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Abstract—In order to study the dynamic fracture behavior of rocks under an impact load with relatively
low impact loading speed, a new method, the Node Interpolation Displacement Representation of
Digital Speckle Correlation Method (NIDR-DSCM), was established and a new experimental system
was developed. The new DSCM method was used to investigate the dynamic crack displacement field
and the experimental system was used to control the impact speed and the startup of the collection sys-
tem. This new DSCM calculation method was developed and a detailed analysis process was designed
to investigate no-uniform deformation and rapid crack propagation in rocks under an impact load.
Using images taken with an industrial camera and a high-speed camera and the NIDR-DSCM, the
deformation field and the displacement field of dynamic fracture process were obtained, and the crack
tip location and displacement width of the crack tip were calculated. The results of the experiments
indicate that dynamic fracture propagation in rocks under an impact load can be measured using the
new DSCM, which can provide basic parameters for engineering design and construction. The mea-
surement method and experimental impact system of this paper can provide a new approach to inves-
tigating the dynamic fracture parameters of rocks under complex physical conditions.
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1. INTRODUCTION
Dynamic fracture propagation in rocks under the effects of an impact load or stress pulses causes issues

with operations such as ore and rock crushing, fracturing wells, laying pipe, underground construction,
rock blasting, conventional and nuclear explosion protection, and other engineering applications, as well
as natural disasters including earthquakes, landslides [1, 2]. Dynamic fracture propagation of rock cracks
caused by impact loading is a highly non-linear moving boundary problem, and the existing theoretical
analysis only solves a few specific issues concerning the dynamic fracture propagation of rock cracks
caused by impact loading. Experimental research not only plays a vital role in the formation and develop-
ment of dynamic fracture mechanics, but is also the basis for the development and improvement of the
dynamic fracture theory of rock cracks caused by impact loading and numerical modeling. Therefore, it
is essential to conduct dynamic rock fracture experiments under an impact load to investigate the response
and characteristics of the dynamic fracture mechanics.

Dynamic fracture propagation of rock cracks caused by impact loading exhibits two important fea-
tures, i.e., non-uniform discontinuous deformation in space and the high-speed expansion of cracks with
time [3–6] (Xu et al., 2004, Madhu et al., 2007, Sanford 1989, Olden and Patterson 2004). These two
characteristics place restrictions on experimental research equipment. First, measurements of the defor-
mation of the entire crack tip field are needed to obtain the non-uniform discontinuous evolution process
of the crack tip attachment deformation field dynamic fracture propagation of the rock cracks. In addi-
tion, a high-speed data acquisition system is required to record the deformation information and propa-
gation history of the entire crack field during rapid crack propagation. Until now, the existing experimen-
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A NEW DIGITAL SPECKLE CORRELATION METHOD 1125
tal methods used to observe dynamic rock fracture propagation have included the electrical measuring
method, the acoustic emission method, the thermal infrared method, and the optical measurement
method [7–10]. However, in the electrical measuring method and the acoustic emission method, it is dif-
ficult to obtain all of the information for the rapid crack propagation field. The thermal infrared method
can obtain information for the entire deformation field, but it does not have high-speed data acquisition.
Due to the complexity of the experimental conditions required to study dynamic rock fracture mechanics,
it is extremely difficult to use interferometry and optical measurement methods such as holographic inter-
ferometry, speckle interferometry, and speckle photography to obtain dynamic fracture information for
the rock during the experimental process.

Compared with the abovementioned methods for studying dynamic fracture mechanics [11, 12], the
Digital Speckle Correlation Method (DSCM) only requires capturing images of the specimen’s surface
and analyzing them. Then, the deformation field can be determined. Compared with the other optical
measurement methods used to make mechanical deformation measurements, the DSCM does not require
complicated pre-processing work, and it is possible to directly extract the required deformation informa-
tion using digital image processing techniques from natural or artificial spots on the surface of an object.
Considering the high propagation speed of the crack tip, when a high-speed camera is used, the DSCM
can meet the requirements for measuring the dynamic fracture propagation of rock cracks and can capture
the and full field dynamic deformation information.

Therefore, in this article, we designed a speed-adjustable drop hammer impact test machine to inves-
tigate the dynamic fracture propagation of rock under an impact load with relatively low speed, designed
a data acquisition system with a high-speed camera to analyze a high propagation crack, and improved the
digital speckle correlation method to calculate the deformation field of rock samples with a dynamic prop-
agation crack. Considering the relative uniformity and processing factors of the rock specimen, the granite
was selected and rectangular samples with pre-crack I were manufactured using the designed test machine
and measurement method; the dynamic fracture experiments were conducted under impact load. In addi-
tion, we quantitatively investigated the evolution of the displacement field of rock crack I caused by impact
loading, the crack tip displacement width of the crack’s dynamic fracture, the extended history of the
crack tip, and the stress intensity factor of the dynamic fracture.

2. NODAL INTERPOLATION DISPLACEMENT REPRESENTATION DSCM
It is problematic for the traditional DSCM [13, 14] to deal with the displacement measurement reso-

lution and the spatial resolution simultaneously. Due to the limited range of the selected window of the
traditional DSCM, if the range of the selected window is large, the displacement of the interior point
within the window is rougher and the error of the results caused by the displacement model is greater. In
order to improve the accuracy of the measurements, it is necessary to change the displacement represen-
tation mode of the DSCM, rather than simply reducing the size of the correlation window to improve the
spatial resolution. The Mesh-DSCM [15] and the XFEM-DSCM [16, 17] were put forward to solve these
problems. Taking into account the advantages of the Mesh-DSCM, in this paper, a new DSCM was devel-
oped to measure non-uniform deformation displacement, i.e., the Node Interpolation Displacement
Representation DSCM (NIDR-DSCM).

2.1 Node Interpolation Displacement Representation Method for a Non-Uniform Displacement Field

Based on the moving least square method [18, 19], the solution of the displacement field was deter-
mined using an approximate function constructed from the nodal displacement. It is assumed that the
number of nodes in the measurement area Ω is N and the function to be solved is u(x), the location of the
nodes are xI (I = 1, 2, …, N), and the value of u(x) at every node is known, i.e., uI = u(xI). In the measure-
ment area Ω, the function to be solved u(x) can be constructed as a global approximate function uh(x), so
the function to be solved in the closed area Ωx of the calculated point x can be expressed as

(2.1)
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where  are the spatial coordinates of the nodes in the closed area Ωx of the calculated point x;
 is the basic function; m is the number of basic functions; and  is the coefficient to be solved for.

The basic function  must meet the following condition

(2.3)

where  is the function space with a k order continuous derivative in the area Ωx. In order to
ensure the convergence of the approximate function uh(x), the basic function must be fully polynomial.
Under the two-dimensional condition, the basic function  will be

(2.4)

(2.5)

(2.6)

The relationship among the number of basic functions m, the kth order of the fully polynomial func-
tion, and the dimension nd of the problem to be solved is

(2.7)

Based on the Moving Least Square method (MLS), the coefficient  makes the approximate func-
tion uh(x) the best least square approximation of the function u(x) to be solved in the closed area Ωx of the
calculated point x. Thus, the closed area Ωx of the calculated point x is defined as the domain of the
approximate MLS function at this calculated node, or the domain of the calculated point x.

In discretizing the solution domain with N nodes, at every node location xI, we define a weight equa-
tion , where the weight equation  is greater than zero only around the closed finite
area ΩI with node xI, i.e., this function is a compact support function. When applying the DSCM, assum-
ing that there are N nodes in closed area Ωx of the calculated point x, the error weighted sum of the squares

of the displacement approximate function  at the point  = xI is

(2.8)

The matrix form is
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Fig. 1. Schematic diagram of the node influence domain.
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(2.13)

Equation (13) can be written as
(2.14)

in which
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Then, the coefficient to be calculated can be expressed as

(2.16)
Substituting the coefficient function into the unknown displacement function gives

(2.17)

in which the shape function  is

(2.18)
As described above, the accuracy of the displacement within the solved domain depends on the weight

equation and its coefficient. So, the shape function must meet the following conditions [20]:
1. The weight equation must be non-negative in the solved domain.
2. The value of the weight equation at a certain point x is the maximum, while at the other point, if the

distance to point x is smaller, the value of the weight equation is much larger; however, if the distance to
point x is greater, the value of the weight equation is smaller. When the distance from a certain point to
point x is larger than a certain radius, the value of the weight equation is zero, i.e., the weight equation has
the compact support property.

3. The weight equation has normalized characteristics.
4. At point x, the coefficient a(x) is unique, i.e., matrix A(x) is reversible.
Generally, the size of the affected area in the node weight equation is determined by the density of
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1. Every node within the entire solved domain must be covered by at least one influence domain of a
certain node.

2. All of the coefficient matrices A(x) used to solve the problem are reversible.
3. In order to maintain the local approximation, the influence region of the node should not be too

large.
We use the uniform layout nodes in the solved domain (as shown in Fig.1) with a 300 × 300 image as

an example. First, an 11 × 11 grid of 121 layout nodes is distributed uniformly over the entire field (the
dots in Fig.1) so that the minimum distance between every node is 30 pixels. Assuming a radius R of
70 pixels as the weight equation’s influence domain, and using pixel node A as an example point, the coor-
dinate of node A is (160, 150), and all of the nodes that are less than and equal to 70 pixels away from point
A is are all in the influence domain (the red points in Fig.1). Then, we input the distance d of every node
from point A into the weight equation, and the effective weight of every node to point A is calculated.

2.2 NIDR-DSCM Model and the Newton-Raphson Solution
Based on the principle of the DSCM and the information described in 2.1, by establishing a suitable

optimization objective and combining it with the node interpolation representation method, an optimiza-
tion model for the NIDR-DSCM can be established.

Using the least squares correlation coefficient form, the optimization objective of the NIDR-DSCM is

(2.19)

where Sp is the coordinate of the pixel; S is the pixel set of the domain to be measured;  is the displace-
ment vector of the node; f is the gray of the reference frame; and g is the gray of the target frame.

For a point (x, y) within the reference frame, after deformation, the location of this point within the
target frame is ( ). The relationship between the reference location and the deformation location of the
same point is

(2.20)

Equation (20) is also the displacement expression. The gray in the reference frame is an integer pixel.
However, in the deformed frame, the gray is not always an integer pixel, i.e., after deformation, the point
in the reference frame may have no corresponding gray. Therefore, an interpolation processes is required
for the points in the deformed frame to obtain the corresponding gray. The following equation for the dou-
ble three spline interpolation is used

(2.21)

where αij is the coefficient of the double three spline interpolation.
The NIDR-DSCM requires that every pixel within the domain be measured and a corresponding gray

calculation be determined in every time step. The corresponding gray calculation equation is Eq. (19).
We can use the node displacement to express the displacement of every integer pixel in the NIDR-DSCM
algorithm, using the expression

(2.22)
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(2.23)

In Eq. (19), the denominator  is a constant, so

(2.24)

In order to obtain the minimal value of the correlation function C, we must satisfy

(2.25)

Using the Newton-Raphson iterative method to solve Eq. (25), we obtain the following iterative equa-
tion:

(2.26)

where  is the initial value of node displacement vector a; and the Hessian matrix  is

(2.27)

According to a previous study [21], when  approaches the exact solution and , the
Hessian matrix can be expressed as

(2.28)

in which the gray gradient formula in target frame is

(2.29)

2.3. Determination of the Shape Function for the Crack Propagation Problem
Section 2.2 gives the general solution of the NIDR-DSCM for investigating crack propagation and

determining its characteristics. In this section, we describe the node layout and processing techniques
used to deal with the deformation field in the crack propagation problem.

When analyzing crack propagation, the perfect polynomial is used as the basic function. In this paper,
the second perfect polynomial is used as the basic function of crack propagation.

(2.30)
Many weight equations can satisfy the weight equation selection criteria and the form of these func-

tions is varied. Acceptable weight functions include the exponential, tapered, and spline functions. For
crack propagation measurement, we selected the quartic spline function as the weight function, and it has
the form

(2.31)

where r is the ratio of the pixel to node distance and the radius of the influence domain.
The crack propagation problem involves a significant discontinuity problem at the interface. Due to

this interface problem, both sides of the interface displacement are discontinuous. Taking into account the
characteristics on both sides of the interface displacement, while compiling the program and arranging the
nodal scheme, the encryption node technique for the area surrounding the interface is implemented, and
the node density in the influence domain is held constant. When the influence domain with the node as
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Fig. 2 Treatment of the influence domain in the interface problem:
1—calculation domain; 2—node; 3—boundary of calculation domain; 4—interface; and 5—nodal influence domain.
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its center intersects with the interface, the influence domain processing method is used to analyze the
interface problem.

As shown in Fig. 2, the two nodes in the calculation domain (node 1 and node 2) are used as an exam-
ple to illustrate the influence of the interface problem. We regard the line connecting any point with the
node as a light ray and the interface as a wall. When the light encounters an interface that it cannot pene-
trate, it will terminate, i.e., this point is not affected by the node. In the case of discontinuities, the weight
equation and the shape function will be set to zero. For example, the lines connecting node 1 and all of
the points within its affected domain are not affected by the interface, so all of the points in the node 1
influence domain are related. However, for node 2 in Fig. 2, the points in the influence domain are
divided into two categories. The lines connecting node 2 and all of the points on the left side of the inter-
face in the node 2 influence domain are not affected by the interface. These points are related to node 2.
The lines connecting node 2 and all of the points on the right side of the interface are affected by the inter-
face. These points have nothing to do with node 2. Thus, the influence domain of node 2 contains only
the left side of interface.

In terms of fracture mechanics, the stress field is  singular at the crack tip, while the basis function
of the polynomial form has difficulty considering this singularity. Given that in principle, the basis func-
tion can use a variety of functions and the moving least squares approximation can provide an accurate
reconstruction of the arbitrary items of the basic functions, if we introduce the basic function r into the
moving least squares approximation, we will greatly improve the calculation’s accuracy. In addition, the
displacement and stress distribution are functions of the angle θ at the crack tip. Based on this, we can also
introduce a variety of θ functions into the moving least squares approximation. The introduction of these
functions is generally referred to as the basic function expansion (or enrichment basis). The expansion of
the basic functions can be divided into two categories, the fully extended expansion and the radial expan-
sion. The fully extended expansion is when all functions that comprise the displacement function space
are introduced into the basic functions, such as the type I rock crack, and the following basis functions
can be used [22, 23]:

(2.32)

By comparing the extended the moving least squares approximation functions with functions contain-
ing only a monomial approximation, it can be seen that the number of unknown node variables does not
increase, which is one of the advantages of this method. However, the items of the basic function have
increased significantly, there is a large increase in the size of the moving least squares approximation
matrix A(x), and a large amount of computing time will be consumed in the verse of matrix A. In addition,
as the number of basic function items increases, more nodes are required in the support domain to ensure
the non-singularity of matrix A. To deal with the mixed crack types, it is necessary to add other new basic
functions. Fortunately, radial expansion can avoid the above problem effectively. Radial expansion con-
siders the crack tip stress field as a continuous function of the angle θ, and it contains a singularity only in
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Fig. 3. Treatment of the influence domain during crack propagation:
1—calculation domain; 2—node; 3—boundary of calculation domain; 4—interface; and 5—nodal influence domain.
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the radial direction. Thus, introducing functions that can reflect the singularity in the radial direction
solve the problem. The radial extension of the basic function can be written in the following form:

(2.33)
As shown in Eq. (33), the advantage of radial expansion is that only one r function is added, so the

amount of calculation does not increase greatly.
Thus, the node encryption technique is applied to deal with the crack boundary and the area around

the crack tip, and an influence domain consistent with the node density is adopted. When the influence
domain with the node as its center intersects with the crack, the influence domain processing method is
carried out to analyze the crack problems.

As shown in Fig. 3, the weight equation and the shape function are constructed by considering the light
diffraction in the corner.

Assuming that the light cannot pass through the discontinuity line, but it can bypass the discontinuity
line, the weight equation of the independent variable d(x) can be calculated using

(2.34)

where , , ; xI is the coordinate of node I; and xA is the
coordinate of node A.

Outside of the influence domain, the weight equation is zero and the shape function should be treated
accordingly. When measuring the dynamic rock fracture, cone weight equation form of the weight equa-
tion is used:

(2.35)

where  is the distance between  and x;  is the influence radius of node ; ε is less positive
( ); and  is a positive integer ( ).

2.4 Solution Procedure for the NIDR-DSCM
In this section, the NIDR-DSCM is primarily used for the analysis of non-uniform deformation

fields, which entails two issues. First, if the deformation field is homogeneous or uniform, there is no need
for NIDR-DSCM processing. Second, the interpolation methods for NIDR-DSCM at different posi-
tions are different. Therefore, in solving problems with the NIDR-DSCM, the first step is to determine if
the deformation field is uniform or not, and what in the field is not uniform. The next step is to begin the
formal NIDR-DSCM calculation according based on the particular different situations. The computa-
tional NIDR-DSCM flow chart shown in Fig. 4 illustrates the calculation steps.
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Fig. 4. Computational f low chart of the NIDR-DSCM.

Begin

Calculate and analyze the deformed field

Layout nodes and calculate shape function

Initialize the nodal displacement

Yes
Calculation accuracy

No

Fit the displacement field of the entire
measured domian using the shap function

and the nodal displacement value,
andreconstruct the gray field.

Input into relative coefficient function,
calculate nodal displacement

Calculate displacement and strain

End
Step one: rough calculation. First, a rough displacement field is obtained using the traditional DSCM
process. Using the rough calculation of the displacement field and a speckle image of the experiment,
determine whether to use the NIDR-DSCM for analysis. If it is necessary to use the NIDR-DSCM, i.e.,
the displacement field is discontinuous, determine what kind of layout and interpolation scheme should
be selected.

Step two: determine the layout of the nodes. Use the results of step one of the data analysis to determine
the nodal distribution. In a uniform deformation area, the nodal distribution is sparse, while in a non-uni-
form deformation area, the nodal distribution is dense. For a discontinuous deformation area, based on
the actual situation, a denser nodal distribution should be used. This step is very important. If the layout
is not reasonable, it will offset the advantages of using the NIDR-DSCM to deal with the non-uniform
discontinuous field.

Step three: determine the shape function. Based on the results of steps one and two, the corresponding
criterion is applied, an appropriate weight equation and node influence domain size are selected, and the
shape function matrix of each pixel point is determined.

Step four: node displacement initialization. This step is mainly based on the rough calculation results
of step one and makes the calculated displacement of the corresponding nodes in step one smooth through
continuous processing to the initial displacement value of each node.
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021



A NEW DIGITAL SPECKLE CORRELATION METHOD 1133

Fig. 5. Test machine and system:
(a) governor drop hammer impact test machine, (b) impact speed regulation system.
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Fig. 6. Schematic diagram of the experimental data acquisition system.
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Step five: iterative calculation according using Eq. (26) to meet the conditions until the end of the iter-
ation. The end of the iteration condition is generally set to two times before and after the calculation of the
difference between the square and less than 5–10 pixels.

3. EXPERIMENTAL SYSTEM AND EXPERIMENTAL METHODS

3.1 Experimental Loading System

In order to investigate dynamic fracture propagation in rock, taking into consideration the brittle prop-
erty of rock, according to the principles of the Drop-Weight Tear Test (DWTT) machine, which was used
to investigate the metal materials dynamic fracture properties, a newly designed speed-adjustable drop
hammer impact test machine was built as shown in Fig. 5a. The loading system of the machine consists of
two main parts: the speed-adjustment device and the other is the support system (Fig. 6b). The speed-
adjustment device works using springs, and the impact velocity of the drop hammer can be adjusted using
different combinations of springs. In this paper, the velocity was adjusted using five groups of springs.
At the beginning of the experiment, the drop hammer was raised to the top of the test machine and the
springs were stretched. Then, the drop hammer was released, and the spring groups were restored to their
initial positions. Under the combined effects of gravity and the restoring energy of the spring groups, the
dropped hammer impacted the specimen. Due to the effect of free-fall and the five spring groups, the
adjustable range of the test machine’s impact speed is 0–10 m/s. The lower support of the load holding
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021
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Fig. 7 Dynamic fracture image of the rock specimen:
(a) drop hammer in contact with the rock specimen; (b) cracks extending from rock specimen.
device is a three-point bending support, the drop hammer is the drop hammer device of the standard test
machine, and the weight of the drop hammer is 3.2 kg, the distance from the hammerhead to the upper
surface of the specimen is 1 m. Loading is provided by the impact of the drop hammer.

The experiments are composed of two main parts: the drop hammer impact speed test and the defor-
mation failure test of rock specimens. In the drop hammer impact speed test, the impact velocity is
assessed using the displacement of the white point in the speckle pattern, which is marked at the tip of the
drop hammer with lacquer. The deformation failure of the rock specimen can be obtained using the
DSCM in conjunction with high-speed cameras photographing the entire impact damage process.

3.2 Experimental Data Acquisition System

The data acquisition system of the dynamic rock fracture experiment has two main requirements. The
first is the velocity of the data acquisition. The high-speed cameras must capture speckle images of the
entire deformation failure of the dynamic rock fracture process, ensuring adequate view field range and
image clarity. This high speed data acquisition provides more detailed information on the dynamic frac-
ture evolution process. The second requirement is the triggering of the high-speed acquisition system,
which must be able to accurately record the start time of the dynamic rock fracture. The triggering of the
high-speed camera uses a newly designed optoelectronic trigger system, and its triggering mode is pre-
trigger. The optoelectronic trigger system includes two inductive components, i.e., a laser head and photo
resistance, which are placed on either side of the impact test machine. At the initial time, the photo resis-
tance receives the laser’s irradiation and remains closed, and then, the drop hammer begins to fall. When
the distance between the hammerhead and the upper surface of the specimen is 10 mm, the drop hammer
blocks the laser beam and the photo resistance switches to open, generating a step signal. The signal is sent
to the input terminal of the comparator chip, and the comparator generates a standard TTL pulse voltage
when the signal researches the threshold value that the comparator sets, thereby triggering the high-speed
camera to start recording the experimental speckle images. The experimental data acquisition system is
shown in Fig. 6.

The DSCM analysis is carried out on the speckle images of the dynamic rock fracture experiment col-
lected using the high-speed cameras to obtain the corresponding displacement field. Then, the crack
propagation history and the stress intensity factor of the rock fracture are measured.

4. IMPACT FRACTURE EXPERIMENT OF GRANITE SPECIMENS
In this paper, medium-grained granite was selected as the specimen for the dynamic fracture experi-

ment. The granite rock samples were made into 400 mm × 50 mm × 100 mm specimens, and the pre-
crack was 10 mm in length and 2 mm in width. The specimen’s surface was irradiated using a white light
source, the camera and light source were coaxially fixed, and the camera was connected to the image-pro-
cessing system and the computer display. The camera was adjusted to obtain a clear speckle field within
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021
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Fig. 8. Evolution of crack propagation-displacement field.
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the observing field of view, and the specimen area included in the field of view was 100 mm × 50 mm with
an image resolution of 0.38 mm/pixel. In the experiment, the high-speed cameras recorded the entire pro-
cess from the pre-crack initiation to the final fracture of the rock specimen with an image acquisition rate
of 1 × 105 frame/s. One hundred speckle images were selected and saved, and the corresponding displace-
ment field of the deformation process was obtained by conducting correlation calculations using the col-
lected speckle images.

Figure 7 shows the speckle images of the dynamic fracture process collected by the high-speed camera.
Figure 7a is the speckle field when the drop hammer touches the specimen. After the drop hammer
touches the upper surface of the rock specimen, by comparing two consecutive speckle images, the gray’s
significant changes can be found on the contact side, and the position of the gray’s change constantly
moves down, indicating that the shock wave spread downward from the contact face. Nine microseconds
after the drop hammer touched the specimen, cracks appear at the tip of the rock pre-crack and the pre-
crack begins to propagate. The impact failure process of fragile rock materials is very fast and it takes ~6 μs
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Fig. 9. Rock crack extension history.
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to progress from pre-crack initiation to the crack fully penetrating the specimen. Figure 7b shows the
speckle image of the cracked rock specimen, clearly showing the expansion of the crack.

The dynamic rock fracture evolution process can be described by the displacement field calculated
from the speckle images. Figure 8 shows the dynamic rock fracture displacement field at three moments.
Time 1 occurs 8 μs after the drop hammer touches the upper surface of the specimen when the specimen
has undergone an obvious u, v displacement, but no crack propagation has occurred. Time 2 occurs 1 μs
after time 1 when the cracks have extended by 6.8 mm and an increase in the u, v displacement has
occurred. Time 3 occurs 5 μs after the crack begins to extend when the cracks have extended by 60.44 mm
and an obvious increase in the u, v displacement has occurred. The displacement of the specimen mainly
results from the expansion of the cracks.

5. RESULTS AND DISCUSSION
5.1 Crack Tip Propagation Process

Based on the analysis of the speckle images collected in the dynamic rock fracture experiments, the
propagation history of the rock crack tip was studied using the variation law of the crack propagation speed
and the crack propagation distance during loading. Figure 9 shows the evolution curves for the crack prop-
agation speed and the crack propagation distance, in which the x-axis represents time, the left vertical axis
represents the crack propagation speed (squares), and the right vertical axis represents the crack propaga-
tion distance (circles). From Fig. 9, it can be found that the crack propagation distance is approximately
linear with the time increasing, especially in the late stage of crack propagation. And to the crack propa-
gation speed, during the initial propagation process, the crack propagation speed is very low, and then, as
the crack grows, the crack propagation speed increases, in the last, the maximum crack propagation speed
is larger than 2000 m/s at an impact loading speed of 4.5 m/s.

The x-axis represents time, the left vertical axis represents the crack propagation rate (squares), and the
right vertical axis represents the crack propagation distance (circles)

Analyzing all the experiments under different impact loading speed, from the pre-crack’s crack initia-
tion to the time when the crack fully penetrates the specimen, the crack propagation distance increases
approximately linearly with time increasing, the crack propagation speed increases with the impact load-
ing speed increasing, and the average velocity of the crack propagation is greater than 1000 m/s under the
effect of impact loading with medium and low velocities.

5.2 Measuring the Displacement Width of the Crack Tip
According to the evolution of the displacement field of the dynamic rock fracture process, the displace-

ment width of the crack tip of the dynamic fracture was studied. Five pairs of pixels were selected on both
sides of the crack tip, and the u and v values, i.e., the displacement component of the crack tip, are repre-
sented with their average displacement components. The displacement width of the crack tip is defined as
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021
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Fig. 10. Displacement width evolution of rock crack tip.
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the difference between the u displacement components of both sides of the crack, and then, the data is
plotted.

Figure 10 shows the evolution curve of the crack displacement width during loading, in which the x-
axis represents the experimental loading time and the y-axis represents the crack displacement width. The
curves plots the displacement width of the crack tip at six different times under impact loading. Crack tip
1 is the position of the pre-crack tip, and crack tips 2–6 are the positions of the crack tip from the first
propagation to the fifth propagation. In Fig. 10, when the pre-crack extends to crack tip 2, the crack dis-
placement width of crack tip 1 is 0.04 mm. When the crack extends from crack tip 2 to crack tip 3, the crack
displacement width of crack tip 2 is 0.046 mm. When the crack extends from crack tip 3 to crack tip 4, the
crack displacement width of crack tip 3 is 0.041 mm. When the crack extends from crack tip 4 to crack tip
5, the crack displacement width of crack tip 4 is 0.038 mm. When the crack extends from crack tip 5 to
crack tip 6, the crack displacement width of crack tip 5 is 0.039 mm. When the crack extends from crack
tip 6 to the boundary of the specimen, the crack displacement width of crack tip 6 is 0.034 mm. According
to all of these displacement width values, under the conditions required for the experiment, the crack dis-
placement width of dynamic rock fracture is greater than 0.034 mm; and when the crack displacement
width is smaller than this value, crack propagation does not occur.

The x-axis represents the experimental loading time and the y-axis represents the crack displacement
width.

6. CONCLUSION

Taking the measuring accuracy and the propagation speed of the rock dynamic fracture problem into
consideration, a new Digital Speckle Correlation Method-NIDR-DSCM was developed and a new
experimental system was designed. By applying the NIDR-DSCM and experimental system, the I-style-
fracture experiment on granite samples under drop hammer impact was conducted to determine the prop-
erties of dynamic rock fracture. The following conclusions are drawn:

(1) Using the designed impact loading test equipment and the high-speed camera, the evolution of the
displacement field during the crack growth process was determined and the crack propagation history was
captured under different impact loading speed.

(2) Applied the new Digital Speckle Correlation Method-NIDR-DSCM, the dynamic rock fracture
displacement field and deformation field were analyzed, the dynamic fracture speckle images and the
experimental results were calculated, and the crack tip displacement width and the crack propagation
location were obtained.

(3) Anlyze the experiments results under different impact loading speed, the crack propagation speed
can exceed 2000 m/s, and the crack propagation speed increases with the impact loading speed increasing.
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021
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Based on our results, the new Digital Speckle Correlation Method-NIDR-DSCM can be used to ana-
lyze dynamic rock fracture caused by impact loading, and this method coupled with the designed test sys-
tem can investigate the crack propagation of rocks under different impact speed, which can provide refer-
ence for dynamic crack propagation in geotechnical engineering topics, including rock breaking and
hydraulics.
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