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Abstract—The article discusses and analyzes the issues of applicability and the limits of applicability
of some of the main hypotheses of the general mathematical theory of plasticity. In the theory of elas-
toplastic deformation processes, this is the postulate of the isotropy of initially isotropic bodies, in
which the invariance of orthogonal transformations of the process images is established when a rela-
tionship between stresses and deformations is established. In the theory of f low, this is a hypothesis
about the decomposition of total deformations into elastic and plastic deformations and the influence
on its relationship between stresses and deformations under complex loading.
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1. STRESS AND STRAIN TENSORS AND THEIR INVARIANTS
The stress-strain state (SSS) of continuous media and bodies referred to the coordinate axes xi

( ) for each point of the physical space with the coordinate orthonormal reference frame , is
characterized by the specification of symmetric stress (σij) and strain (εij) tensors, where σij and εij

( ) are their components. Geometrically, stress and strain tensors can be represented by trivec-
tors

at each point of physical space. The stress vector at a given point on an arbitrary area with a unit normal
 s represented by the Cauchy formula

(1.1)

The stress vector  is called the eigen or principal normal stress vector if its direction coincides with
the direction of the normal , i.e.

(1.2)

The modulus of this stress vector is simply called the eigenvalue or principal voltage.
Comparing (1.1) and (1.2), we obtain a system of equations for nj

(1.3)

Equating determinant (1.3) to zero, we obtain the characteristic equation for determining the eigen-
stresses σk (k = 1, 2, 3)

whence the cubic equation follows

(1.4)
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where

which are invariants of the stress tensor relative to the rotation of the coordinate axes xi (i = 1, 2, 3). Com-
ponents of deviators

Stress deviator tensor invariants

Stress tensor module

where  is the modulus of the ball tensor.

is the modulus of the stress deviator,  is the octahedral shear stress. General solution of cubic
equation (1.4)

Principal shear stresses

(1.5)

where ϕ is the angle of the stress state of the deformation on the octahedral area. Similar formulas hold
for the strain tensor.

Along with the main shear stresses in the theory of plasticity Tij, the octahedral shear stresses

introduced by A. Nadai [8, 9] are of great importance. These stresses are equal on all faces of the octahe-
dral particle, which is important. A. Nadai assumed that a material passes from an elastic state to a plastic
one when τoct reaches a certain limiting value  or , 
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Table 1

Sector ω ϕ°

I, IV  

II, V  

II, VI  

maxT

13 31,T T π − ϕ2
3

° ≤ ϕ ≤ °0 60
° ≤ ϕ ≤ °180 240

23 32,T T ϕ ° ≤ ϕ ≤ °120 180
° ≤ ϕ ≤ °300 360

12 21,T T π + ϕ2
3

° ≤ ϕ ≤ °60 120
° ≤ ϕ ≤ °240 300
where  is the pure spatial shear yield point,  is the tensile yield point. Thus, A. Nadai gave a completely
understandable interpretation of the plasticity criterion of Mises. On the deviatorial plane in the space of
principal stresses, the Mises criterion is depicted by a circle of radius .

The deviatorial plane can be divided into six sectors and, according to formulas (1.5), compile a table
for Tmax [12].

It follows from Table 1 that the pattern of changes in Tmax in each sector coincides and can be repre-
sented by the formula

At the extreme points we get

Thus, of the two well-known plasticity criteria Treska and Mises-Nadai, the Mises-Nadai criterion is
correct (true), since .

A natural generalization of the Mises–Nadai criterion for the processes of elastoplastic deformation is
a unified universal curve of material hardening under simple loading by Roche and Eichinger and a uni-
fied universal curve of material hardening for trajectories of small and medium curvature of Il’yushin [7].

2. ON THE INFLUENCE OF ORTHOGONAL TRANSFORMATIONS 
OF THE COORDINATE FRAME AND THE STRESS VECTOR 

ON THE INVARIANTS OF STRESS AND STRAIN TENSORS IN PHYSICAL SPACE
This problem is studied in the works [1–3, 10–12]. When orthogonal transformation of the coordinate

basis  to a new position  ( ), where  is the matrix of this transformation. In
the new position, the stationary stress vector  changes its coordinates so that

However,  and therefore

The stress vector retains its length. Hence,

whence the relation follows

(2.1)

from which it follows that the coordinate basis remains orthonormal.
When deformation and loading processes are implemented at a point of the body, all three invariants

of tensors (trivectors) will change. Vector  and trivectors will change their orientation. New projections
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of the vector  are determined by the formula , where βij are the components of the
orthogonal transformation matrix. The vector length is unchanged and therefore

whence we obtain the relation

(2.2)

This relation (2.2) coincides in form with (2.1) and therefore . This means that the orthogonal
transformations of the coordinate axes and the vector  coincide. However, in the first case, all three
invariants of tensors are preserved, and in the second, only one (the length of the vector ). The other
two invariants of the type of SSS remain undefined. This creates some problem in determining the defin-
ing laws of the relationship between stresses and deformations.

The tensor form of the constitutive relations in continuum mechanics between stresses and strains is
one of the most general, since it does not depend on the coordinate system. V. Prager and A.A. Il’yushin
[1, 2, 7] for complex loading processes proposed, respectively, the relations

where the coefficients A, B, C,  depend on the invariants.
As noted above, in the processes of deformation and loading under orthogonal transformations of the

trivectors , the invariants can change, which can lead to non-invariance of the constitutive relations
themselves [12].

3. VECTOR REPRESENTATION OF STRESS TENSORS, DEFORMATIONS 
AND LOADING PROCESSES

For a geometrically visual display of deformation and loading processes at a point in physical space,
Il’yushin A.A. proposed to represent the stress (σij) and deformation (εij) tensors as vectors in the coordi-
nate six-dimensional space of linear algebra [1–3, 11, 12]

where  are the components of the orthonormal coordinate frame,

are the coordinates of the vectors.

are their modules, which are equal to tensor modules.
In the combined six-dimensional space E6, the concepts of the image of the deformation process and

the image of the loading process were also introduced in [1–3, 11]. The stress tensor (σij) can be expanded
into a direct sum of normal and shear stresses. They can be associated with two three-dimensional sub-
spaces of normal and tangential stresses. If the initial tensor (σij) is referred to the main natural axes, then
the subspace of normal stresses becomes a subspace of natural stresses, and the subspace of tangential
stresses is empty. Therefore, the space E6 can have at most three proper directions. Thus, the stress vector

 will be identical to the tensor (σij), if their moduli are equal, but the vector  can have no more than
three eigen directions and principal eigenstresses. Similarly for the vector  and strain tensor (εij). Here-
fore, three invariants of tensors (σij) and (εij) in physical space remain invariants of vectors  and  in
space E6.
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824 ZUBCHANINOV
The image of the deformation process in  is the deformation trajectory described by the end of the
deformation vector  and the vectors  constructed at each of its points, as well as the scalar properties
assigned to these points, such as temperature T and pressure p. In the theory of plasticity, the volumetric
deformation  is considered elastic and obeys Hooke’s law

where K is the elastic Bridgman modulus. For this case, A.A. Il’yushin [1–3] introduced the following
transformations of tensor components into coordinates of stress and strain vectors

where new coordinates and coordinate basis

In this case, the image of the process is constructed in the five-dimensional  deviatoric subspace.
The image of the deformation process is understood as a trajectory described in  by the end of the defor-
mation vector of deformation , the stress vectors ,  constructed at each of its points and the
parameters of temperature T and pressure p assigned to these points.

At each point of the deformation trajectory, it is also possible to construct a coordinate reference
 and expand the stress vector in this frame

(3.1)

where the coefficients An are functionals of the process depending on the invariants of the tensors.
Instead of an oblique frame, it is possible to construct at each point of the trajectory a movable ortho-

normal Frenet–Ilyushin frame  ( ) whose unit vectors satisfy the recurrent formulas

(3.2)

In this frame, the vectors ,  can be expanded in the form

(3.3)

where the defining relations (3.1) and (3.3) in [1–3] are called the postulate of isotropy: the defining rela-
tions for the connection between stresses and deformations are invariant with respect to orthogonal trans-
formations of the process image in coordinate spaces E5 and E6.

In [6], Professor D.D. Ivlev noted that the third invariant of stress and strain deviators during orthog-
onal transformation of the process image can change, which leads to violation of the isotropy postulate.
This change in the invariants of deviators was previously noted in [1–3, 10]. The remark of D.D. Ivlev gave
rise to a discussion in 1960–61 on a new direction in the development of the theory of plasticity proposed
by Il’yushin [1–3]. In [4] Il’yushin noted that (the change in the third invariants of tensors is) as shown
by numerous experiments of domestic and foreign scientists, the influence of the third invariants on the
fulfillment of the isotropy postulate is weak and can be neglected at small elastoplastic deformations.

In [3] Il’yushin noted that violations of the isotropy postulate are possible in the nonlinear theory of
elasticity.
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Like any hypothesis, the isotropy postulate has its limits of applicability. However, no systematic
experimental research has been carried out to establish this boundary.

4. THE THEORY OF PROCESSES OF ELASTOPLASTIC DEFORMATION 
AND EXTENDED THEORY OF FLOW

In the relations of the isotropy postulate (3.3), we change the orthonormal basis . Replace in it the
unit vector  by the unit vector

(4.1)

where βk are angular coordinates of . hen the relations for  can be represented as

(4.2)

After multiplying (4.2) by , we find M and transform (4.2) to the form

(4.3)

where  are the functionals of the deformation process.
We represent the stress vector taking into account (4.1) in the form

Differentiating the resulting expression, we find

Using formulas (3.2), we obtain

(4.4)

Eliminating from the obtained expression (4.4)

we arrive at an expression of the form (4.3).
Let us further restrict ourselves to a particular case of the theory of processes, that is, the coplanarity

hypothesis. In this case, three vectors , ,  always lie in the same contiguous plane of the Frenet–
Ilyushin frame and , . In this case, from equations (4.3)–(4.4) we obtain

(4.5)

(4.6)

Equation (4.5) can also be written in the form

(4.7)

The system of equations (4.5) and (4.6) of the theory of processes contains two functionals. For trajec-
tories of mean curvature, these functionals have the form
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826 ZUBCHANINOV
is the functional of complex loading, q is the experimentally determined parameter, Φ(s) is the universal
Odqvist–Ilyushin hardening function, Gp is the plastic shear modulus,  is its value at the bend point of
the trajectory.

In the theory of f low, a fundamental hypothesis was introduced about the possibility of decomposing
total deformations into elastic and plastic parts

From our point of view, with complex loading and unloading, this is impossible. This hypothesis also
contradicts the concepts of complete and incomplete plasticity by Haar and Karman [7]. In our conver-
sations with Professor Ivlev D. D. about the hypothesis of the decomposition of total deformations into
elastic  and plastic  parts, we agreed that, like any hypothesis, it has limits of its applicability. If we
put in the equations of the theory of processes (4.6) and (4.7) M1 = G, then we obtain the extended basic
equations of the theory of f low

(4.8)

where  is a universal hardening function. From (4.8) it follows

Equations (4.8) satisfy the postulate of isotropy for trajectories of average curvature, contain the
parameter  of complex loading and the approach angle , which characterizes the vector properties of
the material. In general, equations (4.8) are equations of an extended version of the theory of f low. The
classical version of the theory of free plastic f low is obtained for ,  ( ),  for
a deformation path of small curvature or close to simple loading. For trajectories of large curvature defor-
mation, the f low theory becomes unacceptable.
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