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Abstract⎯The problem of deformation of an elastic-viscoplastic material in the gap between the coax-
ial cylindrical surfaces of a rotary viscometer is considered. The loading of the material occurs due to
a slow rotation of the outer wall of the viscometer; at this stage, the condition of adhesion of the mate-
rial to the walls is assumed. At a certain critical angle of rotation, material slip occurs, which causes
the unloading shock wave to propagate in the layer. When the wave propagates, it interacts with the
elastic-plastic boundary and is reflected from the walls of the viscometer. The unloading dynamics is
investigated using the ray method for constructing near-front expansions.
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1. INTRODUCTION

Among the problems solved by means of solids mechanics, there are those in which some threshold
events are studied. Such events are often catastrophic and cause destruction in man-made and natural
structures. Examples of such events are the phenomenon of bifurcation of equilibrium states, loss of sta-
bility in structural elements (f lipping of shells) [1, 2], in rocks [3]; formation of brittle fracture cracks [4],
avalanches [5], etc. Here we consider the boundary value problem of the theory of large elastic-viscoplas-
tic deformations about an instantaneous change in the slow process of viscometric deformation, which is
caused by the shear and slippage of the material. The elastic-viscoplastic deformation of a material in a
viscometer is, therefore, a subcritical process, and the dynamic unloading following the moment of sepa-
ration is a supercritical process. In this case, at both stages, the deformed state is an azimuthal shear. Con-
sidering that reversible and irreversible deformations acquired during loading are interconnected and can-
not be specified arbitrarily, the problem of dynamic unloading also requires the solution of the problem of
active loading [6–8]. The azimuthal shear problems for various models of media under quasi-static and
shock-wave deformation have a long history and various applications, including in biomechanics [9–17].

2. MODEL RELATIONSHIPS OF AN ELASTIC-VISCOPLASTIC MATERIAL

To describe the motion of the medium, we will accept the model of large elastoplastic deformations
[18, 19], in which the reversible and irreversible components of the total deformations are set by the dif-
ferential equations of their change (transfer). Then, in Euler’s variables, the main kinematic relations have
the form:
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(2.1)

Here, u and v are the vectors of displacement and velocity; d is the Almansi total strain tensor; ,  are
the tensors of reversible and irreversible deformations, respectively; ,  are strain rate and irreversible
strain rate tensors;  is the vorticity tensor;  is the objective time derivative, written for an arbitrary
tensor , which transforms into the Jaumann derivative [19], when the nonlinear part  of the rotation
tensor  vanishes. According to (2.1), during unloading ( ), the components of the tensor of irrevers-
ible deformations change in the same way as at rigid body motion. Everywhere below, the condition of
incompressibility is adopted in order to focus on the processes in which significant shear deformations are
achieved with relatively small changes in volume. In this case, an analogue of Murnaghan’s formula,
which determines the stress – elastic strain relationships, takes the form [19]:

(2.2)

In (2.2),  is the Cauchy stress tensor;  and  are functions of the additional hydrostatic pressure, I
is the unit tensor of the second rank, W = W(J1, J2) is the elastic potential, which for an incompressible
medium can be represented in the form [19, 20]:

(2.3)

Here, ,  and  are the elastic moduli of the material. The invariants  and  of the elastic strain
tensor are chosen so that the passage to the limit in (2.3) occurs from the second dependence to the first
as the plastic deformations tend to zero. We will assume that irreversible deformations begin to accumulate
in the material when stresses reach the loading (yield) surface . As the loading surface, we take
the Tresca yield condition taking into account the viscous resistance to plastic flow [21]:

(2.4)

In (2.4),  and  are the eigenvalues of the stress tensor and plastic strain rate tensor,  is the shear
yield strength,  represents the strain rate dependence of the yield stress. We utilize the associated f low
rule for plastic strain rate tensor

(2.5)

In order to obtain a closed system of equations both in the region of elastic deformation and in the
region of plastic f low, it is sufficient to supplement the previous relations with the equation of motion or
the equilibrium equation
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(2.6)

(2.7)
It is not always possible to neglect the inertial forces in (2.6) so as to have (2.7). If this turns out to be

possible, then one speaks of a quasi-static approximation in solving the problem.

3. FORMULATION OF THE PROBLEM. QUASI-STATIC DEFORMATION
Let the material, the properties of which are described above, fill the annular gap between rigid cylin-

drical surfaces with unlimited generatrices. We denote the radius of the inner cylinder by , and the outer
one by . The outer cylinder rotates around its axis with a preset shear stress, while the inner one remains
fixed. We assume that at shear stress values not exceeding a certain specified threshold value 
( ), the adhesion conditions are satisfied on the cylinder walls:

(3.1)

We assume that . There are no preliminary deformations. The trajectories of the points of the
medium are concentric circles, and all the required functions in the cylindrical coordinate system 
depend on two variables: the distance from the  of the cylinders  and the time t. According to (2.1), the
kinematics of the medium in this case is determined by the dependences

(3.2)

where  is the central twist angle of the points of the medium,  is the angular veloc-
ity.

Before the stress reaches the loading surface, the deformation is reversible. According to (2.2), the
components of the stress tensor in this case are determined by the dependences:

(3.3)

We assume that elastic strain is small; therefore, only the leading nonlinear terms of deformations are
written out in (3.3). In areas where irreversible deformations are present, stresses are determined accord-
ing to the second dependence in (2.2):

(3.4)

The tensor components not written out in (3.2)–(3.4) are equal to zero. If deformation is sufficiently
slow, it is possible to adopt the quasi-static approximation. In this case, integrating the equilibrium equa-
tions following from (2.7) and (3.3),

(3.5)

taking into account the boundary conditions (3.1), we write down the solution that is valid in the time
interval when the material undergoes only elastic deformation
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(3.6)

Solution (3.6) is valid until moment of time , when the plasticity condition ,

 is satisfied on the surface . From this moment on, the considered layer 

contains two regions: the region of viscoplastic f low  and the region of reversible (elas-

tic) deformation ;  is the equation of a moving elastoplastic boundary. Here-

inafter, the superscripts “E” and “ ” in parentheses denote the values in the regions  and ,
respectively. We will assume that the stress state is close enough to the state of pure azimuthal shear,
neglecting second-order effects. Then, based on (2.4), the plastic f low condition is written in the form:

(3.7)

and by virtue of the associated plastic f low law (2.5), condition (3.7) implies

(3.8)

The parameters of the stress-strain state are found by integrating the equilibrium equations in the
regions  and , and the unknown integration functions are determined from (3.1) and the condi-
tions for the continuity of displacement, velocity and stress at the elastoplastic boundary . Thus,

in the region of viscoplastic f low , we obtain

(3.9)

and in the region of elastic deformation 

(3.10)

The stresses in the layer, as before, are determined according to (3.5). The position of the elastoplastic
boundary is found from the condition that the plastic strain rate  is equal to zero on it

(3.11)
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According to (1.1), (3.7), and (3.8), the diagonal components of the reversible ,  and irreversible
,  deformations, which are quantities of a higher order of smallness compared with the non-diago-

nal ones, are found numerically from the following system of equations:

(3.12)

Then, based on (3.4) and (3.6), the function of the additional hydrostatic pressure is determined.

4. UNLOADING DYNAMICS

At the time moment t = ts = , the static friction stress  on the surface  reaches the
threshold value σ0, and the material in the vicinity of this surface begins to slip. From this moment on, the
no-slip condition on  must be replaced by some contact friction condition. We take as such the con-
dition of constancy of the shear stress on , assuming that the latter at the moment  changes abruptly,
so that

(4.1)

An instantaneous stress drop below the yield point leads to the formation of an unloading wave Σ1, the

position of which in space is described by the equation . By a shock wave we

mean a surface with a strong discontinuity, that is, a surface on which displacements are continuous, and
the displacement velocities and stresses experience a finite discontinuity. The surface of a strong discon-
tinuity [22] can be interpreted as a limiting layer of thickness  ( ), in which the velocities and
stresses change from values ,  to values , , remaining monotonic and continuous inside the layer.
On surfaces of weak discontinuity, which also occur below, stresses and displacement velocities remain
continuous, but some of their partial derivatives undergo a discontinuity.

It was shown in [22] that in an elastoviscoplastic medium there are two types of waves: longitudinal and
transverse, the velocities of which coincide with the velocities of waves of the same name in an elastic
medium. Plastic deformations in an elastoviscoplastic medium remain continuous even when passing
through the discontinuity surface [22]. By virtue of the previously accepted small elastic strain approxi-
mation, in our case, the velocity of the unloading wave Σ1 is constant  (  is the density of the
medium). Since the unloading process under consideration is essentially nonstationary, the right-hand
side in (2.6) cannot be neglected. The dynamic behavior of the material behind the unloading shock wave
obeys the equations of motion:

(4.2)

Thus, from the moment t = ts there are three distinct regions, in which stresses and strains are deter-

mined differently. In the unloading region  we integrate the equations of motion (4.2),

while, in the region of the continuing viscoplastic f low  and the region of reversible

deformation , we consider the solution of the quasi-static problem to be valid.
The first equation in (4.2) is the main one and can be solved independently of the second, and then the

additional hydrostatic pressure  is found from the second equation using the solution obtained.
According to the transfer equation for the tensor of irreversible deformations (2.1) in the process of
unloading ( ) its components pij change as at rigid body motion. From (3.9) and (3.12) it follows that
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through which the wave front passed and in the region  it is only a function of the coordinate .
Taking this circumstance into account, the equation of motion in the unloading region takes the form:

(4.3)

where , ,  is the arrival time of wave  at the point
with coordinate r. The boundary conditions for (4.3) are the friction condition (4.1) on the boundary sur-
face  and the condition of continuity of displacements at the front of the unloading wave 

(4.4)

Square brackets in (4.4) and below denote the jump of a function on the discontinuity surface, ψ+ =
ψ+(r1(t), t) is the value of the function ψ(r, t) immediately in front of the discontinuity surface, and ψ– =
ψ–(r1(t), t) is immediately behind the discontinuity surface.

Unloading waves were also considered in [23, 24], where the exact solutions of the boundary value
problems of the theory of large deformations about dynamic unloading in a f lat heavy layer located on an
inclined plane and subjected to loading on a free surface were obtained, followed by instantaneous
removal of the load [23] or material stripping from an inclined plane [24].

In our case, equation (4.3) cannot be integrated exactly, we construct its approximate solution by the
ray method, which consists in representing the solution in the vicinity of the wavefront in the form of a
Taylor series. The practice of using ray expansions in solving wave problems is quite extensive [25]. Here
we use a version of the method proposed in [26], where the approximate solution was constructed in the
form of a power series in time in the vicinity of the moment of arrival of the wave at a given point in space.
So for the angular velocity  in the area  we write:

(4.5)

Similarly, it is possible to write down the ray series for the stress and twist angle functions, and these
quantities are also expressed in terms of jumps in the angular velocity and its derivatives 

. In what follows, we will omit the “+” subscript for the quantities in front of the discontinuity
surface. Usually asymptotic series of the type (4.5) are limited by the first few terms. In this work, we will
keep the terms linear in time for stresses and velocities and quadratic terms for displacements.

In order to calculate the discontinuity of the function on the shock wave and the discontinuities of its
n-th order derivatives, it is necessary to differentiate the first equation in (4.2) n – 1 times with respect to
time, write the result on each side of the wave surface and calculate their difference using geometric and
kinematic compatibility conditions [21, 27, 28]. Thus, we recursively obtain a system of linear inhomoge-
neous differential equations of the first order:
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Fig. 1. Shear stress distribution at moment of time .
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The superscript (1) means that the calculated values refer to the region V(1). If necessary, the following
terms of the ray series can be calculated in a similar way. There are no fundamental difficulties in this, only
the volume of calculations increases.

At the moment of time t = t1, the unloading wave reaches the elastoplastic boundary:

(4.8)

The distribution over the layer of the shear stress  and the twist angle  are shown in
Fig. 1–2 at the moment of collision with the elastoplastic boundary. The calculation was carried out for the
following constants: ρ0 = 2.7 × 103 kg/m3, μ = 24.5 GPa, k = 56.3 MPa, η = 1.25 GPa ⋅ s, σ0 = 67.56 MPa,
σs = 42.225 MPa, , α 5213 Pa/s.

Starting from the moment , the region with accumulated irreversible deformations no longer
increases and is bounded by the surfaces  and . As a result of reflection  from

elastoplastic boundary  the discontinuity surfaces Σ2:  and Σ3:

 with oppositely directed velocities begin to move to the boundary surfaces 

and , respectively. In the region  the motion of the medium obeys equation (4.3),

and in the region , the equation of motion takes the form:

(4.9)

 The boundary conditions for equations (4.3) and (4.9) are the condition for the continuity of displace-
ments on surfaces r = r2(t) and r = r3(t), as well as the condition for the coincidence of displacements and
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Fig. 2. Rotation angle distribution at moment of time .
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stresses on the elastoplastic boundary r = . The latter provides us with the smoothness of the solution
in the region  at each time moment following

(4.10)

As before, the index in parentheses takes the value of the number of the wave to the zone of influence
of which this value belongs. We represent the solution for the sought function ω(r, t) behind waves  and

 by ray series similar to (4.5)

(4.11)

(4.12)

Differential equations for the coefficients of the ray series are obtained by applying the algorithm
described above to the equation of motion. After integration, substitution of the result in the ray series and
comparison with the boundary conditions, it turned out that on the wave  the velocity and acceleration
remain continuous, i.e., , and  is a shock wave. The discontinuities of the derivatives of a
higher order in the region  can be traced if we continue the ray series (4.11) with the required degree
of accuracy. Thus, within the framework of the accepted linear in time approximation for the velocity and
stress, the solution in the region  is still determined by relations (4.7), and in the region  we
have:
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The next change in the wave pattern will occur at moment of time , when wave 
is reflected from the outer cylinder , giving rise to a new discontinuity surface Σ4: r = r4(t) =

. The motion of the medium in the region  obeys the equation of motion
(4.9), the boundary conditions for which are the adhesion condition on  (3.1) and the condition of
continuity of displacements at the wave front . Thus, in the region  we have:

(4.14)

Surface  is a converging shock wave. It should be noted that as it moves to the inner boundary,
a new plastic region may appear due to the increasing intensity of the discontinuity due to an increase in
the curvature of the wave front. At this stage, the analytical study is considered complete, it is advisable to
carry out the calculation of further deformation numerically, if necessary, using the analytical solution to
approximate the solution at the nodes of the frontal region.

5. CONCLUSIONS
The problem considered is characterized by a change in the rate modes of deformation: from low-rate

(quasi-static) at the stage of accumulation of irreversible deformations to dynamic at the stage of unload-
ing, propagating in the form of a weak shock wave. If at the first stage it is possible to obtain an exact solu-
tion to the boundary value problem, then at the second stage, the method of ray series is used to construct
an approximate analytical solution behind the front of the unloading wave. The same method was used to
calculate the reflection of the initial unloading wave from the elastic-plastic boundary and the boundary
surface. A significant simplification in the solution of the problem is introduced by the small elastic strain
approximation and the one-dimensional nature of the deformation. In this case, the wave velocities are
constant, and the rays (orthogonal trajectories of points on the wave surface) are straight lines. In the case
of finite deformations, the velocity and position of the wavefront will depend on the state ahead of the
wave and the intensity of the discontinuities on the wave. In addition, the wave pattern becomes more
complicated, since in a medium with preliminary deformations, two shear shock waves propagate at once:
a plane-polarized wave and a circularly polarized wave.

Nevertheless, the results of this work can be useful in the formulation of non-stationary problems of
the theory of large deformations, but with more complex boundary conditions, as well as when using the
obtained approximate solutions in numerical finite-difference calculations at the frontal nodes on a grid
along the ray.
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