies in

the range  (  is the initial level of damage of the material, and  is the critical value of dam-
age, characterized by the formation of a macrocrack);

− influence of the degree of degradation on the processes of elastic and inelastic deformation of the
structural material is carried out by introducing a degrading continuum of effective stresses .

It is postulated that the components of the strain tensor  and strain rate tensor  obey the additivity

rule and are the sum of elastic strains ,  and creep strains , :

The stress tensor is related to the elastic strain tensor by the thermoelasticity equations:

(2.1)

where , e are the hydrostatic and ,  are the deviatoric parts of the stress  and strain  tensors,
respectively;  is the Young’s modulus of the 2nd kind (shear),  is the bulk modulus of elasticity,

 is the coefficient of linear expansion with temperature change.
To describe the creep processes, we introduce in the stress space the equipotential creep surfaces 

having a common center  and different radii Cc determined by the current stress state:

(2.2)

(2.3)

where  corresponds to the current surface , which determines the current stress state .
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Fig. 1. Curve of the length of the trajectory of deformation during creep .
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A surface with radius , corresponds to zero creep velocity with a certain specified tolerance for the
amount of creep strain on a certain time basis:

(2.4)

where  and  are the sets of stress states corresponding to zero creep velocity.

(2.5)

where  and  are the functions of temperature Т determined experimentally.
The evolution equation for changing the coordinates of the center of the creep surface has the form

[13]:

(2.6)

where  and  > 0 are the kinematic hardening parameters and  is the temperature modulus.
Concretizing relation (2.3), the gradient law can be represented as:

(2.7)

The expression for the length of the creep deformation trajectory has the following form:

(2.8)

The curve of the length of the deformation trajectory during creep  depending on the process time t
at  has the form shown in Fig. 1.

On the curve  (Fig. 1), three characteristic creep zones of the material can be distinguished:
I. unsteady creep zone (0–1), where the creep strain rate  decreases;
II. steady creep zone (1–2), where the creep strain rate  is approximately constant ;
III. zone of active damage accumulation (2–3), where the creep strain rate  constantly increases and

the progressive effect of damage on the mechanical properties of the material begins.
The presence and length of zones I and II depend on the structural material and on the magnitude of

the intensity of active stresses .
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The expression for  in the first section of the creep curve can be represented as follows:

(2.9)

where ,  are the values of the parameter λc at the points “0” and “1” on the first part of the creep
curve of the material (see Fig. 1).

On the third section that is prior destruction, we have:

(2.10)
where  is the amount of damage.

Relations (2.1)–(2.10) make it possible to simulate creep processes under nonisothermal nonstationary
loading and describe the stages of unsteady and steady creep rates.

Constitutive relations (2.1)–(2.10), which describe the process of nonstationary nonisothermal creep,
have been developed as a system of “embedded” mathematical models. By excluding from the equations
the parameters (equalizing to zero) responsible for certain creep deformation effects, one can obtain par-
ticular mathematical models used in solving simple problems.

Damage affects the physical and mechanical properties at the stage of its development and active merg-
ing of scattered discontinuities in the volume of the structural material. To take into account the damage,
effective stresses, which are defined as follows, are used:

(2.11)

where ,  are the effective moduli of elasticity determined by the McKenzie formulas [13, 15]:

(2.12)

The effective internal variables ,  are defined in a similar way:

(2.13)

When developing the constitutive relations for the kinetics of damage accumulation, it is assumed that
the process of damage accumulation conditionally consists of two stages: the first stage is accompanied by
the nucleation of discontinuities (micropores, microcracks), the second stage is the development and
active merging of scattered discontinuities. The kinetic equation for damage accumulation in structural
materials is taken in the simplest form of products of functions of internal parameters that affect the dam-
age accumulation rate:

(2.14)
In (2.14), the functions fi make it possible to take into account the dependence of the damage accumu-

lation rate  on the following parameters of the deformation process:
− type of stress state⎯function ;
− current level of accumulated damage⎯function ;
− current value of the absorbed energy used for the formation of discontinuities (micropores and

microcracks)⎯function ;

− current rate of change of absorbed energy ⎯function .

(2.15)

(2.16)

Equations (2.15) and (2.16) have the following notations:
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Table 1. Physical and mechanical characteristics and material parameters of the MDM model for Kh18N10T stain-
less steel

Т, °С К, MPa G, MPa , MPa , 
1/MPa h

, 
1/MPa h

, MPa
, 

MJ/m3
, 

MJ/m3

850 62855 29010 17 0.00011 0.00011 19000 224 4.7 0.3 0.03

сС λ(0)
с λ(1)

с
1
cg 2

cg
f

cW a
cW

χ(1)
с

−  is the “stiffness” parameter of the stress state ( );

−  is the value of the absorbed energy  at the end of the stage of nucleation of scattered discon-
tinuities under creep conditions;

−  is the value of the absorbed energy corresponding to the formation of a macrocrack under creep
conditions;

−  is the integration constant of Eq. (2.15).
The stage of development and merging of discontinuities in the structural material leads to the achieve-

ment of the level of accumulated damage of a critical value.

(2.17)

According to the given history of change in time for thermal and mechanical loading with joint inte-
gration of the equations describing the viscoelastic behavior (2.1)–(2.10) and the kinetics of damage accu-
mulation (2.14)–(2.16), the resource of structural elements of engineering objects is determined under the
conditions of the creep process in structural materials.

3. NUMERICAL RESULTS
As part of the assessment of the reliability of the mathematical model by numerical simulation of creep

processes in the uniaxial formulation of the problem for Kh18N10T steel, creep curves were numerically
simulated at stress intensity levels  = 40, 50, 60 and 80 MPa and temperature °C. The experi-
mental basis for comparing numerical studies was the study [14], where the creep curves of the specified
steel were given under identical loading conditions. Table 1 shows the physical and mechanical character-
istics and parameters of the thermal creep model for Kh18N10T steel.

Figure 2 shows creep curves at temperature °C and stress levels  = 40, 50, 60 and 80 MPa.
The solid lines show the results of numerical simulation, and the dotted lines show the corresponding
experimental results. One can see the qualitative and quantitative agreement between the experimental
and calculated data.

As a part of the assessment of the reliability of the mathematical model of thermal creep under multi-
axial loading, numerical studies of the creep process of steel 304 at a temperature of °C under biaxial
loading were carried out. Experimental studies under biaxial loading laws for this steel were given in [7]
and were performed on tubular laboratory samples. The tests were carried out at a constant temperature
and periodic changes in the principal axes of the stress tensor (Fig. 4). In the tests, thin-walled tubular
samples with an outer diameter of mm, a wall thickness of mm and a working
length of mm were used. Figure 3 presents the comparison of the numerical results and experimen-
tal data under uniaxial loading of the specified steel for three levels of acting stresses (σ11 = 117.7; 137.3 and
156.9 MPa).

For testing under conditions of combined action of normal and shear components of stress and creep
strain tensors, an axial force and torque were applied to the specimen in accordance with the established
loading law. Each cycle of repeated multiaxial loading consisted of pure torsion in  with complete
unloading and combined tension with torsion  in  with unloading. The vectors  and  have the
same value in different directions (  is the angle between the vectors, see Fig. 4). Such a loading cycle was
repeated 5 times at  h and  MPa, which is close to the yield strength of steel 304 at

°C.
The test results showed that in the case  immediately after the rotation of the stress tensor, the

strain rate slightly increases. When rotated by 90°, there is a temporary increase in the rate of axial and
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Fig. 2. Creep curves for Kh18N10T steel at a temperature of 850°С: (1)  MPa, (2)  MPa, (3)  MPa,
(4)  MPa.
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Fig. 3. Creep curves of steel 304 at a temperature of 650°С: (1)  MPa, (2)  MPa, (3)  MPa.
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shear deformations after the change from tension to torsion and torsion to tension. This transient increase
in strain rate decreases as the duration of cyclic loading increases.

At large angles of rotation of the stress vector  and 180°, there is a noticeable temporary
increase in the strain rate after each rotation of the stress vector, similar to that observed during the initial
application of the load (Figs. 5–8). Thus, it can be concluded that the softening of the material after rota-
tion of the stress vector becomes most pronounced with an increase in the angle of rotation.

Another essential feature of creep strains under complex loading is the non-collinearity of the stress
vector and creep strain rates at the transitional stage immediately after the rotation of the stress vector.

4. CONCLUSION

A mathematical model that describes the processes of non-stationary creep of structural materials
under non-stationary complex loading has been developed.

The results of numerical simulation and experimental data of creep processes for Kh18N10T and 304
steels are compared. It is shown that the developed version of constitutive relations of unsteady creep
allows one to describe creep processes of metals under uniaxial and multiaxial stress states with sufficient
accuracy for engineering calculations.

θ = °150
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Fig. 4. Scheme of loading steel 304 during a creep test at a temperature of 650°С, T = 8 h.
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Fig. 7. Change in creep strain as a function of time at .
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