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Abstract—A simplified technique for solving the problem of transversal deflection of micropolar plates
is developed within the framework of the micropolar theory of elasticity. The method is recommended
for engineering calculations of micropolar structures, allowing a stress–strain state to be simply calcu-
lated via embedding a single function that brings a system of equations to the more convenient form.
The task is successfully solved for a stress–strain state by the example of a long rectangular plate with
different boundary conditions. The deflection plots are given, both in the context of micropolarity and
in the framework of classical theory.
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The analytical tools for solving the problems of plate deflection are given by the accurate spatial
approaches developed by Nowacki [1, 2], as well as by the methods based on various hypotheses, e.g., pro-
posed by Kirchhoff [3, 4], Mindlin [5], Reissner [6], and Ambartsumyan [7]. The theory of the micropo-
lar shell was put forward by Zubov and Eremeev [8]. Finite strains of incompressible isotropic micropolar
materials were investigated in work [9], and the equilibrium state of nonlinearly elastic micropolar bodies
was within the scope of study [10].

The behavior of bending plates was analyzed via various finite-element approaches by Gevorkyan [11],
whose method is reduced to quadratic programming problems, enabling one to formulate the more
sophisticated boundary problems where the conditions of continuity of displacements and stresses under
different boundary conditions are satisfied. This technique was extended to deflection problems within
the framework of the theory of micropolar plates [12–14].

Another numerical method for solving the bending-plate problem based on the finite element
approach was shown in [15]. Propositions for optimizing the plate computation algorithms have been
made (e.g., in [16]).

The results, obtained in numerous experimental works, led to the breakthrough in the theory of bend-
ing of micropolar plates. Furthermore, state-of-the-art tools allow multifunctional problems to be solved
via high-accuracy experiments [17].

Unlike the classical isotropic theory of elasticity, the micropolar theory of elasticity has six indepen-
dent constants of the material. Their physical meaning, as well as the values, was specified empirically
[18–22]. It is also worth mentioning works [23, 24], aimed at experimental study of the mechanical char-
acteristics. Besides the experimental techniques, there are other ways to establish the parameters of the
process, which still remain unknown for some materials.

1. Task formulation. Consider an elastic micropolar plate with a constant thickness h. A coordinate sys-
tem has to be introduced so that the middle plane of the plate matches the coordinate plane xOy, and the
z axis is perpendicular to the median plane. The discrete structure is assumed to be a solid medium. Let
the power effects on the elementary area of the differential element be implemented by both the main
force and the main moment vectors [27]. The main vector of external forces is expressed through the stress
tensor components σij, and the main moment of external forces is presented by the moment stress tensor
components , where both tensors are asymmetric. Each point of the elementary particle
has the bulk forces and the bulk moments represented by vectors  and ,
respectively.
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Taking the moment stresses into account, the equilibrium equation and the law of small elastic defor-
mations can be written, as follows:

(1.1)

where  are the Levi-Civita tensor components, χij are the bending—torsion tensor components, δij is
the Kronecker symbol, λ and μ are the Lamé parameters, and  are the elastic micropolarity con-
stants.

Let the plane  be loaded by surface forces in the absence of external moment effects, then the
boundary conditions are as follows:

(1.2)

where  and  are the tangential and normal components of surface force vectors
applied to the planes , respectively.

The hypotheses that form the basis of the theory of plates are defined by Ambartsumyan [25–27], as
follows:

1) Displacement w and rotation , being normal to the median plane of the plate, are independent of
coordinate z.

2) Shear stresses σxz and σyz within a plate thickness vary in accordance with a specified law.

3) Force ( ) and moment ( ) stresses are negligibly small.
Assume the designations below:

(1.3)

where E is the elastic modulus, ν is the Poisson coefficient, and D is the stiffness of the bending plate at
zero moment stresses.

According to the above hypotheses, the transverse bending equations  of a micropolar
plate can be presented relatively the sought functions w(x, y) and  as

(1.4)

(1.5)

It assumes that  is the uniformly distributed load and, according to designations (1.3),  = A1 – A3.
We have the following relationships [25] for the internal forces and moments:

(1.6)
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for the moments due to the moment stresses:

(1.7)

for two rotation tensor components ω1 and ω2

(1.8)

All formulas (1.6)–(1.8) have to be completed by the relationships that obey the rule .
2. Solution. The equilibrium equations (1.4) and (1.5), characterizing the bending of a micropolar

plate, can be solved using the earlier proposed technique [12] introducing the function F:

(2.1)
Then, one has the identical satisfaction of Eqs. (1.5), and Eq. (1.4) results in:

(2.2)
Taking relationships (2.1) into account and based on Eqs. (1.6) and (1.7), the internal forces and

moments are defined as follows (in the relationships (2.3) below ):

(2.3)

Using relationships (1.8) and designations (1.3), the rotation tensor components ω1 and ω2 at z = 0 can
be found as:

(2.4)
Hence, the problem of transversal bending of a plate is reduced to the integration of the differential

equation (2.2) with the corresponding boundary conditions. Knowing the solution of this equation, the
bending moments  and torques , as well as the transversal
forces  can be calculated from relationships (2.3).

Introducing the designations below:

and accounting for relationships (2.3), one finds:

(2.5)

(2.6)
with the following designations of coefficients with elastic constants of the plate material:

(2.7)

Substituting the transversal forces and moments in the expressions of shear force components

(2.8)
one obtains the transversal forces and torques:

(2.9)
Consider a long rectangular plate that is exposed to the distributed load (Z2 = q). The plate is assumed

to be uniformly fastened at the long sides, whereas the short sizes are fixed arbitrarily (Fig. 1). Placing the
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Fig. 1.
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origin on the long side far from the short sides of the plate and directing the y axis along the long side,
it implies that sought values for the bending plate ( ) depend only on the -coordinate. Then,
Eqs. (2.2) yield:

(2.10)

where  are the integral constants.
Consider some types of boundary conditions, introducing the designations below:

The plate edges are firmly clamped. When the plate edges are firmly clamped, deflections and the cor-
responding rotation angles around the contour lines of edges are equal to zero, giving the following bound-
ary conditions:

Finding the integrations constants results in:

(2.11)
The plate edges are pivotally supported. In this case, deflections and bending moments along these edges

are zero, allowing the boundary conditions to be written as

Hence, finding the integration constants yields:

(2.12)
Pure bend of plates. In this case, the long sides of a pivotally supported plate are loaded by uniformly

distributed moments with intensity M (Fig. 2). Thus, the boundary conditions can be written as
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Fig. 3.
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Hence, we obtain:

(2.13)

The classical theory is associated with expressions (2.11)–(2.13) at  and .

3. Discussion of results. We consider graphs of the displacement functions w(x) in the micropolar and
classical theories of plate bending. We consider various materials whose micropolar parameters are
described by Lakes [20, 22]. The micropolar constants can be found as follows:

(3.1)

where lb is the characteristic torsional width, lt is the characteristic length for bending, N is the moment
number, and Ψ is the polar coefficient. All these parameters are evaluated experimentally, and their values
are listed in Table 1 with the numbers of the corresponding curves in Fig. 3.

Figure 3 illustrates the displacement w as a function of the x-coordinate in accordance with the micro-
polar (solid curves) and classical (dashed curves) theories of the bending of plates with the parameters
below:

( ) ( )= − + + − + −�

� � �

3 2 3
12 2 ( 2) 12 .w x a qx Mx qa Ma x A qx a x

= =�

1 70, 0A D ( )=� 24q q D

( ) ( )β + γ − Ψγα = β = μ − γ = μ ε =
Ψ−

2
2 2 2

2 2

1
, 2 ( 2 ), 4 , ,

2 (1 )
t b b

b

N l l l
l N

−= = = = − × 60.1m, 1m, 0.1MPa/m, 0.25 10 MPa/m.h а q M
MECHANICS OF SOLIDS  Vol. 54  No. 2  2019

Table 1

Number 
of curve Material E, MPa µ, MPa ν α, MPa β × 105, 

MN
γ × 105, 

MN
ε × 105, 

MN

1 Polyurethane 300 104 0.40 –8.66 3.00 4.00 –2.00
2 Poly (methacryl-

amide) foam 637 285 0.12 –23.75 –30.00 60.00 –10.00

3 Artificial foam 2758 1033 0.34 –229.55 0.45 0.42 –0.29
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The left-hand part of Fig. 3 refers to a case of clamped edges and the right-hand part is associated with
a pivotally supported plate, where curves, attributed to pure bending, are shown with a light-point marker.
Due to the symmetry of curves relative to the axis x = 0.5, Fig. 3 is limited by only a range of .

4. Conclusions. The above-proposed approach for studying the bending of plates greatly simplifies the
solution. In these problems, the results are found to be consistent with those reported in the literature [27].
The practical divergence of deflections in the classical and micropolar theories of the bending of plates,
given in Fig. 3, are likely due to the influence of moment stresses on the displacement function. The solu-
tion algorithm, developed in the present work, is suitable for the design of programming tools.
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