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Abstract—The problem of the optimal rotation of the orbital plane of a spacecraft (SC) of variable
mass in an inertial coordinate system is solved in a nonlinear formulation using the quaternionic
differential equation of orientation of the orbital coordinate system and the Pontryagin maximum
principle. The problems of speed, minimization of the thrust impulse, the spacecraft characteristic
speed, and also the problems of minimizing the combined quality functionals: time and total
momentum of the thrust value spent on the control process, time and the spacecraft characteristic
speed are considered. Rotation of the orbital plane of the spacecraft to any angles of magnitude
is controlled using the reactive thrust limited in absolute value, orthogonal to the plane of the
osculating spacecraft orbit. The change in the mass of the spacecraft due to the flow of the working
fluid to the control process is taken into account. A special case of the problem under study is
the problem of optimal correction of the angular elements of the spacecraft orbit. The results of
calculations of the optimal control of the spacecraft orbital plane by means of a small limited reactive
thrust with a large number of passive and active sections of the trajectory are presented.
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1. INTRODUCTION

In this article, we consider in a nonlinear formulation the problem of optimal reorientation of the
orbit plane of a spacecraft in an inertial coordinate system using reactive thrust orthogonal to the plane
of the osculating spacecraft orbit, in continuous formulations using limited (small) reactive thrust and
using the quaternion differential orientation equation of the orbital coordinate system. The plane of the
osculating orbit passes through the radius vector and the velocity vector of the center of mass of the
spacecraft for the current point in time. With this control, the orbit of the spacecraft rotates in an inertial
space as an unchanging (non-deformable) figure (ellipse or circle), rotating in an inertial coordinate
system with an instantaneous angular velocity directed along the radius vector of the center of mass of
the spacecraft. A special case of this problem is the well-known and of great practical importance in
space flight mechanics problem of correction of the angular elements of the orbit of the spacecraft, when
changes in the angular elements of the orbit in the control process are small. Using control orthogonal
to the plane of the osculating SC orbit, allows adjusting the elements of the SC orbit, keeping the shape
and dimensions of the SC orbit unchanged. This valuable property of the studied process of reorientation
of the spacecraft’s orbit is useful both in solving the problem of correcting the angular elements of the
spacecraft’s orbit and in other problems of space flight mechanics, for example, when controlling the
configuration of a satellite group.

The problem of optimal reorientation of the orbital plane of the spacecraft is solved in the general
case when changes in the angular elements of the orbit in the control process can take any finite values.
We study the problems of speed, minimization of the thrust impulse of a jet engine, the characteristic
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speed of the spacecraft, and also problems when the functional that determines the quality of the control
process is a linear convolution with weight factors of two criteria: 1) the time and the total impulse of the
thrust spent on the control process, 2) spacecraft time and characteristic speed.

In our earlier published and cited below papers, we studied the problem of optimal reorientation of
the orbit of the spacecraft by reactive acceleration of the center of mass of the spacecraft, orthogonal to
the plane of the osculating orbit, in various settings using different quaternion models of orbital motion
(the quaternionic differential equation of orientation of the orbital coordinate system or the quaternionic
differential equation of orientation of the orbit of the spacecraft) and various quality criteria. The solution
to the problem using either a small thrust engine (in a continuous setting), or using a large thrust engine
(in a pulse setting) was considered. As a control, we used the acceleration vector of the center of mass
of the spacecraft from the thrust of the jet engine, orthogonal to the plane of the osculating orbit of the
spacecraft.

In this article, a vector of reactive thrust limited by absolute value orthogonal to the plane of the
osculating spacecraft orbit is used as a control. The change in the mass of the spacecraft due to the flow of
the working fluid to the control process is taken into account. The mathematical model used to solve the
problem describing the reorientation of the orbital plane of the spacecraft includes, as already noted, the
quaternion differential equation of orientation of the orbital coordinate system, the differential equation
for the true anomaly characterizing the position of the center of mass of the spacecraft in orbit and the
rotation of the orbital coordinate system relative to the system coordinates associated with the orbit of
the spacecraft, as well as the differential equation describing the change in the mass of the spacecraft in
the process of reorienting its plane orbits.

2. DIFFERENTIAL EQUATIONS OF ORIENTATION OF THE ORBIT OF THE
SPACECRAFT AND THE ORBITAL COORDINATE SYSTEM AND THE PROBLEM OF

OPTIMAL REORIENTATION OF THE ORBIT AND THE PLANE OF THE ORBIT OF THE
SPACECRAFT

We assume that the vector a of the reactive acceleration of the center of mass of the spacecraft from
the thrust of the spacecraft’s reaction engine, and, consequently, the thrust vector u∗ of the reaction
engine during the entire controlled motion of the spacecraft are directed orthogonally to the plane of the
osculating orbit of the spacecraft, i.e. orthogonal to the radius vector r and vector v of the velocity of the
center of mass of the spacecraft (collinear to the vector c = r× v of the velocity of the center of mass
of the spacecraft). Then the differential equations of motion of the center of mass of the spacecraft in the
Newtonian gravitational field, describing the change in the size and shape of the instantaneous orbit of
the spacecraft, are integrated, giving the equation of the conical section. Therefore, the controlled motion
of the spacecraft’s center of mass in this case is described by differential equations describing the change
in the instantaneous orientation of the spacecraft’s orbit or the used (for example, orbital) rotating
coordinate system in which the initial equations of motion of the spacecraft’s center of mass are written,
and by the differential equation for the true anomaly characterizing the position of the spacecraft’s center
of mass in orbit.

The orbit of the spacecraft in the process of such control of the motion of the center of mass of the
spacecraft does not change its shape and size, but rotates in space under the action of control a or u∗ as
an unchangeable (non-deformable) figure.

The motion of the center of mass of the spacecraft will be considered in the inertial coordinate system
X – the geocentric equatorial coordinate system OX1X2X3(X) with the origin at the center O of the
Earth’s gravity. The axis OX3 of this coordinate system is directed along the axis of the diurnal rotation
of the Earth, the axes OX1 and OX2 lie in the plane of the equator of the Earth, the axis OX1 is directed
to the vernal equinox for the Earth, the axis OX2 complements the system to the right three vectors.

We also introduce the coordinate system ξ, associated with the plane and pericenter of the spacecraft
orbit. The origin of this coordinate system is located in the center O (or in the pericenter of the orbit), the
ξ1 axis is directed along the radius vector of the orbit pericenter, the ξ3 axis is perpendicular to the orbit
plane and has the direction of the constant modulus vector c of the velocity of the spacecraft center of
mass relative to the center O, and the axis ξ2 forms the right triple with axes ξ1 and ξ3. The orientation of
the coordinate system ξ in the inertial coordinate systemX characterizes the orientation of the spacecraft
orbit in the inertial space and is traditionally defined by three angular osculating elements of the orbit
[1, 2]: the longitude of the ascending node Ωu, the inclination of the orbit I and the angular distance of
the pericenter from the node ωπ.
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Differential equations describing the instantaneous orientation of the orbit of the spacecraft in the
inertial coordinate system in the corner elements of the orbit in the considered case of orthogonality of
the reactive thrust vector of the plane of the osculating orbit of the spacecraft have the form [1, 2]

dΩu

dt
=

r

c
a sin(ωπ + ϕ) cosec I,

dI

dt
=

r

c
a cos(ωπ + ϕ),

dωπ

dt
= − r

c
a sin(ωπ + ϕ) cot I,

dϕ

dt
=

c

r2
, r =

p

1 + e cosϕ
, c = const,

(2.1)

where ϕ is the true anomaly (the angular variable measured in the plane of the orbit from its pericenter
and characterizing the position of the center of mass of the spacecraft in orbit), r = |r| is the modulus
of the radius vector of the center of mass of the spacecraft, p and e are the parameter and eccentricity of
the orbit, c = |c| = |r× v| is the area constant (modulus of the velocity vector of the velocity v of the
center of mass of the spacecraft), a is the projection of the acceleration vector a = u∗/m∗ of the center
of mass of the spacecraft on the direction of its velocity vector of the spacecraft (the algebraic value of jet
acceleration perpendicular to the plane of the osculating orbit of the spacecraft), m∗ is the mass of the
spacecraft.

The problem of reorienting the spacecraft orbit in angular variables is formulated as follows: it is
required to construct a control a that transfers the orbit, the orientation change of which is described by
equations (2.1) from a given initial position

Ωu = Ωu(t0) = Ω0
u, I = I(t0) = I0, ωπ = ωπ(t0) = ω0

π, I0 �= 0, π,

to the desired final position

Ωu = Ωu(t1) = Ω∗
u, I = I(t1) = I∗, ωπ = ωπ(t1) = ω∗

π, I∗ �= 0, π.

In this case, the selected functional of the quality of the reorientation of the spacecraft orbit should be
minimized.

A special case of this problem was considered in the works of Yu. M. Kopnin [3–7]. In [4], the rotation
of the plane of the near-Earth circular orbit was studied using traction normal to the instantaneous
plane of the orbit, using the averaged equations in the angular elements of the orbit. In [6], the rotation
of the plane of the satellite’s circular orbit by a transverse thrust (thrust directed perpendicular to the
instantaneous plane of the orbit, also called “binormal thrust” in [6]) was studied. To describe the
motion, we used equations (2.1) written in dimensionless variables. The problem was considered under
the assumption that the satellite’s initial orbit lies in the equatorial plane and that the required inclination
of the orbit is small (therefore, sin I ≈ I, cos I ≈ 1 was assumed in what follows).

In [7], the problem of turning the plane of the SC osculating orbit of the spacecraft using the
“binormal force” creating the “binormal acceleration” using the equations for angular osculating
elements (2.1) was considered. The consideration is limited to the case of a circular orbit, which,
according to the authors of this work, was investigated in [3, 5]. An analysis is made of the rotation
of the plane of a circular orbit that is optimal in the sense of minimizing the characteristic speed by
an angle of inclination of the orbit ΔI for an unlimited time. The rotation of the orbit by the angle ΔI
was considered in [7] in an approximate formulation using only the second equation of system (2.1) for
inclining the orbit.

In paper [8], the secular variation of the angular elements of the orbit Ωu, I, ωπ under the influence
of reactive acceleration, orthogonal to the plane of the osculating spacecraft orbit, is considered. This
task is called in the article the task of correcting the elements of the orbit Ωu, I, ωπ “binormal reactive
acceleration”. The initial equations of motion of the spacecraft used in [8] have the form of equations
in angular elements (2.1). To solve the problem, the authors of the article go over in these equations
to a new independent variable (true anomaly ϕ) by the formula dt = (r2/c)dϕ and supplement them
with a differential equation for the characteristic velocity vch. The boundary conditions of the correction
maneuver are written as

t = t0 = t(ϕ0) = 0, Ωu = Ωu0, I = I0, ωπ = ωπ0, vch = 0,

t = t1 = t(ϕ1), Ωu = Ωu1, I = I1, ωπ = ωπ1, vch = vch1 → min.

The problem is solved using the principle of maximum and averaging of equations. From the averaged
equations, a series of analytical relationships is obtained to determine the costs of the characteristic
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velocity in particular cases of correction of one or two elements of the orbit (orbital inclination, longitude
of the ascending node), provided that the changes in the orbital inclination and longitude of the
ascending node are small.

The solution of the problem of optimal reorientation of the spacecraft orbit by means of reactive
acceleration, orthogonal to the plane of the osculating orbit, using equations (2.1) in the angular
elements of the orbit in a strict nonlinear formulation is quite difficult due to the non-linearity of these
equations, the presence of singular points I =0, π, and also due to cumbersome equations for conjugate
factors. Therefore, to solve this problem, instead of the angular elements of the orbit, it is advisable to
use the Euler (Rodrigue–Hamilton) parameters.

The differential equations of orientation of the spacecraft orbit in the Euler parameters are of the form
[9–13]

2
dΛ0

dt
=−Ω1Λ1−Ω2Λ2, 2

dΛ1

dt
=Ω1Λ0−Ω2Λ3, 2

dΛ2

dt
=Ω2Λ0+Ω1Λ3, 2

dΛ3

dt
=Ω2Λ1−Ω1Λ2, (2.2)

dϕ

dt
=

c

r2
, r =

p

1 + e cosϕ
, c = const, Ω1 =

r

c
a cosϕ, Ω2 =

r

c
a sinϕ, (2.3)

where Λj (j = 0, 1, 2, 3) are the Euler parameters characterizing the orientation of the spacecraft orbit
(coordinate system ξ) in the inertial coordinate system X; Ω1, Ω2, Ω3 = 0 are projections of vector Ω of
the instantaneous absolute angular velocity of the orbit onto the coordinate axes Oξi associated with it.

The Euler parameters Λj are related to the angular elements of the orbit by relations

Λ0 = cos
( I

2

)
cos

( Ωu + ωπ

2

)
, Λ1 = sin

( I

2

)
cos

( Ωu − ωπ

2

)
,

Λ2 = sin
( I

2

)
sin

( Ωu − ωπ

2

)
, Λ3 = cos

( I

2

)
sin

( Ωu + ωπ

2

)
.

(2.4)

Equations (2.2) in the quaternion record take the form [9–13]

2dΛ

dt
= Λ ◦Ω, Ω = Ω1i+Ω2j =

r

c
a(cosϕi+ sinϕj), (2.5)

where Λ = Λ0 + Λ1i+ Λ2j+ Λ3k is the quaternion of the orientation of the spacecraft orbit (the
quaternion osculating (slowly changing) element of the spacecraft orbit); Ω is the mapping of vector
Ω onto basis ξ (vector Ω of the instantaneous absolute angular velocity of the orbit is directed along the
radius vector r of the center of mass of the spacecraft and is determined by the formula: Ω = (a/c)r);
i, j, k are Hamilton’s imaginary vector units, 0 is a symbol of quaternion multiplication.

Equations (2.2), (2.3) or (2.5), (2.3) are a system of five nonlinear stationary differential equations
of the first order with respect to the Euler parameters Λj and the true anomaly ϕ. These equations, in
contrast to the four nonlinear differential equations (2.1) of the orbit orientation in the angular elements
of the orbit Ωu, I, ωπ, do not have singular points I = 0, π, moreover, when passing from time t to a
new independent variable ϕ in them, in accordance with the differential relation dϕ = (c/r2)dt a system
of four linear non-stationary differential equations with respect to the Euler parameters Λj (while the
differential equations in the angular elements of the orbit remain essentially non-linear) is obtained (for
a = a(ϕ)).

These circumstances make the use of equations (2.2), (2.3) or (2.5), (2.3) for solving the problems
of reorienting the orbit, the plane of the orbit, and correcting the angular elements of the orbit more
convenient and efficient compared to using the equations in angular osculating elements (2.1). Such
a solution to the problem of reorienting the spacecraft orbit in a continuous formulation (using limited
(low) thrust) was considered in [14–17]. In them, the combined functional equal to the weighted sum of
the reorientation time and the integral of the square of the control module, as well as the combined
functional equal to the weighted sum of the reorientation time and the control pulse (characteristic
velocity) during the reorientation of the spacecraft orbit, are considered as the quality functional of the
reorientation process of the spacecraft. In [18, 19], using equations (2.5), (2.3), a theory was developed
for solving the problem of optimal reorientation of the spacecraft orbit in a pulse formulation (using
pulsed (large) reactive thrust). Algorithms for solving boundary value problems of the optimal two-
pulse and multi-pulse reorientation of the spacecraft orbit (for an unfixed number of pulses of reactive
propulsion) and examples of numerical solutions of the boundary value problems of optimal reorientation
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of the spacecraft orbit using limited (small) or pulsed (large) thrust are presented, in which to describe
the orientation of the spacecraft orbit a quaternion osculating element of the orbit orientation is used.

Note that in [14–19], the maximum principle was used to solve the reorientation problems of the
spacecraft orbit, and the reactive acceleration a of the center of mass of the spacecraft was used as
control.

Along with the differential equations (2.2), (2.3) or (2.5), (2.3) of the orientation of the spacecraft orbit
in the Euler parameters Λj to solve the problems of reorienting the orbit, the plane of the spacecraft’s
orbit and correcting the spacecraft’s angular elements, differential equations of orientation of the orbital
coordinate system η can be used in the Euler parameters λj , having the form [11, 12, 20, 21]

2
dλ0

dt
=−ω1λ1−ω3λ3, 2

dλ1

dt
=ω1λ0+ω3λ2, 2

dλ2

dt
=−ω3λ1+ω1λ3, 2

dλ3

dt
=ω3λ0−ω1λ2, (2.6)

dϕ

dt
=

c

r2
, r =

p

1 + e cosϕ
, c = const, ω1 =

r

c
a, ω2 = 0, ω3 =

c

r2
. (2.7)

where λj (j =0, 1, 2, 3) are the Euler parameters characterizing the orientation of the orbital coordinate
system η in the inertial coordinate system X (the axis η1 of this coordinate system is directed along the
radius vector r of the spacecraft’s center of mass, and the axis η3 is perpendicular to the orbit plane
(parallel to axis ξ3)); ω1, ω2 = 0, ω3 are projections of vector ω of the instantaneous absolute angular
velocity of the orbital coordinate system onto its coordinate axes.

Note that control a enters in equations (2.6) multiplicatively into one of the two components of the
absolute angular velocity of rotation of the orbital coordinate system, directed along the radius vector of
the spacecraft’s center of mass, and in equations (2.2) this control enters into two components of the
absolute vector angular velocity of rotation of the orbit of the spacecraft.

Parameters λj are related to the angular variables Ωu, I, ωπ, ϕ by relations similar to relations (2.4):

λ0 = cos
( I

2

)
cos

( Ωu + ωπ + ϕ

2

)
, λ1 = sin

( I

2

)
cos

( Ωu − ωπ − ϕ

2

)
,

λ2 = sin
( I

2

)
sin

( Ωu − ωπ − ϕ

2

)
, λ3 = cos

( I

2

)
sin

( Ωu + ωπ + ϕ

2

)
.

(2.8)

Equations (2.6) in the quaternion record take the form [11, 12, 20, 21]

2dλ

dt
= λ ◦ ωη,ωη = ω1i+ ω3k =

r

c
ai+

c

r2
k, (2.9)

where λ = λ0 + λ1i+ λ2j+ λ3k is the quaternion of inertial orientation of the orbital coordinate system
associated with the quaternion Λ of the orientation of the spacecraft orbit by the relation

λ = Λ ◦
[
cos

( ϕ

2

)
+ k sin

( ϕ

2

)]
, (2.10)

ωη is the mapping of vector ω onto basis η.
We also note that the quaternion differential equation of orientation of the orbital coordinate system,

similar to (2.9), was also used to describe the orbital motion in [21, 22].
Equations (2.6), (2.7) or (2.7), (2.9) were used in [12, 24–26] to solve using the Pontryagin maximum

principle the problem of optimal reorientation of the spacecraft’s orbit by means of reactive thrust
orthogonal to the orbit plane in a continuous formulation (using limited (low) thrust and using reactive
acceleration as a control a). As an optimality criterion, the combined functional equal to the weighted
sum of the reorientation time and the integral quadratic (with respect to control) quality functional, or
the functional equal to the weighted sum of the reorientation time and the control pulse (characteristic
speed) during the reorientation of the spacecraft orbit was used. Control was supposed to be limited in
modulus.

In [27, 28], equations (2.7), (2.9) were used to solve the problem of optimal reorientation of the
spacecraft orbit by means of pulsed (large) reactive thrust orthogonal to the plane of the osculating orbit.
The acceleration a of the center of mass of the spacecraft from the thrust of the reactive engine was used
as control. The combined functional is minimized, equal to the weighted sum of the reorientation time
and the jet acceleration impulse of the spacecraft’s center of mass (characteristic velocity) during the
reorientation of the spacecraft’s orbit. The solution to the problem is constructed using limit transitions
in equations and relations obtained as a result of solving the problem of optimal reorientation of the
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spacecraft orbit in a continuous formulation (using limited (small) reactive thrust and the Pontryagin
maximum principle). The algorithms for the impulsive solution of the problem, constructed in [28],
allow one to determine the optimal moments of turning on the reactive engine, the optimal values
of the pulses of the reactive acceleration of the spacecraft and their optimal number. Examples of a
numerical solution to the problem of optimal pulsed reorientation of the spacecraft orbit are presented,
demonstrating the capabilities of the proposed method. It was also shown in [28] that the problem of
optimal pulsed reorientation of the spacecraft orbit in the case when the optimal control consists of two
reactive acceleration pulses applied to the spacecraft at initial and final moments of time of motion is
solved analytically.

Using both equations (2.2), (2.3) (or (2.5), (2.3)), which describe the orientation of the spacecraft
orbit and the position of the spacecraft in orbit, and equations (2.6), (2.7) (or (2.9), (2.7)), which describe
the orientation of the orbital coordinate system and the position of the spacecraft in orbit, has its own
advantages for solving problems of optimal reorientation of the spacecraft’s orbit. Thus, equations (2.6),
(2.7) are, for r = const (in the case of a circular orbit) and a = const linear differential equations
with constant coefficients, while equations (2.2), (2.3) in this case are linear differential equations with
variable coefficients. Therefore, equations (2.6), (2.7) (or (2.9), (2.7)) are more convenient and efficient
in comparison with equations (2.2), (2.3) (or (2.5), (2.3)) from an analytical point of view. However,
equations (2.2), (2.3) include equations (2.2) in scalar osculating elements Λj , and equations (2.5),
(2.3) include equation (2.5) for the quaternion osculating element of orbit Λ. Variables Λj , as well as
quaternion Λ, composed of them, as already noted, directly characterize the orientation of the spacecraft
orbit in inertial space. If the control a (reactive acceleration) is equal to zero, these variables become
constant values; therefore, the variables Λj are scalar osculating (slowly changing) elements of the
orbit of the spacecraft, and the variable Λ is the quaternion osculating (slowly changing) element of
the orbit of the spacecraft. The scalar variables λj and the equivalent quaternion variable λ, that appear
in equations (2.6), (2.7) and (2.9), (2.7) do not possess such properties (they are rapidly changing time
functions). Therefore, the study of the problems of optimal reorientation of the orbit, the plane of the
orbit, and the correction of the angular elements of the orbit of the spacecraft seems relevant both using
the quaternion differential equation of orientation of the orbital coordinate system (2.9), and using the
quaternion differential equation of orientation of the orbit of the spacecraft (2.5).

In this article, the problem of optimal reorientation of the orbital plane of a spacecraft is studied using
equations (2.6), (2.7) (or (2.9), (2.7)), which are more convenient from an analytical point of view. In this
case, it is not the algebraic value a of the reactive acceleration of the center of mass of the spacecraft,
as was done in all the papers cited above, is taken as control, but the algebraic value u∗ of the reactive
thrust vector u∗ =m∗(t)a of the spacecraft engine, orthogonal to the plane of the osculating orbit of the
spacecraft. The mass of the spacecraft m∗ is assumed to be a piecewise differentiable function of time t:
m∗ = m∗(t). The mathematical model describing the reorientation of the orbital plane of the spacecraft
additionally includes a differential equation describing the change in the mass of the spacecraft in the
process of controlled motion.

3. THE STATEMENT OF THE PROBLEM OF OPTIMAL ROTATION OF THE ORBITAL
PLANE OF A SPACECRAFT OF VARIABLE MASS BY MEANS OF A LIMITED (SMALL)

REACTIVE THRUST

Differential equations of the reorientation problem of the orbit of the spacecraft of variable mass (and
the problem of reorientation of the plane of the orbit of the spacecraft) in the inertial coordinate system
using reactive thrust orthogonal to the plane of the osculating orbit of the spacecraft, in the case of using
the quaternion differential equation of orientation of the orbital coordinate system to solve the problem,
have the following form:

2
dλ

dt
= λ ◦

( r

cm∗ u
∗i+

A

r2
k
)
,

dϕ

dt
=

A

r2
, r =

p

1 + e cosϕ
, (3.1)

dm∗

dt
= −β∗|u∗|, (3.2)

where β∗ is a constant coefficient of proportionality equal to the reciprocal of the velocity of the expiration
of the working fluid from the reactive engine nozzle [29].

MECHANICS OF SOLIDS Vol. 54 No. 6 2019



QUATERNION SOLUTION OF THE PROBLEM OF OPTIMAL ROTATION 947

The orientation of the orbital plane of the spacecraft in the inertial coordinate system is characterized
by the direction cosines nk of the unit vector n normal to the plane of the orbit in this coordinate system,
which we write through the Euler parameters λj and the angular elements of the spacecraft’s orbit in the
following form:

n1 = 2(λ1λ3 + λ0λ2) = sin I sinΩu, n2 = 2(λ2λ3 − λ0λ1) = −sinI cos Ωu,

n3 = λ2
0 − λ2

1 − λ2
2 + λ2

3 = cos I.
(3.3)

We pass to dimensionless variables ρ, τ, m, u, um, β by formulas

r = Rρ, t =
R2

c
τ, m∗ = m∗

0m, u∗ =
c2m∗

0

R3
u, u∗m =

c2m∗
0

R3
um, R = p, β∗ =

R

c
β, (3.4)

where m∗
0 is the initial mass of the spacecraft, u∗m = u∗max is the maximum thrust value.

The spacecraft motion equations (3.1), (3.2) in dimensionless variables take the form

2
dλ

dτ
= λ ◦

[ u

(1 + e cosϕ)m
i+ (1 + e cosϕ)2k

]
, (3.5)

dϕ

dτ
= (1 + e cosϕ)2,

dm

dτ
= −β|u|. (3.6)

Problem statement: it is required to determine the control u limited by modulus::

−um ≤ u ≤ um < ∞, |u| = |u|, (3.7)

orthogonal to the plane of the osculating orbit of the spacecraft, translating the spacecraft, the motion of
the center of mass of which is described by equations (3.5), (3.6), from a given initial state

τ = τ0 = 0, ϕ(0) = ϕ0, λ(0) = Λ(0) ◦
[
cos

( ϕ0

2

)
+ k sin

( ϕ0

2

)
,m = 1, (3.8)

to the final state belonging to the manifold

τ = τ1, 2[λ1(τ1)λ3(τ1) + λ0(τ1)λ2(τ1)]− sin I(τ1) sinΩu(τ1) = 0,

2[λ2(τ1)λ3(τ1)− λ0(τ1)λ1(τ1)] + sin I(τ1) cos Ωu(τ1) = 0,
(3.9)

and minimizing the combined quality functional (3.10) or (3.11):

J =

τ1∫

0

(α1 + α2|u|)dτ, α1 = const ≥ 0, α2 = const ≥ 0, (3.10)

J =

τ1∫

0

(
α1 + α2

|u|
m

)
dτ, α1 = const ≥ 0, α2 = const ≥ 0. (3.11)

Functionals (3.10) and (3.11) are linear convolutions with constant weighting factors α1 and α2 of two
criteria: (3.10) – time and momentum of the thrust of reactive engine spent on the control process, (3.11)
– time and characteristic speed of the spacecraft.

The dimensionless time τ1 of the control process is not predefined. In the particular case, when
α1 �= 0, α2 = 0, the optimality criterion is the duration of the control process and the optimal control
problem becomes a performance problem. In other special cases, when α1 = 0, α2 = 1, the optimality
criterion is the momentum of the thrust of a reactive engine (functional (3.10)) or the characteristic speed
of the spacecraft (functional (3.11)).

Quaternion Λ(0) and scalar quantity ϕ0 appearing in the initial conditions characterize the initial
orientation of the spacecraft orbit and initial position of the spacecraft in orbit. The quantities c, p, e,
ϕ0, Λ(0) are given (the initial Λ(0) value of the quaternion Λ of the orientation of the spacecraft orbit
can be found through the given initial values of the angular elements of the orbit Ωu, I, ωπ according
to formulas (2.4)). The finite values Ωu(τ1), I(τ1) of the angular elements of the orbit Ωu, I, are also
specified, which characterize the required (final) orientation of the orbital plane of the spacecraft and are
included in equations (3.9) of the manifold to which the final state of the controlled system belongs. The
optimal control law u= u(τ), under the action of which the orbital plane of the spacecraft will occupy the
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required position, and the quantities τ1, ϕ1 characterizing the time of the control process and the final
position of the spacecraft in orbit are subject to determination.

The task is the optimal control problem with the moving right end of the trajectory. Conditions (3.9)
at the right end of the trajectory are written in accordance with relations (3.3) for the directing cosines
nk of unit vector n normal to the plane of the spacecraft’s orbit. Note that the direction cosines nk are
related by the condition n2

1+ n2
2 + n2

3 = 1. Therefore, to solve the problem, only the first two of the three
conditions (3.3) at the right end of the trajectory are taken. Instead, the first and third of conditions (3.3)
or the second and third of these conditions can be taken.

4. LAWS (STRUCTURE) OF OPTIMAL CONTROL AND TRANSVERSALITY
CONDITIONS

We will solve the problem with the help of the maximum principle. To this end, we introduce additional
variables μ, χ and l conjugate with respect to the phase variables λ, ϕ and m. The Hamilton–Pontryagin
function in the case of minimizing the functional (3.10) has the form

H = ψ0(α1 + α2|u|) +
1

2
[μ0(−ω1dλ1 − ω3dλ3) + μ1(ω1dλ0 + ω3dλ2t)

+ μ2(−ω3dλ1 + ω1dλ3) + μ3(ω3dλ0 − ω1dλ2)] + χ(1 + e cosϕ)2 + l(−β|u|t),
(4.1)

and in the case of minimizing the functional (3.11), the form

H = ψ0(α1 + α2
|u|
m

) +
1

2
[μ0(−ω1dλ1 − ω3dλ3) + μ1(ω1dλ0 + ω3dλ2)

+ μ2(−ω3dλ1 + ω1dλ3) + μ3(ω3dλ0 − ω1dλ2)] + χ(1 + e cosϕ)2 + l(−β|u|).
(4.2)

Here μj are the components of the conjugate quaternion variable μ,

ω1d =
u

(1 + e cosϕ)m
, ω3d = (1 + e cosϕ)2. (4.3)

According to the maximum principle, the constant ψ0 ≤ 0. In what follows, we consider the case
where the constant ψ0 < 0. In this case, due to the homogeneity of the Hamilton–Pontryagin function
with respect to the conjugate variables, the constant ψ0 can be chosen arbitrarily, therefore, in the future
we will set ψ0 = −1.

The system of equations for conjugate variables in the case of minimizing the functional (3.10) has
the form of equations (4.4)–(4.6):

2
dμ

dτ
= μ ◦

[ u

(1 + e cosϕ)m
i+ (1 + e cosϕ)2 k

]
, (4.4)

dχ

dτ
= e sinϕ[(1 + e cosϕ)(λ0μ3 − λ1μ2 + λ2μ1 − λ3μ0 + 2χ)

− 1

2

u

(1 + e cosϕ)2m
(λ0μ1 − λ1μ0 − λ2μ3 + λ3μ2)], (4.5)

dl

dτ
=

1

2

u

(1 + e cosϕ)m2
(λ0μ1 − λ1μ0 − λ2μ3 + λ3μ2). (4.6)

In the case of minimizing functional (3.11), the system of equations for conjugate variables has the
form of equations (4.4), (4.5) and equations (4.7):

dl

dτ
=

1

m2

[
α2|u|+

1

2

u

(1 + e cosϕ)
(λ0μ1 − λ1μ0 − λ2μ3 + λ3μ3)

]
. (4.7)

We introduce a new quaternion variable

ν = ν0 + ν1i+ ν2j+ ν3k = λ ◦ μ, (4.8)

which is the multiplicative composition of the phase λ and the conjugate μ quaternion variables. In the
formula (4.8) and below, the upper line is the symbol of the quaternion pairing.
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Components νj of quaternion μ in accordance with (4.8) are determined by the formulas

ν0 = λ0μ0 + λ1μ1 + λ2μ2 + λ3μ3, ν1 = λ0μ1 − λ1μ0 − λ2μ3 + λ3μ2,

ν2 = λ0μ2 + λ1μ3 − λ2μ0 − λ3μ1, ν3 = λ0μ3 − λ1μ2 + λ2μ1 − λ3μ0.
(4.9)

Using the new variables νj , expressions (4.1), (4.2), (4.3) for the Hamilton–Pontryagin function and
the conjugate equations (4.5), (4.6) and (4.7) take on a simpler form:

H = −[α1 + (α2 + βl)|u|] + 1

2

[ u

(1 + e cosϕ)m
ν1 + (1 + e cosϕ)2(ν3 + 2χ)

]
, (4.10)

H = −(α1 +
α2

m
+ βl)|u|+ 1

2

[ u

(1 + e cosϕ)m
ν1 + (1 + e cosϕ)2(ν3 + 2χ)

]
, (4.11)

dχ

dτ
= e sinϕ

[
(1 + e cosϕ)(ν3 + 2χ)− 1

2

u

(1 + e cosϕ)2m
ν1

]
, (4.12)

dl

dτ
=

1

2

u

(1 + e cosϕ)m2
ν1, (4.13)

dl

dτ
=

1

m2

[
α2|u|+

1

2

u

(1 + e cosϕ)
ν1

]
. (4.14)

Note that the quaternion conjugate equation (4.4) coincides in its form with the quaternion phase
equation (3.5), since the quaternion equation (3.5) has the property of self-adjointness. We also note
that the property of self-adjointness of the quaternionic kinematic equation was first established by
V. N. Branz and I. P. Shmyglevsky in solving problems of optimal spatial turns of a rigid body [30].

It can be seen from (4.5) or (4.12) that in the case of a circular orbit, when the eccentricity of the orbit
is e = 0, conjugate variable

χ = χ0 = χ(0) = const. (4.15)

The optimal control law (i.e., control law satisfying the necessary optimality conditions) is found from
the condition of the maximum of function H with respect to variable u taking into account the imposed
constraint (3.7) and, in the case of minimizing the functional (3.10), takes the form (4.16):

u = um sign ν1, if
|ν1|

2(1 + e cosϕ)m
≥ α2 + βl,

u = 0, if
|ν1|

2(1 + e cosϕ)m
< α2 + βl,

(4.16)

and in the case of minimizing the functional (3.11) the form (4.17):

u = um sign ν1, if
1

m

[ |ν1|
2(1 + e cosϕ)

− α2

]
≥ βl,

u = 0,
1

m

[ |ν1|
2(1 + e cosϕ)

− α2

]
< βl.

(4.17)

Note that special control mode is not considered in the article.
The transversality conditions corresponding to the manifold of the final state (3.9), after excluding

from them two indefinite Lagrange multipliers, take the following form:
for τ = τ1:

λ0μ3 − λ1μ2 + λ2μ1 − λ3μ0 = ν =3== 0, χ = 0, l = 0, (4.18)

λ0μ0 − λ1μ1 − λ2μ2 + λ3μ3 = ν =0 −2(λ1μ1 + λ2μ2) = 0. (4.19)

5. ANALYSIS OF THE PROBLEM OF OPTIMAL REORIENTATION OF THE
SPACECRAFT ORBIT

In the case of minimizing functional (3.10), the problem is reduced to a boundary value problem with
a moving right end of the trajectory described by a system of nonlinear differential equations (3.5), (3.6),

MECHANICS OF SOLIDS Vol. 54 No. 6 2019



950 SAPUNKOV, CHELNOKOV

(4.4), (4.12), (4.13), (4.16) of the twelfth order and eight boundary conditions (3.8), (3.9), which must
be supplemented by four transversality conditions (4.18), (4.19) and the equality

H = −[α1 + (α2 + βl)|u|] + 1

2

[ u

(1 + e cosϕ)m
ν1 + (1 + e cosϕ)2(ν3 + 2χ)

]
= 0 (5.1)

which holds for optimal control u and an optimal trajectory at its right end.
In the case of minimizing functional (3.11), the problem is reduced to a boundary-value problem with

a moving right end of the trajectory described by a system of nonlinear differential equations (3.5), (3.6),
(4.4), (4.12), (4.14), (4.17) of the twelfth order and eight boundary conditions (3.8), (3.9), which must
be supplemented by four transversality conditions (4.18), (4.19) and the equality

H = −(α1 +
α2

m
+ βl)|u|+ 1

2

[ u

(1 + e cosϕ)m
ν1 + (1 + e cosϕ)2(ν3 + 2χ)

]
= 0 (5.2)

which holds for optimal control u and an optimal trajectory at a finite moment τ1 of dimensionless time.
Differential equations of the problem have first integrals

‖ λ ‖2 = λ =2
0 +λ2

1 + λ2
2 + λ2

3 = ‖ λ(0) ‖2 = 1, (5.3)

‖ μ ‖2 = μ2
0 + μ2

1 + μ2
2 + μ2

3 = ‖ μ(0) ‖2 = const, (5.4)

μ ◦ λ = ν∗ = ν∗0 + ν∗1 i+ ν∗2 j+ ν∗3k = const, (5.5)

λ0μ0 + λ1μ1 + λ2μ2 + λ3μ3 = ν0 = ν0(0) = const. (5.6)

Integrals (5.3)–(5.6) hold for any control u. Integrals (5.3), (5.4) reflect the constancy of the norms of
the quaternion variables λ and μ. The integral (5.5) holds due to the self-adjointness of the quaternionic
phase equation (3.5).

Due to the autonomy of the system of equations for phase and conjugate variables, equalities (5.1)
and (5.2) will be fulfilled at any time of optimal controlled motion, i.e. will be the first integrals of these
equations for optimal control u. In the case of a circular orbit, the equations of the problem also have the
first integral (4.15): χ = χ0 = const.

In the active segment of the trajectory, the optimal control u is a constant value; therefore, differential
equation for mass m (the second equation of subsystem (3.6)) is integrated and gives the relation

m(τ) = m0 − β|u|τ, (5.7)

which describes the change in the mass of the spacecraft in this section and shows that the dimen-
sionless mass m of the spacecraft is a linear function of dimensionless time τ (decreases linearly over
time τ ).

Dimensional q∗ and dimensionless q characteristic velocities of the spacecraft are related by relation
q∗ = (c/R)q. The change in the dimensionless characteristic velocity is described by the differential
equation

dq

dτ
=

|u|
m(τ)

. (5.8)

A comparison of this equation with the combined functional (3.11) shows that the characteristic
velocity q is a special case of functional (3.11), when the coefficients of this functional are α1 =0, α2 =1.

Integration of equation (5.8) taking into account (5.7) in the active section of the trajectory gives the
following law of variation of the characteristic velocity in the process of controlled spacecraft motion in
this section of the trajectory:

q(τ) = q0 +
1

β
ln

m0

|m0 − β|u|τ | ,

where m0 and q0 are values of m and q at the moment of time corresponding to the beginning of the
considered active section of the trajectory.

Both functionals (3.10) and (3.11) can be expressed in terms of a finite dimensionless motion time τ1
and a finite value of the dimensionless mass of the spacecraft m1. We have:

J =

τ1∫

0

(α1 + α2|u|)dτ = α1τ1 +
α2

β
(1−m1),
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J =

τ1∫

0

(
α1 +

α2

m
|u|

)
dτ = α1τ1 −

α2

β
lnm1.

Thus, the Lagrange optimal control problem posed above is reduced to the Mayer problem. It follows
from the last formulas given that, for α1 = 0 the tasks of minimizing the thrust momentum and
characteristic speed are reduced to the problem of minimizing fuel. This is also seen from the Tables
4, 5 and 7 of the numerical calculations below.

From the Hamilton–Pontryagin functions (4.10), (4.11) and the optimal control laws (4.16), (4.17) it
can be seen that they are actually functions not of the conjugate variables μj (j=0, 1, 2, 3) (components
of the quaternionic conjugate variable μ), but functions of the scalar variables ν1 and ν3 (components of
quaternion ν), which in turn are multiplicative compositions of phase λj and conjugate μj variables
of the form (4.9). Moreover, the quantity ν0 = const (it is equal to component ν∗0 of quaternionic
constant ν∗ of the controlled motion defined by (5.5)) and it appears only in the transversality condition
(4.19). Therefore, instead of the above twelve differential equations of the boundary value optimal control
problem with respect to phase and conjugate variables λj (j = 0, 1, 2, 3), ϕ, m, μj , χ, l, we can use a
system of eleven differential equations for the variables λj , ϕ, m, νk (k=1, 2, 3), χ, l to solve the problem
of optimal reorientation of the spacecraft’s orbit, omitting the differential equation for the variable ν0,
passing into relation ν0 = const, and the transversality condition (4.19) containing ν0.

Differentiating the quaternion relation (4.8) with respect to the variable τ and taking into account
equations (3.5), (4.4), we obtain the following differential equations for the scalar ν0 and vector νv =
ν1i+ ν2j + ν3k parts of the quaternion variable ν:

dν0
dτ

= 0, (5.9)

dνv
dτ

= νv ×
[ u

(1 + e cosϕ)m
i+ (1 + e cosϕ)2k

]
. (5.10)

From equation (5.9) we have: ν0 = ν0(0) = const. From the vector equation (5.10) we obtain the
following system of three scalar differential equations for the components νk of the vector variable νv:

dν1
dτ

= (1 + e cosϕ)2ν2,
dν2
dτ

=
u

(1 + e cosϕ)m
ν3 − (1 + e cosϕ)2ν1,

dν3
dτ

= − u

(1 + e cosϕ)m
ν2.

(5.11)

Equations (5.11) ((5.10)) have (for any control) the first integral

ν21 + ν22 + ν23 = ν2
v = ν∗2

v = const, ν∗
v = vectν∗ = vect(μ ◦ λ).

Equations (5.11) are differential equations of the switching function ν1 = ν1(τ), since the control,
as can be seen from relations (4.16) and (4.17), switches from one branch to another depending on the
value of the coordinate ν1. Variables νk, in equations (5.11) are related to the quaternionic first integral
(5.5) of the equations of the boundary value problem by the rotation transformation: νv = λ ◦ ν∗

v ◦ λ.
Thus, the problem of optimal reorientation of the orbital plane of a spacecraft in a continuous

formulation (using limited (small) reactive thrust) reduces to solving a boundary-value problem with
a moving right end of the trajectory described in the case of minimizing functional (3.10) by a system
of eleven nonlinear stationary differential equations (3.5) , (3.6), (5.11), (4.12), (4.13), (4.16), and in
the case of minimizing the functional (3.11) — by a system of eleven nonlinear stationary differential
equations (3.5), (3.6), (5.11), (4.12), (4.14), (4.17) with respect to the variables λj , ϕ, m, νk, χ, l and
eight boundary conditions (3.8), (3.9), which must be supplemented by three transversality conditions
(4.18) and equality (5.1) in the first case or equality (5.2) in the second case.

The optimal control, as can be seen from (4.16) and (4.17), consists of two possible modes: the active
section of motion with the constant maximum possible modulus of reactive thrust u=±um, the direction
(sign) of which is determined by the sign of the variable ν1, and a passive section of movement with zero
thrust (recall that the special control mode is not considered in the article).

As can be seen from the transversality conditions (4.18), variables ν3 and χ at the right end of the
trajectory are equal to zero; therefore, condition (5.1) (in the case of minimizing the functional (3.10))
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and condition (5.2) (in the case of minimizing the functional (3.11)) which hold for the optimal control u
and the optimal trajectory at this end of the trajectory, take the form (5.11) and (5.13), respectively:

− [α1 + (α2 + βl)|u|] + u

2(1 + e cosϕ)m
ν1 = 0, (5.12)

− (α1 +
α2

m
+ βl)|u| + u

2(1 + e cosϕ)m
ν1 = 0. (5.13)

Conjugate variable χ and the second transversality condition (4.18) are excluded from consideration, and
the boundary-value problem will be described by a system of nonlinear stationary differential equations
(3.5), (3.6), (5.11), (4.13), (4.16) or (3.5), (3.6), (5.11), (4.14), (4.17) of the tenth order with respect to
the variables λj , ϕ, m, νk, l and eight boundary conditions (3.8), (3.9), which must be supplemented by
two transversality conditions ν3 = 0, l = 0 and equality (5.11) or (5.13) at the right end of the trajectory.

Note that it is possible to reduce the dimension of the initial boundary-value problem described by
differential equations for eleventh order variables λj , ϕ, m, νk, χ, l by two units due to the transition to a
new independent variable correspond to the true anomaly ϕ (in this transition, differential equations for
the true anomaly ϕ and the variable χ conjugate to it are excluded from consideration, and the differential
equations of the boundary value problem become unsteady).

We also note that the differential equations (5.11), which describe the control switching function
ν1 = ν1(ϕ) and the second differential equation of the subsystem (3.6) for mass m when passing to a
new independent variable ϕ (true anomaly), are allocated for optimal control u = ±um into a closed
subsystem of four nonlinear non-stationary differential equations of the first order with respect to the
variables νk, m, having the form

dν1
dϕ

=ν2,
dν2
dϕ

=
u

(1 + e cosϕ)3m
ν3− ν1,

dν3
dϕ

=− u

(1 + e cosϕ)3m
ν2,

dm

dϕ
=− β|u|

(1 + e cosϕ)2
.

6. RESULTS OF NUMERICAL SOLUTION OF THE PROBLEM OF OPTIMAL
REORIENTATION OF THE ORBITAL PLANE OF THE SPACECRAFT AND THEIR

ANALYSIS
The solutions of the problem given below for the same initial data, but for different functionals of the

quality of the control process, are presented in dimensionless variables, angular quantities are expressed
in degrees. The eccentricity of the orbit is e = 0.1, he coefficient characterizing the fuel consumption for
creating a unit of thrust isβ=4.0, and the initial mass of the spacecraft ism0=1.0. The initial orientation
of the spacecraft orbit is determined by the angular elements of the orbit In = 65.8◦, Ωun = 217.0◦,
ωπn = 0.0◦; position of the spacecraft in orbit at the initial moment τ = 0 is determined by the true
anomaly ϕn = 30.0◦. The orientation of the plane onto which the spacecraft orbit needs to be transferred
is determined by the angular elements Ik = 64.8◦, Ωuk = 215.25◦.

6.1. Solution to the Performance Problem for Maximum Thrust
6.1.1. Solution to the performance problem for maximum thrust um = 0.004 Optimal control
consists of 4 stages with constant controls um or −um. During the control process, the spacecraft
makes one full turn. Table 1 describes the control stages: the times τi of the end of the stages, the true
anomaly ϕi, the angular elements of the orbit, the mass mi of the spacecraft at the end of the ith stage,
the value ui of control at this stage are given. From Table 1 it can be seen that the duration of the optimal
process is 10.998431 units of dimensionless time and during this time 0.175975 fuel was consumed (from
the initial mass of the apparatus).

6.1.2. Solution to the performance problem for maximum thrust um = 0.002 Optimal control
consists of 8 stages with constant controls um or −um. During the control process, the spacecraft makes
three full turns. Table 2 describes the control stages. It can be seen that the duration of the optimal
process is 22.948044 units of dimensionless time and during this time 0.183584 fuel was consumed
(from the initial mass of the apparatus). At each internal stage (i.e., with the exception of the first and
last stages) with control u=0.002 the true anomaly changes by 180.0004◦ , and at the stage with control
u=−0.002 by 180.0002◦. The duration of the internal stages with control u=0.002 gradually decreased
by 0.000004, and the duration of the stages with control u = −0.002 increased by 0.000002 units of
dimensionless time.
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Table 1
Stage

number
τi ϕi Ii Ωui ωπi mi ui

1 2.096597 149.2167 65.8433 216.5530 0.1837 0.966454 -0.004

2 5.494421 329.2171 65.4720 216.0780 0.3815 0.912089 0.004

3 8.475241 149.2176 65.3290 215.5773 0.5915 0.864396 -0.004

4 10.998431 274.0070 64.8000 215.2500 0.7309 0.824025 0.004

Table 2

Stage
number

τi ϕi Ii Ωui ωπi mi ui

1 2.105966 149.6650 65.8217 216.7777 0.0912 0.983152 -0.002

2 5.501053 329.6654 65.6409 216.5487 0.1858 0.955992 0.002

3 8.484604 149.6656 65.5726 216.3139 0.2832 0.932123 -0.002

4 11.879687 329.6659 65.3827 216.0709 0.3846 0.904963 0.002

5 14.863240 149.6662 65.3113 215.8218 0.4888 0.881094 -0.002

6 18.258319 329.6664 65.1112 215.5630 0.5979 0.853933 0.002

7 21.241875 149.6667 65.0366 215.2979 0.7101 0.830065 -0.002

8 22.948044 230.5039 64.8000 215.2500 0.7306 0.816416 0.002

Table 3

um τk Number of
stages

Number of full
turns

Fuel
consumption

ϕ◦
k ω◦

πk

0.004 10.998431 4 1 0.1759752 74.0070 0.7309

0.002 22.948043 8 3 0.183584 230.5039 0.7306

0.001 45.697142 15 7 0.182789 95.1737 0.7314

0.0005 92.432460 30 14 0.184865 197.6370 0.7314

Table 4

Duration of process τk 52.523586 74.803842 115.606753 151.105858

Number of stages 33 47 74 94

Number of full turns ϕk 8 11 18 23

True anomaly φk 119.3230 275.1223 80.4386 261.3726

Angular distance to pericenter ωπk 0.7319 0.7315 0.7315 0.7314

Fuel consumption Δmk 0.147081 0.130290 0.124351 0.122125

Functional value J 0.036773 0.032572 0.031088 0.030531

Table 3 shows the results of solving the performance problem for various values of maximum thrust.
The subscript k for quantities τ , ϕ, ωπ means that their values are given for a finite point in time τk. It
is seen that with a decrease in the maximum control value um the time τk of the control process, the
number of control stages, and the full turns of the spacecraft trajectory increase. So, for um = 0.0005
the number of control stages and full turns of the spacecraft trajectory becomes 30 and 14, respectively.
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Table 5

Duration of process τk 214.875157 297.675157 552.675945

Number of control stages 68 94 174

Number of full turns ϕk 33 46 86

True anomaly φk 260.4280 253.6861 246.0391

Angular distance to pericenter ωπk 0.7315 0.7314 0.7314

Fuel consumption Δmk 0.119739 0.118224 0.117122

Functional value J 0.029935 0.029557 0.029280

Table 6

τk Δmk ϕk J

49.320972 0.153777 276.9730◦ 0.087765

51.746055 0.148850 75.9973◦ 0.088959

6.2. Solution to the Problem in the Case of Minimizing the Impulse of the Thrust of Reactive Engine of
the Spacecraft

In this case, the coefficients of the optimization functionals α1 = 0, α2 = 1. It is established that
the boundary-value optimization problem admits in this case, under the same boundary conditions,
countless solutions. In the obtained solutions for the maximum thrust um= 0.001 with an increase in
the duration of the control process, the momentum of the thrust value decreases and, as the duration
increases, it tends to a certain limit. Table 4 shows the solutions to the optimal control problem in which
four stages with controls u = 0.001, u = 0.0, u = −0.001, u = 0.0 are stacked in one full turn of the
trajectory.

With an increase in the duration of the control process, the structure of optimal control changes. Only
two stages with controls u = 0.0, u = 0.001 fit into one full turn. With a duration of τk = 214.875157
the value of the functional is J = 0.029935, and with τk = 297.674094, J = 0.029557. Results for these
durations of the control process are presented in Table 5.

6.3. Solution to the Problem in the Case of Minimizing the Combined Functionality, which Includes
the Time and Momentum of the Thrust of Reactive Engine of the Spacecraft

It is established that the boundary-value optimization problem allows in this case, with the same
initial data of the problem, several solutions from which it is necessary to choose the optimal one (with
a lower functional value). Table 6 (in it Δmk is the dimensionless fuel consumption, ϕk is the final
true anomaly) provides two solutions to this problem for the maximum thrust um= 0.001 in the case
of minimizing the functional

J =

τ1∫

0

(α1 + α2|u|)dτ, τ1 = τk, α1 = 0.001, α2 = 1.0

The table shows that the optimal solution is presented in the first row. The solutions for optimal controls
on each complete turn of the trajectory contain four stages: u = 0.001, u = 0.0, u = −0.001, u = 0.0.

6.4. Solution to the Problem in the Case of Minimizing the Characteristic Speed of the Spacecraft

It is established that the boundary value optimization problem admits in this case many solutions
for the same initial data of the problem. Table 7 gives several such solutions for the case um = 0.001.
Solutions for optimal controls presented in the upper two lines in each full turn contain four stages:
u= 0.001, u= 0.0, u= −0.001, u= 0.0. In solutions presented in the third, fourth, and fifth rows, at the
time τ∗ indicated in the table, there is a transition from a four-stage mode in one full turn of the trajectory
to a two-stage mode in one full turn: u = 0.0, u = −0.001.
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Table 7

τk ϕ◦
k Δmk Number of

stages
Number of full

turns
ωπk J

52.418780 113.8536 0.147491 33 8 0.7318 0.039893

74.635590 265.4729 0131242 47 11 0.7314 0.035173

112.690580 253.5030 0.126391 τ∗ = 80.901470 0.7310 0.033781

150.808957 245.3223 0.124428 τ∗ = 68.162150 0.7310 0.033219

201.653104 235.7468 0.123696 τ∗ = 68.151568 0.7309 0.033012

Table 8

α1 τk J ϕ◦
k Number of

stages
Number of

turns
ω◦
πk Fuel

consumption

0.001 49.230108 0.091174 271.6881 31 7 0.7313 0.154458

6.5. Solution to the Problem in the Case of Minimizing the Combined Functionality

J =

τ1∫

0

(α1 +
α2

m
|u|)dτ, τ1 = τk, um = 0.001, α1 = 0.001, α2 = 1.0.

The solution for optimal control, shown in Table 8, in each full turn contains four stages: u = 0.001,
u = 0.0, u = −0.001, u = 0.0.

7. CONCLUSION
Using the quaternion differential orientation equation of the orbital coordinate system and the

Pontryagin maximum principle, the problem of optimal rotation of the orbital plane of a spacecraft of
variable mass in an inertial coordinate system is solved. The rotation of the orbital plane of the spacecraft
to any angles of magnitude is controlled using reactive thrust limited in absolute value, orthogonal to the
plane of the osculating spacecraft orbit. Under the influence of such a thrust, the shape and dimensions
of the spacecraft’s orbit remain unchanged throughout the control process, and the orbit itself rotates in
an inertial space as an unchanging (non-deformable) figure (circle, ellipse). The change in the mass of
the apparatus due to the flow of the working fluid to the control process is taken into account. A special
case of the problem under study is the optimal correction of the angular elements of the spacecraft orbit,
which is important in the mechanics of space flight.

The problems of performance, minimization of the thrust impulse, the characteristic speed of the
spacecraft are considered, and also problems when the functional determining the quality of the control
process is a linear convolution with weighting factors of two criteria: 1) time and total impulse of
the thrust value spent on the control process, 2) time and characteristic speed of the spacecraft. The
structure of optimal control, depending on the selected functional of the quality of the control process, is
of a different nature and includes passive sections of the trajectory where there is no thrust and the orbit
plane remains unchanged, and the active sections of the trajectory in which the jet thrust assumes the
maximum value and the orbital plane of the spacecraft rotates.

Numerical solutions to the problem of optimal control of the spacecraft orbital plane by means of a
small limited reactive thrust with a large number of passive and active sections of the trajectory (control
stages) are obtained. The calculations show that in cases where the thrust of the thrust control or the
characteristic speed of the spacecraft is the criterion for the quality of the control process, the Pontryagin
maximum principle satisfies many solutions in which, with an increase in the time interval of the control
process, the value of the quality functional of the control process decreases and tends to a certain limit.
In this case, with an increase in the time interval of the control process, the number of control stages
increases, the durations of the active stages decrease, the durations of the passive stages increase, the
structure of the optimal control changes. In cases where the combined quality functional is minimized,
including the time and momentum of the thrust spent on the control process, or the spacecraft time and
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characteristic speed, the optimal control boundary value problems allow several solutions, from which it
is necessary to choose a solution with a minimum functional value.
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