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Abstract—The article deals with f lows of the perfectly plastic compressible media for stress states cor-
responding to the facets of a piecewise linear yield criterion. Similar f lows are observed, in particular,
in loosely bonded Coulomb–Mohr media for plane strain states. It is assumed that the intermediate
principle stress has no effect on the yielding or transition to the limit state. Under these conditions the
system of kinematic differential equations belongs to the hyperbolic analytical type, the elements of the
characteristic lines are instantly not elongating, the orthogonal projections of the displacement incre-
ment vector on characteristics are related by differential equations with the differentiations along the
characteristic lines.
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1. General piecewise-linear yield criterion can be presented in the form of a linear equation relating the
principal normal stresses , ,  of symmetric stress tensor:

(1.1)

where , , ,  are the constitutive constants.
A significant simplification for equations of the theories of plasticity can be achieved by special numer-

ation for the axes of the main trihedron of the stress tensor s: we enumerate the main axes in such a way
that for the current stress state, the corresponding principle normal stresses , ,  are arranged in
decreasing order

(1.2)
Intermediate principal normal stress plays a special role in plasticity theories [1–6]. Its influence on

the yield of metals and the deformation of loosely coupled media can often be neglected. Therefore, we
assume that . We divide equation (1.1) by  and adopt the following notations

after which the piecewise-linear yield condition used below is reduced to the form

(1.3)
The Coulomb–Mohr medium is one of the variants of the piecewise linear yield criterion, which per-

fectly simulates the mechanical behavior of dry sands, soils, granular media, i.e. loose materials with a
granular, porous or granular structure [4]. In terms of principal stresses , , , the Mohr–Coulomb
yield criterion for bulk media with internal friction and adhesion is formulated as follows [7, 8]:

(1.4)
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where, c,  are the constitutive constants. The Coulomb–Mohr criterion (1.4) can also be reduced to the
following form, which is equivalent to form of (1.3):

(1.5)
Here, the material constants a and k are related to the coefficient of adhesion and the angle of internal
friction  by the following relations:

2. In the kinematics of ideally plastic solids, it is convenient to operate with increments of the displace-
ment vector  and strain tensor dε. We orient the unit basis vectors , ,  along the principal axes of the
stress tensor (and tensor dε).

The increment of the displacement vector  can be represented as an expansion in vectors of a local
orthonormal basis , , 

(2.1)

We set the spectral representation of the strain tensor increment de in the form

(2.2)

where , ,  is an orthonormal basis of eigenvectors common both for the stress tensor σ and for the
strain tensor increment dε; , ,  are the principal increments of (plastic) deformation (eigenvalues
of the tensor dε).

Let us further introduce a special numeration for the axes of the principal trihedron in such a way that
the following inequalities as well as (1.2) are valid

(2.3)
By virtue of the associated plastic f low rule

(2.4)

systems of ordered principal stresses and principal strain increments are consistent in the presence of a
constitutive constraint

The concept of asymptotic directors of the increment of the deformation tensor dε and its representa-
tion in terms of asymptotic directors ''l, ''n are considered in articles [7, 8], as well as in an earlier publica-
tion [9]. In particular, the dyadic representation of the strain tensor increment dε has the form

(2.5)

The angle between the asymptotic directors ''l, ''n is calculated using the Lode kinematic parameter

(2.6)
where

(2.7)

The flow on the facet of the piecewise-linear plasticity criterion obeys the kinematic constraint
 following from the associated f low rule.

In terms of notations of field theory, the system of differential equations of kinematics with respect to
the physical components of the displacement vector increment ,  has the following form:

(2.8)

it belongs to the hyperbolic type; the characteristic directions coincide with the directions of the conjugate
directors ''l, ''n.
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Conjugate directors indicate directions in the plane orthogonal to the second principal axis of the ten-
sor dε that are orthogonal to the directions of asymptotic directors ''l, ''n. The director ''l is orthogonal to
the asymptotic director ''n, and the director ''n is orthogonal to ''l.

3. For instantaneous elongation of the elements of the characteristic lines, we find

(3.1)

that is, during the f low, the linear elements perpendicular to the directions of the asymptotic directors ''l,
''n do not undergo instantaneous elongation, i.e. material fibers oriented along the directors ''l, ''n do not
instantly elongate or shorten.

First of all, instead of physical components , , the displacement vector increment du relative
to the basis l, , we introduce its orthogonal projections onto the conjugate directions ''l, ''n: , .

Differentiations along isostatic ,  and conjugate directions ,  are related by the formulas [10]

(3.2)

Differential relations along characteristic lines (compare with [11])

(3.3)

where θ is the angle between some fixed direction in the f low plane and the eigenvector l.
For a piecewise linear yield criterion, the angle  is constant. After a series of transformations, the f low

kinematics relations (3.3) acquire the following final form:

(3.4)

where

It is curious to note that the constitutive constraint

and the inequality of irreversibility do not limit the sign of the dilation rate, i.e. during the f low, the
medium can both loosen and contract irreversibly (in the most precise sense of the word).
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