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Abstract—The effect of the average excess pressure of the environment on the linear and nonlinear
bending of a round plate is studied. Different values of the gas pressure on both surfaces of the plate
form a transverse distributed load, consisting of a differential pressure and the interaction of the
average pressure with the curvature of the middle surface. With a small ratio of the average pressure
to the elastic modulus of the material and with a large relative thickness, the influence of the second
component of the bending load is small. With a large ratio of the average pressure to the elastic
modulus and a small relative thickness, this effect is significant.
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1. INTRODUCTION
A lot of literature is devoted to the analysis of linear and nonlinear bending of round thin plates and

membranes. The same applies to the stability problem of round plates under the action of radially directed
compressive forces. We point, for example, to [1–12]. In [13, 14], in addition to the elastic deformation
of the plates, elastoplastic bending is considered. In [13], the nonlinear bending of round plates under
pressure and temperature was studied from the standpoint of using them as safety membranes; in [14],
the results of a study of the nonlinear bending and stability of round plates under the pressure of a heated
or cooled compressible working environment are presented.

In all these works, it is assumed that the transverse distributed load q on a thin plate is equal to
q = γh+ p2 − p1, where γ is the specific gravity of the material, h is its thickness, p1, p2 are the excess
gas pressures on the lower and upper surfaces of the plate. In the case of a small relative thickness
of the plate and applying pressure to only one of the surfaces or a small ratio of the average pressure
pm = (p1 + p2)/2 to the elastic modulus of the material E, this value of q is quite accurate.

Taking into account the effect of the difference in the areas of the lower and upper surfaces, the average
pressure pm on the cylindrical bending of the elongated plate, leads to the expression for the distributed
transverse load [15-17]

q = γh− p1 + p2 + pmh
( d2w

dx2

)
, (1.1)

where the deflection function w(x) depends on the reduced stiffness D(1 + α). Here D is the flexural
rigidity of the plate, α is the dimensionless parameter, which for a pivotally fixed plate of length L is

α ≈
( pm

E

)( L

h

)2
. (1.2)
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Fig. 1.

When obtaining (1.1), (1.2), it is assumed that the edges of the plate are isolated from the action of
pressures p1, p2.

For structures such as reinforced concrete, ship structures at atmospheric pressure or one-sided low
pressures, the parameter α is zero or very small. But for the designs of petrochemical equipment, energy,
deep-sea vehicles, aerospace technology, there can be considerable values of α. If E = 2 · 106 bar (steel),
pm = 20bar, L/h = 102 , then α = 0.1. The reduced stiffness is increased by 10%. In the case of
E = 2× 105 bar (magnesium alloy), the parameter α = 1. In this case, the reduced stiffness is equal to
2D, the deflection is two times less than in the case when the difference in the areas of the upper and
lower surfaces of the plate is not taken into account.

If the media below and above the plate are liquids with specific weights γ1 and γ2, then the term
(γ2 − γ1)w appears in expression (1.1). Taking this factor into account leads to the problem of the
interaction of elastic and hydrodynamic instabilities [15]. This statement complicates the analysis and is
not considered here.

2. STATEMENT OF THE PROBLEM

We consider the static elastic bending of a round plate with a diameter of 2c and a thickness h, on
the lower and upper surfaces of which the gas pressures p0 + p1 and p0p2 act, where p0 is atmospheric
pressure, p1, p2 are excess pressures. The pressures p1 and p2 can be both positive and negative, and the
negative values of p1, p2 are less than p0. The effect of gas densities on the transverse load (γ1 = γ2 = 0)
is not taken into account. When the plate bends pressures p1, p2 remain unchanged. The edge of the
plate is isolated from the action of excess pressure (only p0 acts). Prior to the application of pressures
p1, p2 the plate under an all-round pressure p0 is in an unstressed plane state. The direction of the z axis,
load q, and deflection w(r) are positively down. Axisymmetric bending is considered.

Fig. 1 shows a plate element with an area dS = rdϕdr of the middle surface. In accordance
with Kirchhoff’s hypotheses, during deformation, the cross section remains flat and perpendicular to
the middle surface, the plate thickness does not change. Under axisymmetric bending, the resulting
curvatures along the radius κr and along the angle κ are related to the deflection function w(r) by the
equations [10, p. 173]

κr = − d2w

dr2
, κϕ = − 1

r

dw

dr
. (2.1)

With axisymmetric bending, the torsion curvature is zero. The areas of the lower and upper surfaces
of the element are equal to

dS1 = dr
(
1 +

h

2
κr

)
rdϕ

(
1 +

h

2
κϕ

)
, dS2 = dr

(
1− h

2
κr

)
rdϕ

(
1− h

2
κϕ

)
. (2.2)

The transverse distributed force acting on the area dS of the middle surface is equal to

qdS = γhdS + p2dS2 − p1dS1. (2.3)
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Here the dead weight is assigned to the median surface. Substituting expressions (2.2), (2.1) into (2.3)
and discarding nonlinear terms, we obtain

q = pe + pmh∇2w, pe = γh+ p2 − p1, ∇2 =
1

r

d

dr

(
r
d

dr

)
, pm =

p1 + p2
2

. (2.4)

The system of nonlinear equations of axisymmetric bending in the notation [10, p. 178] has the form

D
d(∇2w)

dr
− h

r

dΦ

dr

dw

dr
= Ψ,

d(∇2Φ)

dr
+

E

2r

( dw

dr

)2
= 0,

D =
Eh3

12(1 − ν2)
, σr =

dΦ

rdr
, σϕ =

d2Φ

dr2
, Ψ =

1

r

∫ r

0
qrdr.

(2.5)

Taking into account q from (2.4), the expression Ψ can be given the form

Ψ =
per

2
+

pmh

r

r∫

0

r∇2wdr =
per

2
+ pmh

dw

dr
. (2.6)

Further down, for the deflection function w, the conditions of hinged support of the plate along the
contour [10, p. 179]

w = 0,
d2w

dr2
+

ν

r

dw

dr
= 0 (r = c), (2.7)

and pinching

w = 0,
dw

dr
= 0 (r = c), (2.8)

will be used.
The boundary conditions for the stress function Φ in the absence of displacement of the plate contour

along the radius (u = 0) and free movement (σr = 0) respectively have the form:

d2Φ

dr2
− ν

r

dΦ

dr
= 0,

1

r

dΦ

dr
= 0 (r = c). (2.9)

The question is about the effect on the bending of the plate of the second term in (2.6), which appears
as a result of taking into account the difference in the areas of the lower and upper surfaces when
determining the transverse distributed force. To do this, we first consider a linear problem.

3. LINEAR BENDING
From (2.5), (2.6) we have the equation

d(∇2w)

dr
− pmh

D

dw

dr
=

per

2D
. (3.1)

a) In the case of pinching the contour, making an approximate solution satisfying the conditions
(2.8), in the form [10, p. 186]

w = f
(
1− r2

c2

)2
. (3.2)

and integrating (3.1) by the Bubnov–Galerkin method, we obtain the following expression for the relative
deflection amplitude

ξ =
f

h
=

3(1− ν2)q∗

16(1 + α)
, q∗ =

pe
E

( c

h

)4
, α =

3(1− ν2)pmc2

4Eh2
. (3.3)

Thus, the dimensionless parameter α determines the contribution of the second term in equation
(3.1). At E = 2× 106 bar (steel), ν = 0.3, c/h = 102, pm = 2bar, the parameter α = 0.0068. If for those
values of E, ν we take c/h = 103, pm = 20bar, then α = 6.8. In the first case, the average pressure does
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Fig. 2.

not play any role, the classical theory of bending of thin plates gives the correct result. In the second
case, the average pressure pm exerts greater bending resistance than the elastic modulus E (or rather,
the value pmc2 than Eh2). This is because the intrinsic flexural rigidity of the plate is proportional to h3,
and the influence of average pressure is proportional to h. At p1 = p2 = pm = 20bar, the plate bent under
its own weight γh is straightened, while the deflection decreases by almost seven times.

Fig. 2 shows the dependence of the average pressure on the ratio of the radius to the plate thickness
for the parameter α = 10−2 in (3.3), which means a one percent correction to the deflection amplitude.
If with these input parameters the display point falls into the region below the curve, then there is no
influence of the average pressure on the bend, above the curve this effect becomes noticeable.

At large and close pressures p1 and p2, when the average pressure pm is also large and the difference
p2 − p1 is small, the greatest influence of pm and parameter α on bending is realized (for the same values
of E, c, h). Their least influence takes place with one-way pressure. Let p1 = 0, pm = p2/2 and ignore
weight (γ = 0). We limit the value of p2 to the applicability of linear equation (3.1) and its solution (3.3).
Setting ξ ≤ 1 in (3.3), we obtain

p2
E

≤ 16(1 + α)

3(1− ν2)

( h

c

)4
. (3.4)

Taking into account (3.4) and pm = p2/2 from (3.3), we have the largest possible value of the
parameter

α =
2

(c/h)2 − 2
. (3.5)

Assuming here that α = 10−2, we find that for c/h ≤ 14 the display point in Fig. 2 is above the curve,
and for c/h > 14 it is below the curve (there is no influence of average pressure). This is explained by the
fact that with a decrease in the relative thickness, the bending stiffness and the permissible one-sided
pressure quickly fall. Moreover, the ratio pm/E is also small.

There is an apparent contradiction between the general parameter α according to (3.3) , which is
proportional to (c/h)2, and the parameter α according to (3.5), which is proportional when (c/h)2 � 2

to the value (h/c)2. In the first case, the average pressure pm can vary over a wide range with a constant
difference p2 − p1, in the second case p1 = 0, therefore pm is rigidly determined by the pressure p2, the
value of which is limited by the deflection not exceeding the plate thickness.

b) The conditions of hinged support (2.7) are satisfied with the deflection function [10, p. 191]

w = f
(
1− 2a

r2

c2
+ ab

r4

c4

)
, a =

3 + ν

5 + ν
, b =

1 + ν

3 + ν
. (3.6)
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Relative deflection equals to

ξ =
f

h
=

3q∗(1− ν2)

16ab(1 + α)
, α =

3(1− ν2)pmc2

4Eh2β
, β =

b(3− 2b)

6− 8b+ 3b2
. (3.7)

Thus, the parameter α in the case of articulation is equal to the value (3.3) for the case of a clamped
edge of the plate divided by the coefficient β, which depends only on ν. For ν = 0.3, the coefficient
β = 0.26. Therefore, by (3.7), the parameter α is almost four times larger than by (3.3) . The influence of
average pressure on the bend of a pivotally fixed plate is four times greater than in the case of pinching.
This is explained by the fact that, according to (2.4), the transverse force q also depends on the curvature
formed during bending. In the case of articulation, the sign of curvature does not change over the entire
area; therefore, the contribution of the last term of q to the solution is the largest. In the case of pinching
near the support and in the central part of the plate, the signs of curvature are different. According to
approximation (3.2), the inflection point is located at a radius r ≈ 0.58c.

The largest value of unilateral pressure p2, giving a relative deflection ξ = 1, is

p2
E

=
16(1 + α)

3(1− ν)(5 + ν)

( h

c

)4
, (3.8)

which at ν = 0.3 is four times less than according to (3.4). Instead of (3.5) we get

α =
2

(c/h)2(5 + ν)β/2(1 + ν)− 2
, (3.9)

where the factor at (c/h)2 is 0.53 (ν = 0.3).
These estimates show that in the case of hinging the plate, the average pressure pm has a greater

effect on bending than with a pinched edge. As indicated above, a positive average pressure pm reduces
the deflection. A negative value of pm (degassing) and, accordingly, a negative value of the parameter
α lead to an increase in the deflection at the same value of its own weight and the difference in excess
pressure p2 − p1.

As can be seen from (3.3) and (3.7), these solutions are valid only for α > −1. The value α = −1 can
be considered critical when the linear solution increases unboundedly. The corresponding critical values
of the mean overpressure according to (3.3) and (3.7) are

p∗m = − 4Eh2

3(1− ν2)c2
, p∗m = − 4Eh2β

3(1− ν2)c2
. (3.10)

It is of interest to find out if the real valuesof the input parameters E, h, c can give values p∗m >−p0 =
−1 bar. The first version of the numerical data adopted above (E = 2 · 106 bar, ν = 0.3,c/h = 102) leads
to large values of the critical average overpressure in both cases of fixing. They are devoid of physical
meaning. In the second variant of the numerical data (E = 2 · 106 bar, ν = 0.3, c/h = 103), from (3.10)
we obtain p∗m = −2.93 bar and p∗m = −0.76 bar, respectively. With the received data, the critical value of
the average pressure for the clamped plate is devoid of physical meaning, while for the case of articulation,
it seems quite acceptable. Naturally, the given linear solution is valid only for deflections smaller than the
plate thickness.

4. NON-LINEAR BENDING
We take the same approximating functions for deflection w as in the linear solution.
a) In the case of a clamped edge, substituting functions (3.2) in the second equation (2.5), we obtain

the following expression bounded at r = 0 [10, p. 187]

dΦ

dr
= − Ef2r3

c4

(
1− 2r2

3c2
+

r4

6c4

)
+

Cr

2
. (4.1)

In the case when the edge of the plate freely moves along the radius, C = Ef2/c2 follows from the
second condition (2.9). We substitute in the first equation (2.5) and in (2.6) the expressions

d(∇2w)

dr
=

32fr

c4
,

dw

dr
= −

( 4fr

c2

)(
1− r2

c2

)
.
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Table 1
GU (2.7) (2.8)

E bar α = 0 α �= 0 α = 0 α �= 0

2× 104 1.513 3.478 0.636 0.853

1.276 1.805 0.611 0.770

2× 105 0.308 0.348 0.082 0.085

0.301 0.337 0.082 0.085

2× 106 0.034 0.035 0.008 0.008

0.034 0.035 0.008 0.008

After integration by the Bubnov–Galerkin method, we obtain the equation

6

7
ξ3 +

16(1 + α)

3(1− ν2)
ξ = q∗, (4.2)

where q∗ and α are presented in (3.3) .
In a nonlinear solution, the influence of average pressure can be significant even in the case of one-

way pressure. Assuming, as before, ν = 0.3, γ = 0, p1 = 0, pm = p2/2, we represent (4.2) in the form

0.857ξ3 + 5.862(1 + α)ξ = q∗, q∗ =
p2
E

( c

h

)4
, α ≈ p2

3E

( c

h

)2
. (4.3)

The largest possible values of p2/E and α are determined, for example, from the condition ξ=4. Then
it follows from (4.3)

p2
E

≈
( h

c

)4
[54.8 + 23.4(1 + α)], α ≈ 26.07

(c/h)2 − 7.8
. (4.4)

According to (4.4), we conclude that with c/h ≥ 51 (α = 10−2 is assumed) there is no influence of
the average pressure on the bend, while, for example, with c/h = 4, there is a strong influence (α ≈ 3.2).
Moreover, according to the linear theory (3.5), α ≈ 0.14. Thus, in the case of nonlinear bending under
unilateral pressure, the influence of the average pressure is greater than in the case of linear bending.

Let us consider an example of a bend when, at the same pressure drop p2 − p1 (or q∗), the average
overpressure is pm = ±0.9 bar. Suppose that the values of E, c/h are such that q∗ = 2, α = ±1.2. If at
α = 1.2 the relative deflection ξ < 1 is realized, then the linear solution of (3.3) ξ = 0.155 is valid. For
α = −1.2, the deflection cannot be determined by (3.3); it is necessary to turn to the nonlinear solution
(4.3), from which we find ξ=1.570. Note, according to the classical theory of bending, ξ=0.341 (α=0).
As you can see, there is not only a quantitative difference between these solutions. When evacuating the
surface of the plate, when the coefficient α approaches (−1) or less, the deflection must be determined
on the basis of a nonlinear theory.

b) When hinged instead of (4.1) we have

dΦ

dr
= − Ef2a2r3

c4

(
1− 2br2

3c2
+

b2r4

6c4

)
+

Cr

2
. (4.5)

From the second condition (2.9) it follows that c = (Ef2a2/3c2)(6 − 4b+ b2). In the same way as
above, we obtain the equation for ξ, which for ν = 0.3 reduces to

0.377ξ3 + 1.437(1 + α)ξ = q∗, α = 2.6
pm
E

( c

h

)2
. (4.6)

In the case α = −1± ε (ε � 1), the solution of equations (4.3) and (4.6) in two approximations

ξ ≈ [1.17q∗ ∓ 7.18ε(q∗)1/3]1/3, ξ = [2.657q∗ ∓ 5.26ε(q∗)1/3]1/3. (4.7)

The table shows the values of the deflection in the center of the plate under the considered boundary
conditions (BC) for a number of Young’s modulus values taking into account (α �=0) and without taking
into account (α = 0) the effect of average pressure on linear and nonlinear bending (underlined data) of
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Fig. 3.

the plate. Close pressures p1 = 1bar, p2 = 1.00110 bar are given for the parameters: c/h= 100, ν = 0.3,
γ = 0. The table shows that in this problem, the influence of the average pressure on the deflection in the
center of a Plexiglas plate for a linear solution with pivoting reaches 56%, in the case of a clamped edge
— 25%, and in the nonlinear solution 29% and 21%, respectively. It should be noted that the influence
of the average pressure on the bending of plates made of both magnesium alloy and steel is not observed
during BC pinching, and when the edges of a magnesium alloy plate are hinged, it does not exceed 11%.

Fig. 3,a, b shows the dependences of the dimensionless load parameter q∗ and deflection in the center
of the plate for conditions (2.7) and (2.8), respectively. The solid line indicates the solutions taking into
account geometric nonlinearity for α = −0.3; 0; 0.3, and the dashed line indicates the linear solutions.
It can be seen that with a fixed value of q∗, with increasing α, the maximum deflection decreases, and
with a negative value of α it increases, while the deflection of the plate in the case of articulated support
is almost four times greater than when the edge of the plate is jammed for all the considered values of the
parameter α of the linear solution.

5. CONCLUSION
1. In the classical theory of bending of thin round plates, the ratio of the deflection arrow f to the

thickness h is determined by the dimensionless load parameter q∗ = (pe/E)(h/c)4 , which depends on
the ratio of the distributed transverse force pe = γh+ p2 − p1 to the elasticity modulus E of the material
and on the relative thickness h/c (γ is the specific weight, p1, p2 are excess pressures from the bottom
and top of the plate). Taking into account the difference between the areas of the convex and concave
surfaces of the plate, the average overpressure pm = (p1 + p2)/2, also leads to the dependence of f/h
on the dimensionless parameter α = (κpm/E)(c/h)2. Here, the number κ depends on the conditions of
plate fixation (for ν = 0.3 for pinching, κ = 0.68, articulation κ = 2.62).

2. At a constant value of q∗, an increase in the parameter α leads to a decrease in the deflection
(α = 0 corresponds to the classical theory). Excessive pressures can also have negative values, which
takes place during the degassing of plate surfaces (should be p0 + p1 > 0, p0 + p2 > 0, where p0 is
atmospheric pressure). Therefore, pm and α can also be negative, with α > −1 in the linear problem.
In a nonlinear problem, this restriction is removed. With a negative value of α, the deflection increases.
From the condition α = −1, the critical value of the mean overpressure p∗m is determined during the
degassing of the plate surfaces. Supercritical bending occurs at α<−1, however, pm should remain less
than atmospheric pressure p0.

3. The greatest influence of the average pressure pm on bending occurs when the large pressures p1
and p2 are equal, and the smallest — with one-sided pressure. In the latter case, the correction for the
value of the deflection due to the average pressure can be at small ratios c/h. This is explained by the
limitation of the admissible value of the difference p2 − p1 for a given plate.

4. There is a strong dependence of the deflection of the plate on the action of pressure on its edge. The
above results were obtained when only atmospheric pressure p0 was applied to the edge. If, for example,
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at p1 = p2 = pm, the average excess pressure pm acts on the edge, then its effect on bending disappears.
The absolute stability of the shape of the plate, curved under its own weight, is realized. In general,
further study of the effect of average overpressure on the bending of a round plate and its experimental
study is required.
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