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Abstract—In this paper, we studied the effect of internal dissipation on the rotational motion of a sat-
ellite in a central gravitational field using the Lavrent’ev model. Evolution equations are derived, and
the results of an evolution analysis of the rotational motion of a dynamically symmetric satellite mov-
ing in a Keplerian circular orbit depending on the parameter values and initial conditions are pre-
sented.
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In the past, the effect of internal dissipative forces on the rotational motion of a satellite was considered
in many studies. One of three satellite models was mostly used to simulate internal dissipation: (1) a solid
body with a cavity filled with a viscous fluid [1—3], (2) a solid body with a spherical damper (Lavrent’ev
model) [4—6], and (3) a viscoelastic body [7, 8]. For a dynamically symmetric satellite in a circular orbit,
the evolution of rotational motion was earlier studied in terms of model 1 for the case of a highly viscous
fluid and large values of the reduced angular velocity of the satellite [3]. Below, the evolution of satellite
rotations is studied using the Lavrent’ev model and in a much wider range of parameters and satellite
angular velocities compared with the previous study [3].

1. STABILITY ANALYSIS OF STATIONARY ROTATIONS
OF A SATELLITE CLOSE TO SPHERICALLY SYMMETRIC

The rotational motion of a satellite with a spherical damper in the central gravitational field in a circu-
lar orbit can be described by a system of equations [6]

J-TE)U+UxJU=3rxJr+ul(V-1),
V+UxV=—u(V-0), (1.1)

2A=A0U.

Here, J is the central inertia tensor of the entire satellite, /is the moment of inertia of the damper rel-
ative to its central axis, E is the unit matrix, r = R/ R is the unit vector codirected with the radius-vector
of the satellite mass center, U = m/ W,, V= 9/ , , where o is the absolute angular velocity of the shell,
is the absolute angular velocity of the damper, , is the angular velocity of the orbital basis directed along
the normal n to the orbit plane, [ is the dimensionless damping coefficient, and A is the quaternion of the
unit norm that specifies the position of the shield-related basis of the main axes e, e,, e; of satellite inertia
relative to the Konig basis iy, 1,,i;. The dot denotes the derivative with respect to dimensionless time T =
oyt. In Egs. (1.1), all vectors are defined by their components in the basis e, e,, e;.
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180 AMEL’KIN, KHOLOSHCHAK
For a dynamically symmetric satellite, the motion relative to the orbital basis formed by the vectorsr,
T = n Xr, and n is described by the following autonomous system of equations [6]:
ée=uxe,
A-Dmmxu+a)+(C—-A)[(nxu+1u)-e)e+((n+u)-e)(n+u)Xe]
=pul(v—u)+3(C—-A)(r-e)(rxe),
nxXv+v=—-uWv-u).

(1.2)

Here,u = (o — (1)0)/ o, andv = (€2 — (1)0)/ , are the reduced angular velocity of the carrier body (shell)
and the reduced angular velocity of the damper relative to the orbital basis, e is the satellite symmetry axis,
C and A are the axial and equatorial satellite moments of inertia.

The limiting movements of a satellite were shown to be only equilibrium positions with respect to the
orbital basis and stationary rotations around the symmetry axis aligned with the normal to the orbital
plane (cylindrical regular precessions) [6]:

e*=n, vi=u*=un, wue (—oo,+o). (L.3)
The problem of the motion stability (1.3) is reduced to the study of the stability of the characteristic
polynomial of the system obtained by linearizing Egs. (1.2) in the vicinity of solutions (1.3). This polyno-
mial has the following form [6]:
P = a A’ +aX’ + o\t + @l + a ) + ash + ag (1.4)
and its coefficients are determined by the expressions:

a =1, a=2m a=[2+k+m’]+3g
ay = 2m[ 1 + k*]+ e[6m + ny(2Bk +1) - 3)1,
a, = [+ (m + 1)1+ kD] + €[ 3(m” + 1) = 3k + uym(Bk — 3)] + B (Uy)’, (1.5)
as =2mk> + e{—6mk + Wy2B(k + 1) + 32k + 1)1},
ag = (m” + 1)k —€[3(m” + D)= pym(2B + 3)lk + €'ny[B’wy — 3p0m — )],

where the following notation is used:
a=C-DA-1), y=I1/(A-1), B=u+],

(1.6)
m=ul+7y), k=1-Bl+e), e=a-1 eel[-LI].

Here, o € [0,2] is the “flattening” factor of the auxiliary body formed by the shell and a point mass
equal to the damper mass and located at its center, ¥ € [0, <) is the ratio of the damper inertia moment to
the equatorial inertia moment of the auxiliary body, and B is the ratio of the absolute angular velocity of
the satellite stationary rotation to the angular velocity of the orbital basis.

Note that the flattening factor of the entire satellite is determined by the following expression:

OC*ZC/AZ(OC+’Y)/(1+’Y). (1.7)
If oo > 1, then a* > 1 (oblate satellite) while o* < o.. If o0 < 1, then o* < 1 (prolate satellite) while ot* > a.

An analytical study of the stability conditions of the polynomial (1.4) was earlier performed for the val-
ues of L <« 1 and u > 1 [6]. For the remaining values of the |l parameter, the roots of the polynomial (1.4)
at y-values comparable with unity were numerically analyzed.

In this section, we perform an analytical study of the stability conditions of stationary rotations (1.3)
for an oblate satellite close to spherically symmetric in the entire range of |l and y parameter values:

e>0, exl. (1.8)

According to the Routh—Hurwitz criterion in the Liénard—Chipart form, the stability conditions are
described by a system of inequalities:

a >0, k=1...,6, A;>0, A;>0, (1.9)

where A; and A are the Hurwitz matrix minors of the third and fifth order. As follows from formulas (1.5)
and (1.6), the coefficients g, , a, ,a; ,a, will be positive at sufficiently small e-values for any values of m > 0
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Fig. 1.

and PB. Taking into account relations (1.6), the coefficient as is written as a second-degree polynomial with
respect to k as follows:

as =20 +y+e)k’ —6e(l+e)k +ey(5+3)]/(1+¢). (1.10)

At k= 0and ¢ > 0, we have a; > 0 while the polynomial, as it is easy to see, has no real roots at suffi-
ciently small e-values. Therefore, a; > 0 ate <« 1.

The coefficient ag is also expressed by a second-degree polynomial relative to k. Leaving only the prin-
cipal terms in the coefficients of this polynomial, we obtain the following:

ag = (m° + ) k> —e(3 = 2m> + 5um)k + € (m — p)[(m — 4)]. (1.11)
The discriminant of the polynomial is written as follows:
D =301+ pwm) +4uy)][3(1 + pm) —4uy].
If the condition
3A+um)—4uy>0 (1.12)

is satisfied, then the polynomial has two real roots:
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that intersect at a point (0, 1). In the range of B, < B < 3,, we have g, < 0, i.e., stationary rotations are
unstable. At < 3, and B > [3,, the coefficient g, > 0. Curves 3,(€) and 3,(¢) limit the instability region G,
in the plane of parameters o and 3, as shown in Fig. 1 on the left.

If inequality (1.12) has the opposite sign, which occurs at simultaneous fulfillment of the conditions

4 31+ )
n<d oy 20EH) (1.13)
3 (4 —3wu

then gz > 0 at € < 1. In this case, the instability region G, “detaches” from the axis € = 0 and has the form
shown in Fig. 1 on the right.
The minor A; is determined by the following expression:

As =2uym[3+ 20— k)’ 1[A+ k)’ + m’e + O”) (1.14)

and takes positive valuesat Ly > 0 and € <« 1.
The minor As is written as follows:

As = 18I0V 3+ 2(1 — k)’ 1[(L + k) + m’|(m” + 2+ 2k)(1 + k)’ + O™). (L.15)
At e < 1, it takes positive values if B < 2 or B > (m’ + 4)/ 2. In the range of

2<B<(m’ +4)/2=p, (1.16)
stationary rotations are unstable. The points (1, 2) and (1, B*) belong to the curve limiting the instability
region G, in the plane of the parameters o and  (Fig. 1).

Thus, for an oblate dynamically symmetric satellite close to spherically symmetric, the stability condi-
tions for stationary rotations are determined by the value of a single parameter m = [L(y+ 1). The only
exception is a narrow range of rotations at an angular velocity close to the angular velocity of the orbital
basis, for which the nature of stability is determined by the specific combinations of the two parameters L
and 7.

Figure 1 presents a system of diagrams of asymptotic stability (not shaded) and instability (shaded)
domains obtained by a numerical study of the characteristic equation roots in the interval of 1< o0 < 2 on
the plane of parameters oo and 3 at m = 2 and m = 3, where two different combinations of parameters [
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and 7y correspond to each of the indicated m-values. These diagrams, as well as the results of other calcu-
lations [6], completely confirm the above conclusions about the nature of the stability of stationary rota-
tions of a satellite close to spherically symmetric. The linear dimensions of the region G, are proportional

to m? while the dimension of the region G, along the o axis weakly depends on the specific combination
of parameters U and v, as follows from the diagrams. It was also established that there is a value of y* at
u< 4/ 3 (1.13) such that the instability region G, completely disappears in the interval of 1< o < 2 at y> y*.

2. EVOLUTION EQUATIONS

In an analytical study of the evolution of the rotational motion of a dynamically symmetric satellite,
the motion equations are written in projections on the axes of the Resal base e, €5, e, (e; is the satellite
symmetry axis) specified by angles y and 0 (Fig. 2). Denoting a vector of the relative angular velocity of
the damper as W = V — U, we obtain the following equations:

J-TEU+ux - TEU=3rxJr+ulW,

. . 2.1)
U+W+u'xX(U+W)=-—uW,

where u' = @' / , is the reduced angular velocity of the Resal basis while all the vectors are specified by
their components in the Resal basis. Accounting for the equality

u' = e} + (e, sin 0 + e; cos 0) = U — de;, (2.2)

where ¢ is the eigen-rotation angle, we obtain the following:
0=U, ysin®@=U,, ¢=U,—U,oth, (2.3)
u' =Ue +U,e, + UxotBe;. (2.4

The gravitational moment acting on the satellite is determined by the expression:
m, =3rxJr= %(C — A)sin g[e; sin 2(T — ) + e, cos B(cos 2(T — y) — 1)]. (2.5)

Projecting equations (2.1) on the axes of the Resal basis, we obtain with allowance for relations (2.3),
(2.4), and (1.6) the following closed system of eight equations:

U, = —(1+&)UU, + U;cot® + nyW, + Flcos2(t— ) — 1],
U, = (1+e)UU, — U,Ucot® + uyW, + F,sin 2(t — y),
W, = eUUs + U,Wycot — U, Wy — (1l + Y)W, — Flcos 2T — ) — 1],

Wy = —eUU, + UW; — UWicot — w(1 + ) W5 — Fsin 2T — ), (2.6)

W,y = U, — U, - M Dy
1+¢
W .
:—MY 3’ e:U], l|ISln9=U2,
l+¢

Functions F| and F, are determined by the following formulas:

U

- 3£si4n 20 .nd g odesin®_ A (2.7)

2 cosO

We will further consider the oblate satellite (o > 1) close to spherically symmetric, i.e., we will assume
that € < 1 (small parameter). An analysis of equations (2.6) and the results of numerical integration of
equations (1.1) showed that, at various initial values of the angular velocity of the shell and damper, a rel-
atively fast transient process (rapid evolution) is observed at m = Wl + ) = Je , at the end of which the
movement is set close to the rotation of the satellite as a single solid body around the symmetry axis codi-
rected with the initial value of the satellite kinetic moment vector. Then, there is a slow evolution due to
the action of the gravitational and dissipative moments. In this case, the variables U, , W, , and 0 in the slow
evolution mode, on average, change slowly and have harmonic components with the frequency close to
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the value of two while the average values of the variables U, U,, W}, W,,W; and their harmonic components
are limited by functions of €.

In the evolution problem of satellite rotational motion, the main focus of interest is on the behavior of
the satellite rotation axis and the magnitude of the angular velocity. Assuming that the oblate satellite
movement in the slow evolution mode is close to its rotation around the symmetry axis, the evolution

analysis is reduced to the study of the behavior of phase variables U,,0, and y.

The presence of a small parameter in Egs. (2.6) provides a reason to apply the averaging method in
order to obtain evolutionary equations. However, the “classical” scheme of the averaging method [9, 10]
for system (2.6) cannot be directly used since reducing the system (2.6) to the standard form is problem-
atic. Below, the variant of the averaging method is applied for the problem under consideration without
reducing the system (2.6) to the standard form.

Let us introduce the following notation for phase variables:

X XT = (xlax25x35x4sx5sx6ax79x8) = (UI’UZJ/VI’W/b U39W/3’69W)- (28)
We rewrite system (2.6) as follows:
x = X(x,7) = L(x) + G(x) + X(x, 1), (2.9)

where L(x) are the linear terms in the variables U,,U,, W|,W,, W5, X(x, T) is the explicitly time dependent
term (in the considered problem, it is a harmonic function of time), and G(x) are the remaining terms in
the right-hand side of system (2.6).

The solution will be sought in the following form:
x =y +S(y,v), (2.10)

where the components of the function S(y, t) are selected from the following conditions: if X ; =0, then
§;=0, and if X « = 0, then S, satisfies the equation

25,
0T

and when taken into account, we obtain the following equations after substituting expression (2.10) into
system (2.6):

=L(S)+ X.(y,7), (2.11)

A Y 5 >
Vi —;‘,y =L(y)+ G (Y +S)+ X, (y+51) - X (y,D; k=1234,
dy (2.12)

Let us find the components of the function S(y, t). We have
S5256:S7:S8:0:>y5:U3, y():I/V3: y7:e, ygz\.l! (213)
The remaining components are determined from the following system (hereinafter, U= U; and m =
wl +v)):

? = (1 +£)US, + LYS; + F cos2(T — ),
T

% =(1+eUS, +uyS, + FHsin2(t—v),
T

% = eUS, —m S — F,cos AT — ),
T
95,

ot

(2.14)

= —eUS, —mS, — F,sin 2(t — y).

The solution of this system is expressed through time harmonic functions:

S, = pesin2(t—y) + g, cos2(t—vy); k=1234. (2.15)
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The coefficients are determined with accuracy up to O(g?) by the following formulas:

p=@+umfy, g =2UY P =207 15,

2F. + UF;
=—(4 : = I J 2.16
9> ( +Mm).f217 -f;/ (4 + m2)(4 —U2), ( )

2R _-mhk -mF,  _ 2R,

) q3_ ) p4 B q4 .
4+m’ 4+m’ 4+m’ 4+m

The function S depends on the variables y, 6, and U only. Therefore, equations (2.12) take the follow-
ing form:

P =

. ask ISy, +S, 9S8, uy
= — Wi+ L(y)+G(y +S k=1,2,3,4,
Vi (J’1 S) - a\lf sin 6 U (+¢) 3 (YY) (Y );
: 1+v+
Wy = (0 + SO + 5 = 01+ S) +S4>—“(TY8£>W3, @.17)
U=Tw, b=y+s, y=22%
1+¢ sin ©

A detailed analysis of the resulting system showed that variables y, and y; are the bounded functions of

€ and variables y,, y,, and W; are the bounded functions of €2 in the slow evolution mode. In this case, for
the first five equations, the average values of the right-hand sides calculated by virtue of the motion equa-
tions coincide with the accuracy of O(€?®) with the averages over the explicitly incoming time. Considering
this, as well as the formulas derived from expressions (2.15) (the time average is indicated by angle brack-
ets, and the prime is the derivatives with respect to the variable 6)

<aisl> S PPEGG L oY and (2565, = pgy — g + OE), (2.18)
00 2 oy

we obtain the following equations for the average values ¥, y,, 7;, ¥,, W, of the variables y,, y,, y3, v,, Wi:
Y=+ U +uyF - FE+0E), ¥ =eUy-my+F+0e),

¥, =U 3 + 1YY, —cot®(pp + 4:q1)/2 — (ppy + 615511)/ 2 (2.19)

V4 =—my, —cotd (2y,y; + p,ps + %%)/2 (Papy + Q401)/2 (P44 — q2p4)/sm9
Wy = —mW, + 5,7 + (Daps + 0o — Pibs — 41) 2.
In the last three equations of system (2.19), the right-hand sides are written with an accuracy of O(&%).

Let us find the values of variables y,, y,, 3, Vs, 1/173 in the slow evolution mode from Egs. (2.19) by setting
the time derivatives of these variables to be zero. Accounting for relations (2.7), (2.15), and (2.16), the
average values of the variables y, and y, are determined with an accuracy of O(¢?) from the first two equa-
tions of the system by the following formulas:

Y, = —F +0(e’) and V= L +0(e). (2.20)
d+y+e)U uwd+y+e

The average values of the variables y, and y, are found from the third and fourth equations of system
(2.19). Based on formulas (2.16) and (2.20), we obtain with accuracy of up to O(g®) the following:

P+ aa =0, pp+aq =0, ¥y =—uf / (m’U),  pops+aogs = W 1o,

b+ qugy = W fiuFeot®,  pipy+aqy = W fF, Py — @ps = WS
Accounting for relations (2.21) and (2.7), the average value of the variable y, is expressed as follows:

(2.21)

M7F22 (U(cosze—l)cose—2(2+UcosG)_200536

) O(€’ 2.22
21+ y)U sin 6 4+ m)) @ —-U?) e ]+ (€), (2.22)
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and it is the bounded function of €2. The expression for y, is unnecessary below and so we do not write it
out. We only note that it is also a bounded function of €2.

The value of W, is determined from the fifth equation of system (2.19). Given the formulas (2.20),
(2.21), (2.22) and (2.7), we obtain the following:

W, = Fz2 ua +cos29)+4cos9_ 2¢co0s’ 0
P+l @+mhHE-ud m' U
From the eighth equation of the system (2.17) and taking into account relations (2.20), the average
value of the satellite precession rate is determined with accuracy of to O(€?) using the following equation:
o _ Y kK ___3ecos® _3(A-C)cosH
sin© (0 +7Usind 2(o+ U 2CU
that completely coincides with the expression for the precession rate of a satellite modeled as a single
solid [11].
From the sixth and seventh equations of the system (2.17), the average values of the time derivatives of
the nutation angle and the satellite angular velocity are determined by the formulas:
0=3+S and U=pyW;/1+e).

It can be shown (the corresponding calculations are not given due to their bulkiness) that the averaged-
over-period value of the function S, calculated based on the motion equations is expressed by terms of the

J+ o). (2.23)

(2.24)

third order with respect to €, i.e., S, = 0(83). Therefore, taking into account relations (2.22) and (2.23),
we obtain, with accuracy of up to 0(83), the following expressions for average values of © and U :

_ HYFzz (U(cos2 0-3)cos6—-4 2cos’ SJ

21+ yUsinb\ @4+ m)@-UD) mU )
U= uyF (U(l +cos’ 0) +4cosH _2cos’ GJ
20+ P\ @ +mHE-U? mU )

The equations form a closed system of evolutionary equations of the satellite’s rotational motion with
respect to the variables 0 and U. As follows from these equations, the evolution rate over variables 6 and U
is proportional to €2 while the satellite precession rate (2.24) is proportional to €.

(2.25)

As follows from the second equation (2.25), the derivative U changes its sign at the points U = 2 and
points that satisfy the following equation:

UP[2 + M)cos” 0+ M|+ 4MU cosB —8cos’0=0, M =m’/(4+m’). (2.26)
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Fig. 5.

Figure 3 on the left shows the curve I' defined by this equation and the regions of positive and negative
values of the derivative ' = U in the plane of variables U, and U,, where U, = Usin® and U, = U cos©

are the angular velocity projections on the orbit plane and on the normal to the orbit plane. At U > 2, as
well as inside the circle U < 2, the satellite angular velocity decreases in two regions limited by a curve I
while it increases in the rest of the region. The value of U* is determined by the following formula:

= 2 4 + m?

1+ M 24w

(2.27)

Figure 3 on the right shows the regions of positive and negative values of the derivative W = 6 deter-
mined using the first equation (2.25). Here,

Br=_2 -4+tm (2.28)

MECHANICS OF SOLIDS  Vol.54 No.2 2019
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The evolution Egs. (2.25) have the same stationary solutions 6 = 0,7t and U = § = const as the exact
equations (1.2). The conditions of stability/instability of these solutions for the evolutionary equations are
determined by the sign of the derivative 6 in the vicinity of “direct” (8 = 0) and “inverse” (6 = ) station-
ary rotations. Based on results of the analysis of this derivative shown in Fig. 3, direct stationary rotations
(U, =0and U, > 0) are asymptotically stable in the ranges of U € (0,2) and U € (* o) and unstable in
the range of U € (2,3*). Excepting, perhaps, points U = 2, all inverse stationary rotations (U, = 0 and
U, < 0) are asymptotically stable. These conclusions completely coincide with the results of the stability
analysis of stationary rotations of a satellite close to spherically symmetric obtained in Section 1.

The time can be eliminated from Egs. (2.25), and a single equation can be obtained:

o _ Uzcose[(2+M)cos29—3M]—4MU—SCos39
dU U2+ M)cos’ 0+ M]+4MU cos8 — 8cos’ O)U sin 0

that describes the evolution trajectories of the satellite’s rotational motion in variables U and 0.

Below are the results of the analysis of the phase trajectories of the satellite rotational motion evolution
in terms of variables U, U, for various values of the parameter m and various initial conditions. The left
parts of Figs. 4 and 5 show the phase trajectories obtained using the evolution Eq. (2.29) while the right
parts show the trajectories obtained by numerical integration of the exact Egs. (1.1) for a dynamically sym-
metric satellite at a parameter value of a = 1.1. The arrows indicate the evolution direction. Dashed lines
are separatrices separating trajectories that fall on a circle U = 2 from other trajectories. The upper sepa-

ratrix starts at the point U, = 0,U_, = B*, where the value of B* is determined by formula (2.28), while the
lower separatrix starts at the point U, =0, U, = -2.

The presented phase portraits show the complete coincidence of the satellite evolution trajectories
obtained using evolution Eq. (2.29), on the one hand, and exact Egs. (1.1), on the other hand.

As can be seen in the figures, there is a region of initial conditions bounded by separatrices (denoted as
G,), for which any trajectory eventually falls on a circle U= 2. Moreover, for the majority of such trajec-
tories, the further (final) evolution stage is counterclockwise rotation along the arc of a circle U= 2, i.e.,
2 : 1-resonance rotation (the satellite angular velocity is twice the angular velocity of the orbital basis), at
which the satellite angular velocity remains constant while the rotation axis is turned in the normal direc-
tion to the orbit plane. At the end of such motions, a stationary rotation around the normal to the orbit
plane is established at an angular velocity equal to twice the angular velocity of the orbital basis.

At small m-values compared with unity (Fig. 4), the separatrix asymptotes are located at a small angle
to the axis U,, and the region G, occupies a relatively small part of the half-plane of possible initial condi-
tions. Therefore, only for a small fraction of the initial conditions, the 2 : 1-resonance mode is realized at
the final stage. For the remaining initial conditions, phase trajectories are close to horizontal straight lines
(U, decreases much more slowly than U,).

(2.29)

For m-values comparable to unity (Fig. 5), the dimensions of the region G, are comparable to the
dimensions of the regions of the remaining initial conditions, and the fraction of the phase trajectories,
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the final stage of which is the 2 : 1-resonant mode, is comparable to the fraction of all other phase trajec-
tories.

At m > 1 (Fig. 6), the final stage will be a 2 : 1-resonant mode for the vast majority of initial conditions
from the region U > 2.

Phase trajectories starting above the upper separatrix are characterized by a monotonic decrease of the
angle 6 to zero, while phase trajectories below the lower separatrix are characterized by a monotonic
increase of the angle 6 to 7. This behavior of the phase trajectories confirms earlier conclusions about the
nature of the stability of the corresponding direct and inverse stationary rotations of the satellite.

The angle 8 changes nonmonotonically on phase trajectories from a region G,. In this case, a part of

the phase trajectories starting in the upper half-plane (U,(0) > 0) intersect the axis U, = 0, but they all end
with the arc of a circle U=2 (2 : 1-resonant mode). Thus, the final results of the evolutionary process with
initial phase trajectories from the upper half-plane of the region G, are direct stationary rotations at an
angular velocity equal to twice the angular velocity of the orbital basis. The majority of the phase trajec-
tories from the lower half-plane of the region G, have the same end. Only trajectories close to the lower
separatrix are not captured in the 2 : 1-resonant mode. These phase trajectories penetrate the resonant
circle U= 2 and end with reverse stationary rotations at an angular velocity of U < 2.

Note that the region G, includes a part of the circle U < 2. The satellite angular velocity increases on
phase trajectories from this part of the circle.
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