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Abstract—The problem of loading a textured two-layer elastic foundation with a rigid smooth indenter
is considered. At the interface between the textured layer and the half-space, the conditions for com-
plete adhesion are specified. Relief elements are elastic cylinders, characterized by height and radius,
located on the surface of the base with a given period. The one-dimensional Winkler model is used to
describe the mechanical properties of relief elements. The contact problem is solved using the bound-
ary element method. Pressure, displacements, and also the shape of the indenter are approximated by
piecewise constant functions. The influence coefficients are constructed using a method based on
double integral Fourier transforms. The analysis of the influence of the texture elements arrangement
density and their compliance on the distribution of the contact pressure is carried out. It was found
that in most cases contact is made only with the elements of the texture. For a relatively stiff textured
layer, the combined effect of layer curvature and additional pliability imparted by texture elements is
important. For relatively stiff and pliable textured layers, load-penetration curves were obtained
depending on the texture period. Within the framework of the proposed setting, the limiting case of
contact of an indenter with a Winkler layer completely covering the surface of a two-layer elastic half-
space is also considered. Load-penetration curves are obtained and analyzed for an indenter in the
form of a Berkovich pyramid.
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1. INTRODUCTION
Formation of a certain relief (texture) on a surface is a common technological technique that pursues

different goals, such as creating volumes for retaining lubricant and removing wear products under condi-
tions of frictional contact, controlling the coefficient of friction and contact stiffness by varying the geom-
etry and relative position of texture elements, etc. When solving contact problems for textured surfaces, it
is customary to use the methods and approaches developed for the mechanics of discrete contact. For
homogeneous elastic bodies, periodic problems have been considered in a number of works, such as [1–5].
Contact problems for coatings of variable thickness arising from the presence of texture can be considered
using approximate methods, as, for example, in [6], where the corresponding plane problem was consid-
ered. The spatial problem of loading a textured layer coupled to a rigid half-space was considered in [7].
An approximate method for solving the spatial problem for a coating, the scale of irregularities on the sur-
face of which is significantly inferior to the thickness of the coating, was developed in [8].

In this article, we propose a formulation and a method for solving the problem of contact between a
smooth indenter and a two-layer elastic half-space, on the surface of which there is a periodic system of
identical texture elements.

Also, thin layers can exist on the surface of coatings, that are, as a rule, rather pliable, arising during
operation. A typical example is a layer that occurs during friction (the so-called tribolayer). Determina-
tion of the properties of this layer provides important information about the processes occurring during
frictional interaction. The mechanical properties of the layer can be determined using nanoindentation.
There are experimental works on the indentation of friction surfaces [10–12], but for correct identification
of the mechanical properties of surface films when interpreting the results, it is necessary to take into
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Fig. 1. Contact scheme.
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account the deformation of the coating and substrate, especially in the case of relatively hard coatings.
In [12], the results of determining the mechanical properties of a tribofilm on the surface of a carbon coat-
ing during indentation with a ball (axisymmetric problem) are presented. In this paper, it is shown that
within the framework of the proposed model for solving the problem of the contact of a textured surface,
it is possible to consider as a limiting case the spatial problem of the contact of a smooth indenter of arbi-
trary shape and a two-layer elastic half-space with a relatively compliant layer on the surface.

2. STATEMENT OF THE PROBLEM

Loading by a rigid indenter of a two-layer elastic foundation, on the surface of which a periodic relief
is applied (Fig. 1), is considered. The lower part of the base is an elastic half-space with elastic modulus
E2 and Poisson’s ratio . The top layer is also elastic and is described by the finite thickness H, as well as
the modulus of elasticity E1 and Poisson’s ratio . The conditions at the boundary between the half-space
and the upper layer correspond to complete adhesion:

(2.1)

Here, , ,  are normal and tangential stresses, , ,  are normal and tangential displacements in
the layer material (1) and half-space material (2).

The relief elements are elastic cylinders of height  and radius r, located on the surface of the base with
a period T. To describe the mechanical properties of relief elements, a one-dimensional model of an elas-
tic material is used, characterized by compliance . The right-hand Cartesian coordinate system

 is located in such a way that its center is in a plane passing through the tops of relief elements in an
undeformed state, and the applicate axis is directed along the normal to the specified plane in the direc-
tion opposite to the base. The shape of the indenter is described by a smooth function . The
indenter is loaded with a vertical force Q. Boundary conditions in the plane z = 0:

(2.2)

Here,  is the nominal contact area,  is the shape of the surface in an undeformed state, 
are the vertical displacements of the upper boundary of the two-layer base on which the texture elements
are located,  are the vertical displacements of the top points of the texture elements relative to the
surface of the two-layer base (outside of the texture elements ), D is the penetration of the
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indenter. In this case, the contact pressure , the nominal contact area , and the pen-
etration D are unknown.

The equilibrium condition is also satisfied:

(2.3)

3. SOLUTION METHOD
The contact problem is solved using the boundary element method. The rectangular area , which

includes the unknown contact area, is divided into  square elements , . Pressure, displace-
ments, and also the shape of the indenter inside this area are approximated by piecewise constant func-
tions ( , , , , , ). To determine the dependence of the vertical displacements of the
boundary of a two-layer foundation on the applied pressure, we use the solution to the problem of the
action of a load q uniformly distributed inside a square with side 2a on the surface of a two-layer elastic
foundation [9]:

(3.1)

The function  is determined from the solution of a system of linear functional equations
obtained from the boundary conditions as a result of using biharmonic functions to determine stresses and
displacements, as well as a double integral Fourier transform applied to a constant load. The function

 is linearly dependent on the result of applying the double Fourier transform to constant pres-
sure:

(3.2)

Due to the fact that the vertical displacements of the boundary linearly depend on the applied pressure
inside each element, the vertical displacements of the boundary of a two-layer base, as well as displace-
ments of relief elements, can be expressed in terms of pressure as follows:

(3.3)

where  is the vertical displacement of the surface in the center of i element as a result of the action of
unit pressure inside element j,  is the compliance:

(3.4)

Here, (  + )1/2 is the distance between the centers of the square elements.
Boundary conditions (2.2) and equilibrium condition (2.3) can be expressed using the introduced

piecewise constant functions:

(3.5)

Since the area  is certainly larger than the contact area, when solving system (3.5), the pressures pi,
 can take positive, negative, and zero values, which contradicts the boundary conditions. Since

the elements with negative pressure are not part of the contact area, they are assigned a zero value, the rank
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Fig. 2. Contact pressure distribution for relatively rigid (b, d) and relatively compliant textured coatings (a, c) at different

values of force:  (a),  (b),  (c),  (d); ,
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of the matrix of the system of equations (3.5) is reduced, then the system is solved again. The process con-
tinues until there are elements with negative pressure in the solution. As a result, the contact area, contact
pressure, and penetration of the indenter are approximately determined. It should be noted that the con-
dition of contact only over the surface of the texture elements is not set in advance; moreover, for some
combinations of input parameters, the indenter can contact with the deformed surface of the elastic layer
outside the texture elements.

4. CALCULATION RESULTS (TEXTURED LAYER)

The calculations were carried out for an indenter in the form of a paraboloid ,
where  is the radius. In the calculations, relief elements were considered, having the shape of a cylinder
with a radius  and a height  and located periodically with a period T, while the modulus of elasticity
of the relief elements is equal to the modulus of elasticity of the layer ( ). The results are obtained
for a half-space covered with a relatively hard layer and for a half-space covered with a relatively soft layer.
The results are presented in dimensionless form, with the dimensionless parameters obtained as follows:

, , .
Figure 2 shows the distribution of contact pressure when a spherical indenter is introduced into various

types of bases under the action of various forces. In Figs. 2a and 2b, incomplete contact of the base and
the indenter is observed: only the surfaces of the relief elements come into contact with the indenter. In the
cases shown in Figs. 2 c and 2d we have full contact near the center of the indenter and incomplete at the
edges. Pressure peaks are concentrated at the edges of the irregularities. In all the cases considered, the
maximum contact pressure is at the edge of the roughness element, the center of which coincides with the
axis of symmetry of the indenter.
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Fig. 3. The shape of the layer surface under the texture elements for a relatively pliable (a) and relatively rigid (b) layer:
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Fig. 4. Load-penetration curves for relatively rigid (curves 1 and 1') and relatively compliant (curves 2 and 2') layers at
periods  (curves 1 and 2) и  (curves 1' и 2'); , ,  (curves 1 and 1');
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Fig. 5. Distribution of contact pressure under the pyramid with film (a) and without film (b).  GPa,  GPa,
 GPa, , ,  nm,  nm,  nm,  mN.
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Fig. 6. Dependence of the maximum contact pressure (a) and penetration (b) on the load in the presence of a film on the
coating surface (curve 2) and without it (curve 1).  GPa,  GPa,  GPa, , ,
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The deformed surface of the layer and texture elements is shown in Fig. 3 for the same parameters of
the problem as considered in Fig. 2. In the case of incomplete contact, the surface between the indenters
has a curvature, while the maximum vertical displacements are near the boundaries of the irregularities,
which is due to the concentration of contact pressure at the edges of the irregularities.

The dependence of the penetration of the indenter on the load was investigated for two different cases
of the relative stiffness of the layer and two periods characterizing the mutual arrangement of irregularities
MECHANICS OF SOLIDS  Vol. 57  No. 1  2022
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(Fig. 4). Herewith, the dimensionless load  in both cases was obtained with respect to the
elastic modulus  of the rigid coating in order to be able to compare the results for the same absolute one.
In all cases, there is a non-linear relationship between penetration and load. The largest increase in imple-
mentation with increasing load is observed near zero. As the load increases, the  value gradually
decreases to some constant value. As expected, a smaller value of the period of relative position of irregu-
larities corresponds to a smaller penetration of the indenter. The nature of the dependence of penetration
on the load is similar for the cases of relatively hard and relatively soft textured coatings.

5. CALCULATION RESULTS (HOMOGENEOUS LAYER)

The developed solution method for the case  at all interior points of the domain  was used
to study the contact of a two-layer elastic half-space, on the surface of which there is a layer of constant
thickness Hw, described by the Winkler model with compliance , and a smooth indenter of
arbitrary shape. From a practical point of view, the most popular problem is the indentation of the Berkov-
ich pyramid, since it can be used to interpret the results of indentation of surfaces of coatings with thin
films. This type of head is a triangular pyramid with a rounded end (according to GOST R. 8.904-2015,
the curvature radius  can range from 20 to 50 nm, increasing during exploitation). In the study of thin
films, indentation occurs more and more often in the elastic mode, which does not allow determining the
hardness of the materials under study, but can provide information on their elastic properties.

To demonstrate the capabilities of the method, the penetration of an indenter, the geometry of which
is determined by GOST R. 8.904-2015, into a relatively rigid coating with a Young’s modulus of 70 GPa,
applied to a substrate with a modulus of 7 GPa was studied; there is a pliable film (0.14 GPa) on the coat-
ing surface. It was shown in [13] that, in the case of relatively rigid coatings, substrate deformation has a
significant effect on the load-penetration curve even at low load values.

The results obtained are shown in Figs. 5 and 6 in dimensional terms (coordinates in meters, load and
pressure in Newtons and Pascals, respectively). Figure 5 shows the distribution of the contact pressure
under the indenter in the presence or absence of a surface film. In addition to the expected result - an
increase in the contact area and a decrease in the maximum pressure, it should be noted that the shape of
the distribution in the presence of a film is closer to pyramidal.

An important aspect is the effect of the film on embedding and the maximum contact pressure during
indentation. Figure 6 shows the corresponding results for the selected load range, the lower limit of which
is due to the sensitivity of the numerical solution method. The curves illustrating the results obtained for
the cases of coating with and without a surface film have significantly different gradients in the region
close to zero (at the early stages of loading), then the effect of the film decreases. The question of the legit-
imacy of using the Winkler model to interpret the results of indentation of pliable thin films on a rigid
foundation was considered in [14], where experimental verification of the model is also presented.

CONCLUSIONS
Within the scope of this study, an effective method was proposed for modeling the contact of a rigid

indenter with an elastic body covered with a textured layer. The calculations were performed for a para-
bolic indenter, as well as a relatively soft and relatively rigid coating with cylindrical irregularities on its sur-
face. The results show that the pliability of the coating significantly depends on the period of the irregu-
larities. The selected frequently used shape of the irregularities (cylindrical) causes the concentration of
contact pressure at the edges of the irregularities, which can potentially cause uneven wear of such a coat-
ing.

The limiting case of the proposed formulation of the problem is the contact of a smooth indenter with
a two-layer elastic half-space, on the surface of which there is a thin film (one-dimensional model of an
elastic material). The results obtained show that when the Berkovich pyramid is indented with low loads,
the effect of the film on the load-penetration curve is significant. It follows from this that the proposed
model can be used to interpret the results of indentation, diagnose the presence of surface films of various
nature, and assess their mechanical properties.
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