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Abstract—The plane motion of a solid in a uniform gravity field is studied. The solid is suspended on
a weightless inextensible thread, which remains stretched during the motion. It is assumed that the
length of the thread is large ( ) and the distance from the point of solid suspension to its center of
gravity is small (~ε). The equations of motion are presented as equations of a system with one rapidly
rotating phase. This system is analyzed using classical perturbation theory and KAM theory. It is
shown that for all values of time, the movement differs little (by ~ε) from the slow oscillations of the
thread in the vicinity of the descending vertical and the solid rotation relative to the suspension point
with an almost constant angular velocity. The measure of the set of motions, different from the above
motions, is estimated from above by the value of the order of  (  = const).
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INTRODUCTION

We consider a solid having a weight mg and suspended by an inextensible weightless thread of length .
The motion of the solid is such that the velocity vectors of all its points are parallel to the fixed vertical
plane  passing through the solid’s center of gravity  and its suspension point  (see Fig. 1). We
believe that the thread is stretched during the motion.

The material system under consideration has two degrees of freedom. We set the angle  that makes the
direction of the thread OA with the vertical axis  and the angle  between the segment  and the
horizontal axis  as generalized coordinates.

The aim of the article is to study the evolution of motion within an infinite time interval under the fol-
lowing two assumptions: the distance r from point  to the center of gravity  is small, the length of the
thread  is large. The analysis is carried out using classical and modern methods of perturbation theory
[1–4].

Currently, the dynamics of a solid suspended on a weightless, ideally f lexible, inextensible thread
(string) is being developed rapidly. The problem on the existence, stability, and bifurcations of periodic,
stationary, and precessional motions has been investigated in detail; the case of non-ideal string has also
been considered [5–8]. In articles [9, 10], some problems on dynamics of solids that deal with a thread as
an ideal unilateral constraint are investigated.

1. EQUATIONS OF MOTION
The kinetic and potential energies of the solid are calculated by the formulas
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Fig. 1.
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Here, the dot denotes the differentiation with respect to time t, and  is the moment of inertia of the solid
about the axis passing through its center of gravity perpendicular to the plane 

Using (1.1) and (1.2), we have an expression for the Lagrange function :

In what follows, we use the Hamiltonian form of the equations of motion. The Hamilton function  is
given by the equality , on the right-hand side of which the quantities  and  must be expressed
in terms of generalized momenta , :

Having performed simple calculations, we get the Hamilton function in the following form:

(1.3)

2. SMALL PARAMETER. REPRESENTATION OF THE HAMILTON FUNCTION AS A SERIES

Instead of , , we introduce dimensionless momenta ,  using the canonical (with valence

) transformation of the form

(2.1)
and pass to the new (dimensionless) independent variable τ:

(2.2)
The new variables correspond to the function G calculated by the formula
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where  is the function (1.3) in which the substitution (2.1) is made.
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In accordance with the accepted (see Introduction section) assumptions, we introduce a small param-
eter  ( ) into the equations of motion by setting

(2.4)
where a is a quantity of the order of unity that has the dimension of length.

Hamilton function (2.3) can be represented as a series in powers of the parameter ε as follows:

(2.5)

3. SIMPLIFICATION OF THE HAMILTON FUNCTION
The system with Hamilton function (2.5) has a rapidly rotating phase χ. Using the classical perturba-

tion theory, one can construct a canonical transformation χ, δ, pχ, , which is close to the
identity and excludes the dependence of the Hamilton function on the fast phase in any finite approxima-
tion in ε. Let us give an explicit form of the canonical substitution, which excludes the fast phase in terms
up to the second power of ε inclusive. We set the generating function  in the form

(3.1)
From (3.1) and the relations

it follows that
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where  ( ).
Substituting expressions (3.2) and (3.3) into the right-hand side of equality (2.5) and carrying out sim-

ple calculations, we find that to eliminate the fast phase  from the terms up to the second power inclusive
in the expansion of the new Hamilton function  in a series in , the functions  and 
should be set as follows:
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New Hamilton function is written as follows:

(3.4)

where the notation is introduced

(3.5)

The structure of the Hamilton function (3.4) can be simplified by making a univalent canonical trans-
formation  by the formulas

(3.6)

Transformation (3.6) suppresses the second term in function (3.4) and in terms of new variables the
equations of motion are given by the Hamilton function

(3.7)

Here,  is the function from (3.4), in which the substitution (3.6) is made.
An even greater simplification can be achieved by setting  as an independent variable. This

leads to dividing the Hamilton function (3.7) by . If instead of we introduce a new small parameter by
the formula , then instead of the function  from (3.7) we obtain a function  of the form

(3.8)

(3.9)

4. ANALYSIS OF THE SYSTEM WITH THE HAMILTON FUNCTION (3.8)

In an approximate system with a function , the variable I0 is a constant and the angular
coordinate  changes uniformly with time. Variables q,  correspond to the motion of the mathematical
pendulum. We assume that the oscillatory mode of its motion is realized. The vibration amplitude is
denoted by  . To describe the oscillations, we introduce the action-angle variables I,

. The variable I is calculated [11] by the formula

(4.1)

Hereinafter, the generally accepted notations for elliptic integrals and functions are used. In (4.1)
 ( ).

The canonical transformation  is given by the formulas [11]:
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where  is the function inverse to function (4.1).
Now the Hamilton function (3.8) can be written in the form
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Here, , this function can be represented by a convergent series in powers of I. The vari-

ables p and q in the function  must be replaced by formulas (4.2).
Function (4.3) is analytic in all its arguments and  is periodic in w0 and w. In addition, the case of

intrinsic degeneracy takes place [1], since for μ = 0 there is only one nonzero frequency in the system:
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The derivatives of the function H(1) from (4.3) satisfy the inequalities

(4.5)

In fact,

Since the approximate system with the Hamilton function  satisfies conditions (4.4) and
(4.5), then [2] in the complete system with the Hamilton function (4.3) the action variables I0, I for
all values of  remain close to their initial values and differ from them by magnitudes of the order of

 (or order of , which is the same). In this case, the measure of the invariant tori of the approximate

system that are vanished when the perturbation  in (4.3) is taken into account, is of order of
 (  = const).

Main result of the analysis. Summing up the above, it follows that for small , the motion of a solid sus-
pended on an ideal thread in a uniform gravity field is stable with respect to perturbations of quantities ,

, . In particular, if the initial values of θ and  have, for example, the order of  ( ), then 
and  for all  remain small quantities of the same order.

Remark. The article [12] dealing with the dynamics of the Maxwell pendulum states that “the deviation
of the pendulum from the vertical has a finite swing at the corresponding arbitrarily small initial values of
the coordinates and velocities of the thread. The reason for this instability is the rather fast transient
motion of the pendulum when its motion changes from bottom to top”. The attempt to present an argu-
ment for this statement made in [12] contains inaccuracies and the statement itself is invalid.
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