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Abstract—A quaternion method for the regularization of differential equations of the perturbed
spatial restricted three-body problem is developed. It is closely related, from the methodological
point of view, to the quaternion method for the regularization of the differential equations of the
perturbed spatial three-body problem in Kustaanheimo–Stiefel variables that was earlier proposed
by the author of this article.
Various local and global regular quaternion differential equations of the perturbed spatial restricted
three-body problem (both circular and non-circular problem) i.e. equations that are regular in the
vicinity of the first or second body of finite mass and equations that are regular at the same time
both in the neighborhood of the first and second body of finite mass are obtained. The equations
are systems of nonlinear nonstationary differential equations of the tenth or eleventh or nineteenth
order with respect to the Kustaanheimo–Stiefel variables, their first derivatives, Kepler or total
energies, or variables that are Jacobi integration constants in the case of the unperturbed spatial
circular restricted three-body problem, as well as with respect to time and auxiliary time variable. The
equations obtained allow one to construct different regular algorithms for integrating the differential
equations of the perturbed spatial restricted three-body problem.
This study is an extension of [1, 2].
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1. THE INITIAL DIFFERENTIAL EQUATIONS OF THE PERTURBED SPATIAL
RESTRICTED THREE-BODY PROBLEM. STATEMENT OF THE REGULARIZATION

PROBLEM

Consider three material points M0, M1, and M2 with the masses m0, m1, and m2, respectively. They
mutually attract each other according to the Newton’s law of universal gravitation. The unrestricted
three-body problem consists [3] in defining and studying all possible motions of material points
M0, M1, M2. The restricted three-body problem is the problem [3] of the motion of a material point
M2=M with zero mass m2=0 (more precisely, with a mass m2=m which is negligibly small compared
to the masses m0 and m1). According to the Newton’s law, this point is attracted by two other material
points M0, M1 having nonzero masses m0 and m1.

The restricted three-body problem is [3] the limiting form of the unrestricted three-body problem. It
has found wide application both in classical celestial mechanics (for example, the theory of the motion of
the moon) and in the mechanics of space flight (for example, the problem of reaching the moon).

We introduce vectors r0 =
−−−→
M0M , r1 =

−−−→
M1M , r01 =

−−−→
M0M1, r10 =

−−−→
M1M0 = −r01. The projections

of the vectors r0 and r1 on the axis of the inertial coordinate system Oξηζ are respectively equal to
ξ2 − ξ0, η2 − η0, ζ2 − ζ0 and ξ2 − ξ1, η2 − η1, ζ2 − ζ1, where ξ0, η0, ζ0; ξ1, η1, ζ1 and ξ2, η2, ζ2 are the
Cartesian coordinates of material points M0, M1, and M2 = M in the inertial coordinate system Oξηζ .
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634 CHELNOKOV

Using the introduced vectors r0 and r1 as the vector variables, we write the vector differential
equations of the perturbed spatial restricted three-body problem in the following form [2]:

d2r0
dt2

= − fm0

r30
r0 −

fm1

r31
r1 −

fm1

r301
r01 + p, (1.1)

d2r1
dt2

= − fm0

r30
r0 −

fm1

r31
r1 −

fm0

r301
r10 + p, (1.2)

r01 = r0 − r1, r10 = r1 − r0 = −r01, r0 =| r0 |, r1 =| r1 |, r01 =| r01 |=| r10 | .

Here r01, r0, r1 are the mutual distances between the points M0 and M1, M0 and M , M1 and M ,
respectively; f is the gravitational constant, p is the vector of perturbing acceleration of a material
point M from the other forces acting on a pointM that are not caused by forces of gravitational attraction
acting from the points M0 and M1.

The differential equation (1.1) describes the movement of a point M in the coordinate system
M0X0Y0Z0 having an origin at a point M0 and the coordinate axes M0X0, M0Y0, M0Z0 parallel to
the axes of the same name of the inertial coordinate system Oξηζ , and the differential equation (1.2)
defines the movement of this point in the coordinate system M1X1Y1Z1 having an origin at a point M1

and coordinate axes M1X1, M1Y1, M1Z1 that are also parallel to the same inertial axes Oξ,Oη,Oζ .
Differential equation (1.1) can be considered independently of the differential equation (1.2), if we use

the relation r1 = r0 − r01 and take into account that the vector r01 satisfies the differential equation

d2r01
dt2

= −
[ f(m0 +m1)

r301

]
r01 (1.3)

of the unperturbed two-body problem (M0 and M1) that, as is known, is integrable. Therefore, we can
assume that the vector r01 appearing in equation (1.1) is a known function of time: r01=r01(t). Similarly,
the differential equation (1.2) can be considered independently of the differential equation (1.1), if we use
the relation r0 = r1 − r10 and take into account that the vector r10 = −r01 is a known function of time.

Equations (1.1) and (1.2) can also be considered as a system of two differential equations with
unknown vector variables r0 and r1.

Note that the equation (1.1) in coordinate form coincides (for p = 0) with the equations of the
restricted three-body problem (6.1) [4].

The vector equations (1.1) and (1.2) of the perturbed spatial restricted three-body problem contain
singular points r0 = 0, r1 = 0, at which these equations degenerate. The problem of eliminating these
singularities (both the separate exclusion of one of these singularities , and the simultaneous exclusion
of both singularitie ) is the subject of the regularization of the differential equations of the perturbed
spatial restricted three-body problem. Note that the simultaneous fulfillment of the conditions r0 = 0,
r1 = 0 is impossible in the most problems of celestial mechanics and astrodynamics. Nevertheless,
it is of both theoretical and practical interest (from the point of view of constructing effective high-
precision algorithms for the numerical integration of differential equations of the three-body problem.
These algorithms are necessary for a high-precision prediction of the motion of celestial and cosmic
bodies) to obtain such regular equations that do not degenerate under simultaneous fulfilling these
conditions.

In this article, we develop a quaternion method for the regularization of differential equations for a
perturbed spatial restricted three-body problem that is closely related from the methodological point of
view to the quaternion method for regularizing differential equations for a perturbed spatial restricted
three-body problem proposed by the author of this study in [5, 6] (see also [7–11] ). In the first part of the
study [2], the following points were considered: the original Newton equations of the perturbed spatial
restricted three-body problem and the formulation of the problem for regularization of these equations;
the energy relations and differential equations describing the change in the energies of the system in the
perturbed spatial restricted three-body problem, as well as the first integrals of the differential equations
of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of the
perturbed spatial restricted three-body problem written in rotating coordinate systems and the rotation
quaternions (Euler (Rodrigues–Hamilton) parameters) used to describe the angular motion of these
coordinate systems; differential equations for the moments of the quantities of motion in the three-body
problem under study.
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In the present article, which is an extension of [2], the local regular quaternion differential equations
of the perturbed spatial restricted three-body problem are obtained. These equations utilize the Kepler
energy or total energy of the system as an additional variable. In addition, the regular quaternion
differential equations of the perturbed spatial restricted circular three-body problem have been derived.
These equations utilize a quantity, that is a constant of the Jacobi motion in the unperturbed spatial
restricted circular three-body problem, as an additional variable.

The obtained equations are systems of nonlinear nonstationary differential equations of the eleventh
order with respect to the Kustaanheimo–Stiefel variables, their first derivatives, Kepler or total energy
or variable, which is the Jacobi integration constant in the case of the unperturbed spatial restricted
circular three-body problem, and also with respect to time and the auxiliary time variable .

The constructed sets of differential equations of the perturbed spatial restricted three-body problem
allow us to construct a regular algorithm for integrating these equations, in which one of the systems of
differential equations of the eleventh order is used to study the motion of a body M with a negligibly small
mass in the vicinity of the body M0 (when the distances r0, r1 between bodies M and M0, M and M1

satisfy the inequality m1r
2
0≤m0r

2
1), and another system of differential equations of the same order is used

when studying the motion of a body M in the vicinity of the body M1 (when the distance r1 and r0 satisfy
the inequality m0r

2
1 <m1r

2
0) (In the above inequalities, m0 and m1 are the masses of bodies M0 and M1).

This article continues the study of the problem of constructing local regular quaternion differential
equations of a perturbed spatial restricted three-body problem, and also deals with the problem of
constructing global regular quaternion differential equations of a perturbed spatial restricted three-body
problem; that is, the equations that are regular under simultaneous fulfillment of conditions r0=0, r1=0
or r0 → 0, r1 → 0. The construction of systems of differential equations used to solve these problems is
based on the equations and ratios given in the first part of the study [2].

2. DIFFERENTIAL EQUATIONS OF THE PERTURBED SPATIAL RESTRICTED
THREE-BODY PROBLEM WRITTEN IN ACCOMPANYING NONHOLONOMIC

(AZIMUTHALLY FREE) COORDINATE TRIHEDRONS. INTRODUCING ROTATION
QUATERNIONS AND KUSTAHANHEIMO–STIEFEL VARIABLES INTO THE

EQUATIONS OF MOTION
We write the vector differential equations of the perturbed restricted three-body problem (1.1), (1.2)

in the quaternion form:

d2R0

dt2
= − fm0

r30
R0 −

fm1

r31
R1 −

fm1

r301
R01 +P, (2.1)

d2R1

dt2
= − fm0

r30
R0 −

fm1

r31
R1 −

fm0

r301
R10 +P, (2.2)

Ri = xii+ yij+ zik, i = 0, 1, (2.3)

R01 = x01i+ y01j+ z01k, R10 = −R01, P = p1i+ p2j+ p3k. (2.4)

Here i, j, k are the Hamiltonian vector imaginary units; differentiation is performed under the
assumption that the orts of the hypercomplex space are unchanged i, j, k; (xi, yi, zi (i = 0, 1) are the
Cartesian coordinates of a point M in the coordinate system MiXiYiZi (the projection of the vector ri
on the axis of this coordinate system); x01, y01, z01 are the projections of the vector r01 on the axes of the
same coordinate system (coordinates of a point M1 in the coordinate system M0X0Y0Z0); p1, p2, p3are
the projections of the vector of disturbing acceleration p on the axis of the coordinate system M0X0Y0Z0

(they are equal to the corresponding projections of this vector on the axis of the inertial coordinate
system, as well as on the axis of the coordinate system M1X1Y1Z1).

A quaternion Ri characterizes the position of a pointM in the coordinate system MiXiYiZi.
Let us introduce into consideration two rotating coordinate systems M0X

′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1 with

the origins at the points M0 and M1, respectively. Further in these coordinate systems we will write down
the equations of the spatial restricted three-body problem. The axes M0X

′
0 and M1X

′
1 of these coordinate

systems are directed along the radii–vectors r0 and r1, respectively. We denote the vectors of absolute
angular velocities of rotation of the coordinate systems M0X

′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1 (in the inertial

coordinate system Oξηζ) by ω0 and ω1, and the projections of these vectors on the axes of the coordinate
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systems M0X
′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1 by ω0i and ω1i, respectively. Note that when writing the equations

of the spatial restricted three-body problem in such coordinate systems, the projections ω01 and ω11 of
the angular velocity vectors ω0 and ω1 on the directions of the radius vectors r0 and r1 are the arbitrarily
specified parameters.

To describe the orientation (angular position) of the coordinate system M0X
′
0Y

′
0Z

′
0 in the coordinate

system M0X0Y0Z0 (and, therefore, in the inertial coordinate system Oξηζ), we use the normalized
rotation quaternion λ0, and to describe the orientation of the coordinate system M1X

′
1Y

′
1Z

′
1 in the

coordinate systemM1X1Y1Z1 (and, therefore, in the inertial coordinate system Oξηζ) we use normalized
rotation quaternion λ1:

λi = λi0 + λi1i+ λi2j+ λi3k, ‖ λi ‖2= λ2
i0 + λ2

i1 + λ2
i2 + λ2

i3 = 1, i = 0, 1,

where λij (j = 0, 3) are the components of the quaternion λi (Rodrigues–Hamilton (Euler) parameters
[12–16]) that characterize the orientation of the coordinate system MiX

′
iY

′
i Z

′
i in the inertial coordinate

system.
We complete a definition of the motion of the coordinate system MiX

′
iY

′
i Z

′
i by setting an arbitrarily

given projection ωi1 of absolute angular velocity vector ωi on the direction of the radius vector ri
(axis MiX

′
i ) to zero:

ωi1 = 2(−λi1λ̇i0 + λi0λ̇i1 + λi3λ̇i2 − λi2λ̇i3) = 0, i = 0, 1. (2.5)

Here one upper point and further two upper points mean the first and second derivative with time t,
respectively.

The coordinate system MiX
′
iY

′
i Z

′
i in this case rotates with an absolute angular velocity ωi collinear

to the vector ci of the moment of velocity vi of a point M in the coordinate system MiXiYiZi relative to
the point Mi:

ωi = r−2
i ci, ci = ri × ṙi = ri × vi, i = 0, 1. (2.6)

Such a coordinate system is called a nonholonomic (azimuthally free) accompanying coordinate trihe-
dron.

We note that the kinematic relation (2.6) was used in the first part of this work [2] to construct regular
quaternion equations for the perturbed spatial restricted three-body problem in a different way.

The quaternion Ri defined by the relation (2.3) and characterizing the position of a point M in the
coordinate system MiXiYiZi is associated with variables ri and λi by the relation

Ri = xii+ yij+ zik = riλi ◦ i ◦ λ̄i, i = 0, 1. (2.7)

Hereinafter, the symbol ◦ denotes quaternion multiplication, the top line specifies the conjugate
quaternion, for example, λ̄0 = λ00 − λ01i− λ02j− λ03k.

Let us denote the projections of the velocity vectors v0 = dr0/dt and v1 = dr1/dt of the point M in the
coordinate systems M0X0Y0Z0 and M1X1Y1Z1 on the axes of the coordinate systems M0X0Y0Z0 and
M1X1Y1Z1, respectively (these projections coincide with the projections of the vectors v0 and v1 on the
axes of the inertial coordinate system) by v0k and v1k . We introduce velocity quaternions Vi composed of
these projections:

Vi = vi1i+ vi2j+ vi3k = ẋii+ ẏij+ żik, i = 0, 1. (2.8)

Differentiating relation (2.7) with respect to time and taking into account (2.8), we obtain the following
expression for the velocity quaternion Vi in terms of the variables ri and λi and their first derivatives with
respect to time:

Vi = Ṙi = ṙiλi ◦ i ◦ λ̄i + 2riλi ◦ i ◦ ˙̄λi − 2riscal(λi ◦ i ◦ ˙̄λi), i = 0, 1. (2.9)

Here, the equality a− ā = 2(a− scal a) is taken into account, where a is an arbitrary quaternion, scal a
is the scalar part of the quaternion a.

The scalar part of the quaternion (λi ◦ i ◦ ˙̄λi), by virtue of (2.5), is equal to zero:

scal(λi ◦ i ◦ ˙̄λi) = −λi1λ̇i0 + λi0λ̇i1 + λi3λ̇i2 − λi2λ̇i3 =
1

2
ωi1 = 0. (2.10)
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Therefore, from (2.9) and (2.10) we have

Vi = Ṙi = λi ◦ i ◦ (ṙiλ̄i + 2ri
˙̄λi), i = 0, 1. (2.11)

Differentiating (2.11) with respect to time t , using the relation (2.10) and substituting the result of
differentiation, as well as equality (2.7) into equations (2.1), (2.2), we obtain

λ0◦i◦[2r0 ¨̄λ0+4ṙ0
˙̄λ0− 2r0i◦λ̄0◦λ̇0◦i◦ ˙̄λ0+(r̈0 + fm0r

−2
0 )λ̄0]=−fm1(r

−3
1 R1+r−3

01 R01)+P, (2.12)

λ1◦i◦[2r1 ¨̄λ1+4ṙ1
˙̄λ1−2r1i◦λ̄1◦λ̇1◦i◦ ˙̄λ1+(r̈1+fm1r

−2
1 )λ̄1]=−fm0(r

−3
0 R0+r−3

01 R10)+P. (2.13)

Using the kinematic quaternion equation of the rotational motion of the coordinate system
MiX

′
iY

′
i Z

′
i [13–16]

2dλi

dt
= λi ◦Ωi, Ωi = ωi1i+ ωi2j+ ωi3k, i = 0, 1

and equality (2.5), it can be shown that

i ◦ λ̄i ◦ λ̇i ◦ i ◦ ˙̄λi = (λ̇i ◦ ˙̄λi)λ̄i, λ̇i ◦ ˙̄λi =

3∑
j=0

λ̇2
ij =

1

4
ω2
i , ωi = |ωi|, i = 0, 1. (2.14)

Taking into account (2.14) from (2.12) and (2.13), we obtain the equations

2r0
¨̄λ0 + 4ṙ0

˙̄λ0 + (r̈0 + fm0r
−2
0 − 1

2
r0ω

2
0)λ̄0 = i ◦ λ̄0 ◦ [fm1(r

−3
1 R1 + r−3

01 R01)−P], (2.15)

2r1
¨̄λ1 + 4ṙ1

˙̄λ1 + (r̈1 + fm1r
−2
1 − 1

2
r1ω

2
1)λ̄1 = i ◦ λ̄1 ◦ [fm0(r

−3
0 R0 + r−3

01 R10)−P]. (2.16)

In the quaternion equations (2.15) and (2.16) we pass from the Rodrigues–Hamilton parameters
λij (i = 0, 1; j = 0, 1, 2, 3) to the Kustaanheimo–Stiefel variables uij [17–19] by using the formulas
[5, 6, 10, 11]

λi0 = r
−1/2
i ui0, λik = −r

−1/2
i uik, i = 0, 1; k = 1, 2, 3. (2.17)

The formulas (2.17) in the quaternion form are:

λ̄i = r
−1/2
i ui, λ̄i = λi0 − λi1i− λi2j− λi3k, ui = ui0 + ui1i+ ui2j+ ui3k, i = 0, 1. (2.18)

Substituting the relations (2.18) into equations (2.15) and (2.16), we obtain the quaternion differential
equations of the perturbed spatial restricted three-body problem in Kustaanheimo–Stiefel variables:

ü0+r−1
0 ṙ0u̇0−

1

2
r−2
0

( 1

2
ṙ20+

1

2
r20ω

2
0−fm0r

−1
0

)
u0=

1

2
r−1
0 i◦u0◦[fm1(r

−3
1 R1+r−3

01 R01)−P], (2.19)

ü1+r−1
1 ṙ1u̇1−

1

2
r−2
1

( 1

2
ṙ21+

1

2
r21ω

2
1−fm1r

−1
1

)
u1=

1

2
r−1
1 i◦u1◦[fm0(r

−3
0 R0+r−3

01 R10)−P]. (2.20)

Here, the quaternions Ri, R01, R10, and P that appear in the right-hand sides of equations (2.19),
(2.20) are defined by relations (2.7), (2.4).

Note that in equations (2.19) and (2.20) obtained as a result of the transition from the Rodrigues–
Hamilton parameters λij to the Kustaanheimo–Stiefel variables uij in equations (2.15) and (2.16), the
terms containing the second derivatives r̈i of the modules ri of vectors ri have been reduced; the Kepler
energies of the motion of a pointM in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1 (expressions
in round brackets before the variables u0 and u1) have been distinguished in explicit form.

3. LOCAL AND GLOBAL REGULAR DIFFERENTIAL QUATERNION EQUATIONS
OF THE PERTURBED SPATIAL RESTRICTED THREE BODY PROBLEM

THAT USE KEPLER ENERGIES AS ADDITIONAL VARIABLES
In the equations (2.19), (2.20) we pass from the independent variable t to the new independent

variables τi (i = 0, 1) using the formulas

dt = ridτi,
d2

dt2
= r−2

i

d2

dτ2i
− r−3

i

dri
dτi

d

dτi
, i = 0, 1. (3.1)
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We obtain

d2u0

dτ20
− 1

2
h∗0u0 =

1

2
r0i ◦ u0 ◦ [fm1(r

−3
1 R1 + r−3

01 R01)−P], (3.2)

d2u1

dτ21
− 1

2
h∗1u1 =

1

2
r1i ◦ u1 ◦ [fm0(r

−3
0 R0 + r−3

01 R10)−P]. (3.3)

Here h∗i (i = 0, 1) are the Kepler energies defined by the relations

h∗i =
1

2
ṙ2i +

1

2
r2i ω

2
i − fmir

−1
i =

1

2
vi

2 − fmir
−1
i , i = 0, 1. (3.4)

It is seen that in this transition to the new independent variables τi, the summands of the left-hand sides
of equations (3.2) and (3.3), that contain the first derivatives with respect to the independent variable τi
from the quaternion variable ui, are reduced, and each of equations (3.2) and (3.3) becomes regular with
respect to distances r0 and r1 respectively , that is, they are local regular ones.

In the equations (3.2) and (3.3) we exclude quaternions R1 and R0 by using quaternion relations

R1 = R0 −R01, R0 = R1 +R01,

i◦u0◦R1 = −r0u0−i◦u0◦R01, i◦u1◦R0 = −r1u1+i◦u1◦R01,

we get

d2u0

dτ20
− 1

2
h∗0u0 = − 1

2
fm1r

2
0r

−3
1 u0 +

1

2
r0i ◦ u0 ◦ [fm1(r

−3
01 − r−3

1 )R01 −P], (3.5)

d2u1

dτ21
− 1

2
h∗1u1 = − 1

2
fm0r

2
1r

−3
0 u1 +

1

2
r1i ◦ u1 ◦ [fm0(r

−3
0 − r−3

01 )R01 −P], (3.6)

where quaternions R01 and P are defined by the ratios

R01 = x01i+ y01j+ z01k, P = p1i+ p2j+ p3k

The equations (3.5) and (3.6) coincide with local regular quaternion equations (7.10) and (7.11) of
the perturbed spatial restricted three-body problem in the Kustaanheimo–Stiefel variables that were
obtained in the first part of this work [2] in a different way.

The quantities h∗0 and h∗1 (Kepler energies), that appear in these equations and are defined by
relations (3.4), are considered as additional variables. These variables satisfy the differential equations
(7.14), (7.15) [2]:

dh∗0
dt

= −fm1r
−3
1 r0ṙ0 + fm1(r

−3
1 − r−3

01 )(v0 · r01) + v0 · p,

dh∗1
dt

= −fm0r
−3
0 r1ṙ1 + fm0(r

−3
01 − r−3

0 )(v1 · r01) + v1 · p,

which (after the transition to the new independent variables τi) take the form

dh∗0
dτ0

= −fm1r
−3
1 r0

dr0
dτ0

+ fm1(r
−3
1 − r−3

01 )
( dr0
dτ0

· r01
)
+

dr0
dτ0

· p, (3.7)

dh∗1
dτ1

= −fm0r
−3
0 r1

dr1
dτ1

+ fm0(r
−3
01 − r−3

0 )
( dr1
dτ1

· r01
)
+

dr1
dτ1

· p. (3.8)

In these equations and further, the center point is the symbol of the scalar product.
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In the equations (3.5), (3.6) and (3.7), (3.8)

ri = u2i0 + u2i1 + u2i2 + u2i3, r201 = x201 + y201 + z201,

dri
dτi

= 2
(
ui0

dui0
dτi

+ ui1
dui1
dτi

+ ui2
dui2
dτi

+ ui3
dui3
dτi

)
,

dri
dτi

· r01 = 2x01

(
ui0

dui0
dτi

+ ui1
dui1
dτi

− ui2
dui2
dτi

− ui3
dui3
dτi

)

+ 2y01

(
ui2

(dui1
dτi

+ ui1
dui2
dτi

− ui3
dui0
dτi

− ui0
dui3
dτi

)

+ 2z01

(
ui3

dui1
dτi

+ ui1
dui3
dτi

+ ui2
dui0
dτi

+ ui0
dui2
dτi

)
, i = 0, 1.

(3.9)

The scalar product (dri/dτi) · p has the form of the third relations from (3.9), in which, one need to take
p1, p2, p3 instead of x01, y01, z01, respectively.

Differential equations (3.5) and (3.7) supplemented with the differential equations for time t and
"fictitious" time τ1:

dt

dτ0
= r0,

dτ1
dτ0

= r0r
−1
1 , (3.10)

as well as by the ratios

r0 = u200 + u201 + u202 + u203, r21 = (x01 − x0)
2 + (y01 − y0)

2 + (z01 − z0)
2, (3.11)

x0 = u200 + u201 − u202 − u203, y0 = 2(u01u02 − u00u03), z0 = 2(u01u03 + u00u02), (3.12)

form the differential equations of motion of a point M that are regular in a neighborhood of a point M0.
They are a system of nonlinear nonstationary differential equations of the eleventh order with respect
to the Kustaanheimo–Stiefel variables u0j (j = 0, 1, 2, 3), their first derivatives du0j/dτ0, the energy
variable h∗0, time t, and variable τ1.

Differential equations (3.6) and (3.7) supplemented with the differential equations

dt

dτ1
= r1,

dτ0
dτ1

= r1r
−1
0 , (3.13)

and by the ratios

r1 = u210 + u211 + u212 + u213, r20 = (x01 − x1)
2 + (y01 − y1)

2 + (z01 − z1)
2, (3.14)

x1 = u210 + u211 − u212 − u213, y1 = 2(u11u12 − u10u13), z1 = 2(u11u13 + u10u12). (3.15)

form differential equations of motion of a point M that are regular in a neighborhood of a point M1.
They are a system of nonlinear nonstationary differential equations of the eleventh order with respect
to the Kustaanheimo–Stiefel variables u1j (j = 0, 1, 2, 3), their first derivatives du1j/dτ1, the energy
variable h∗1, time t, and variable τ0.

These sets of differential equations of the perturbed spatial restricted three-body problem allow us
to construct a regular algorithm for integrating these equations [2]. The equations (3.5), (3.7), (3.10)–
(3.12) of this problem, supplemented with the relations (3.9) (for i = 0) , are used in this algorithm
when studying the motion of a point M in a neighborhood of a point M0 (when the distances r0 and r1
satisfy the inequality m1r0

2 ≤ m0r
2
1), and the equations (3.6), (3.8), (3.13)–(3.15) of this problem that

are supplemented with the relations (3.9) (for i = 1) are used in studying movement of point M in a
neighborhood of a point M1 (when the distances r1 and r0 satisfy the inequality m0r

2
1 < m1r

2
0).

Remark 1. In the described algorithm for integrating the constructed regular differential equations
of the perturbed spatial restricted three-body problem we assume that the projections x01, y01, z01of the
vector r01 on the axes of the inertial coordinate system (coordinates of a point M1 in the coordinate
system M0X0Y0Z0)that are included in this algorithm are known functions of time t. In particular,
this is the case of the spatial restricted circular three body problem. In the general case, to find the
projections x01, y01, z01 in the differential equations systems (3.5), (3.7) and (3.6), (3.8), it is necessary to
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additionally include the vector differential equation (1.3) having made a transition to a new independent
variable τ0 or τ1 by using the second formula of (3.1). However, in the differential equation obtained from
(1.3), a term −(1/ri)(dri/dτi)(dr01/dτi) suspicious for irregularity appears. It has a distance ri in the
denominator. Passing in this term from the “time” τi to the time t using the formula dt = ridτi, we get

− 1

ri

dri
dτi

dr01
dτi

= −ri
dri
dt

dr01
dt

.

From this relation, it can be seen that for ri = 0 the indicated term does not tend to the infinity in time t,
but is equal to zero.

Nevertheless, it seems that in the general case the vector differential equation (1.3) is appropriate to
integrate separately over the time t with a variable step equal to the difference of time values t that is
calculated at the previous and current moments of “time” τi (the current moment t is calculated as a
result of integrating the first equation of (3.10) or (3.13) over the “time” τi).

Remark 2. To use the constructed regular differential equations of the perturbed spatial restricted
three-body problem, it is necessary to determine their initial integration conditions, i.e. It is necessary
to determine the initial values of the Kustahanheimo–Stiefel variables uij (j = 0, 1, 2, 3) and their first
derivatives duij/dτi via the given initial values of Cartesian coordinates xi, yi, zi of a point M in the
coordinate system MiXiYiZi and the initial values of the projections ẋi, ẏi, żi of the velocity vector vi
of a point M in the coordinate system MiXiYiZi on the axis of the same coordinate system. The many-
valued algorithms for solving this problem (problems with initial conditions) were proposed in [19, 5].
A single-valued algorithm for solving a problem with initial conditions was proposed by the author of the
article in [20] (see also [9–11]). It is based on the relations (7.25)–(7.30) of the first part of this work [2].

The radius vector ri characterizing the position of a point M in the coordinate system MiXiYiZi,
its modulus ri, and the velocity vector vi of a point M in this coordinate system are found in terms of
variables ui and dui/dτi in accordance with quaternion formulas [6] (see also [9–11]):

Ri = xii+ yij+ zik = ūi ◦ i ◦ ui, ri = ui ◦ ūi = u2i0 + u2i1 + u2i2 + u2i3, i = 0, 1, (3.16)

Vi = vi1i+ vi2j+ vi3k =
dRi

dt
= 2ūi ◦ i ◦

dui

dt
= 2r−1

i ūi ◦ i ◦
dui

dτi
, i = 0, 1, (3.17)

The formulas (3.16) and (3.17) in the scalar form are

xi = u2i0 + u2i1 − u2i2 − u2i3, yi = 2(ui1ui2 − ui0ui3), zi = 2(ui1ui3 + ui0ui2), i = 0, 1,

vi1 = ẋi = 2(ui0u̇i0 + ui1u̇i1 − ui2u̇i2 − ui3u̇i3)

= 2r−1
i

(
ui0

dui0
dτi

+ ui1
dui1
dτi

− ui2
dui2
dτi

− ui3
dui3
dτi

)
,

vi2 = ẏi = 2(ui2u̇i1 + ui1u̇i2 − ui3u̇i0 − ui0u̇i3)

= 2r−1
i

(
ui2

dui1
dτi

+ ui1
dui2
dτi

− ui3
dui0
dτi

− ui0
dui3
dτi

)
.

vi3 = żi = 2(ui3u̇i1 + ui1u̇i3 + ui2u̇i0 + ui0u̇i2)

= 2r−1
i

(
ui3

dui1
dτi

+ ui1
dui3
dτi

+ ui2
dui0
dτi

+ ui0
dui2
dτi

)
, i = 0, 1,

These formulas allow one to find the Cartesian coordinates xi, yi, zi of a point M in the coordinate
system MiXiYiZi and the projection of the velocity of a point M in the coordinate system MiXiYiZi on
the axis of this coordinate system via the variables uij and their derivatives u̇ij or (duij/dτi).

From the equations (3.5), (3.7) and (3.6), (3.8), local regular equations (8.1), (8.2) and (8.3), (8,4) [2]
of the perturbed spatial restricted three-body problem can be obtained using the total energy h0 and h1
of motion of a point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1 as the additional variables.
They are determined by the relations

h0 = h∗0 −
fm1

r1
=

1

2
v20 −

fm0

r0
− fm1

r1
, (3.18)

h1 = h∗1 −
fm0

r0
=

1

2
v21 −

fm0

r0
− fm1

r1
, (3.19)
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v0 = |v0|, v0 =
dr0
dt

; v1 = |v1|, v1 =
dr1
dt

.

where v0 and v1 are the velocity vectors of a point M in the coordinate systems M0X0Y0Z0 and
M1X1Y1Z1, respectively.

The usage of these equations to study the motion of a point M in a neighborhood of a point M0 or
M1 can be carried out by the same methodology as using equations (3.5), (3.7), (3.10) and (3.6), (3.8),
(3.13) containing Kepler energies h∗0 and h∗1.

From equations (3.5), (3.7) and (3.6), (3.8) the local regular equations (8.5), (8.6) and (8.7), (8.8)
[2] of the perturbed spatial restricted circular three-body problem can be obtained using as additional
variables H0 and H1 (we call them Jacobi variables) defined by the relations (3.15) and (3.16) [2]:

H0 = h0 + fm1r
−3
01 (r0 · r01) + n(y0ẋ0 − x0ẏ0)

=
1

2
(ẋ0

2 + ẏ0
2 + ż0

2)− fm0

r0
− fm1

r1
+

fm1

r301
(x0x01 + y0y01) + n(y0ẋ0 − x0ẏ0),

(3.20)

H1 = h1 + fm0r
−3
01 (r1 · r10) + n(y1ẋ1 − x1ẏ1)

=
1

2
(ẋ1

2 + ẏ1
2 + ż1

2)− fm0

r0
− fm1

r1
+

fm0

r301
(x1x10 + y1y10) + n(y1ẋ1 − x1ẏ1).

(3.21)

The variables H0 and H1 satisfy the differential equations (3.13), (3.14) [2]:
dH0

dt
=

dr0
dt

· p+ n(y0px − x0py), (3.22)

dH1

dt
=

dr1
dt

· p+ n(y1px − x1py), px = p1, py = p2, (3.23)

and are the Jacobi costants of motion for the unperturbed spatial restricted circular three-body problem.
The reduced local regular quaternion equations of the perturbed spatial restricted three-body problem

contain the oscillatory forms of quaternion differential equations in the Kustaanheimo–Stiefel variables.
We obtain new forms of local and global regular quaternion equations of the perturbed spatial restricted
three-body problem and global regular quaternion equations of the perturbed spatial restricted circular
three-body problem. They contain normal forms of quaternion differential equations in Kustaanheimo–
Stiefel variables.

We introduce new quaternion “velocity” variables

si = u̇i =
dui

dt
, i = 0, 1 si = si0 + si1i+ si2j+ si3k, u̇i = u̇i0 + u̇i1i+ u̇i2j+ u̇i3k. (3.24)

Let us write the quaternion differential equations (2.19), (2.20) of the perturbed three-body spatial
restricted problem in the Kustaanheimo–Stiefel variables by taking into account the notation (3.24)
in the normal Cauchy form:

du0

dt
= s0, (3.25)

ds0
dt

+ 2r−1
0 (u0 · s0)s0 −

1

2
r−2
0 h∗0u0 =

1

2
r−1
0 i ◦ u0 ◦ [fm1(r

−3
1 R1 + r−3

01 R01)−P] (3.26)

= − 1

2
fm1r

−3
1 u0 +

1

2
r−1
0 i ◦ u0 ◦ [fm1(r

−3
01 − r−3

1 )R01 −P],

du1

dt
= s1, (3.27)

ds1
dt

+ 2r−1
1 (u1 · s1)s1 −

1

2
r−2
1 h∗1u1 =

1

2
r−1
1 i ◦ u1 ◦ [fm0(r

−3
0 R0 + r−3

01 R10)−P] (3.28)

= − 1

2
fm0r

−3
0 u1 +

1

2
r−1
1 i ◦ u1 ◦ [fm0(r

−3
0 − r−3

01 )R01 −P].

Here the scalar products are

(ui · si) = ui0si0 + ui1si1 + ui2si2 + ui3si3, sij = u̇ij =
duij
dt

, i = 0, 1, j = 0, 1, 2, 3. (3.29)
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Passing in equations (3.25), (3.26) and (3.27), (3.28) to new independent variables τ0 and τ1 by using
the formulas dτ0= r−2

0 dt and dτ1= r−2
1 dt and supplementing the obtained equations with the differential

equations for Kepler energies h∗0 and h∗1, which follow in this case from the equations for these energies
given before the equations (3.7) and (3.8), we obtain the following sets of normal local regular quaternion
equations of the perturbed spatial restricted three-body problem:

du0

dτ0
= r20s0, (3.30)

ds0
dτ0

+ 2r0(u0 · s0)s0 −
1

2
h∗0u0 (3.31)

= − 1

2
fm1r

2
0r

−3
1 u0 +

1

2
r0i ◦ u0 ◦ [fm1(r

−3
01 − r−3

1 )R01 −P],

dh∗0
dτ0

= r20[−fm1r
−3
1 r0

dr0
dt

+ fm1(r
−3
1 − r−3

01 )(
dr0
dt

· r01) +
dr0
dt

· p], (3.32)

dt

dτ0
= r20,

dτ1
dτ0

= r20r
−2
1 , (3.33)

du1

dτ1
= r21s1, (3.34)

ds1
dτ1

+ 2r1(u1 · s1)s1 −
1

2
h∗1u1 (3.35)

= − 1

2
fm0r

−3
0 r21u1 +

1

2
r1i ◦ u1 ◦ [fm0(r

−3
0 − r−3

01 )R01 −P],

dh∗1
dτ1

= r21[−fm0r
−3
0 r1

dr1
dt

+ fm0(r
−3
01 − r−3

0 )(
dr1
dt

· r01) +
dr1
dt

· p], (3.36)

dt

dτ1
= r21,

dτ0
dτ1

= r−2
0 r21, (3.37)

ri = u2i0 + u2i1 + u2i2 + u2i3, r201 = x201 + y201 + z201,

dri
dt

= 2(ui0si0 + ui1si1 + ui2si2 + ui3si3),

dri
dt

· r01 = 2x01(ui0si0 + ui1si1 − ui2si2 − ui3si3) + 2y01(ui2si1 + ui1si2

− ui3si0 − ui0si3) + 2z01(ui3si1 + ui1si3 + ui2si0 + ui0si2), (3.38)
dri
dt

· p = 2p1(ui0si0 + ui1si1 − ui2si2 − ui3si3) + 2p2(ui2si1 + ui1si2

− ui3si0 − ui0si3) + 2p3(ui3si1 + ui1si3 + ui2si0 + ui0si2), i = 0, 1.

The method of using normal forms of local regular equations (3.30)–(3.33) or (3.34)–(3.37),
supplemented with the relations (3.29), (3.38), to study the motion of a point M in a neighborhood
of a point M0 or M1 can be performed by the same methodology , as the use of oscillatory forms of local
regular equations (3.5), (3.7), (3.10) and (3.6), (3.8), (3.13). The main difference between normal forms
of local regular equations and oscillatory forms is the use of various independent variables. If in normal
forms of local regular equations time transformations, that contain raised to the second power distances
from a body of negligibly small mass to two bodies of finite mass, are used, then in oscillatory forms
time transformations containing the first powers of these distances are used. Note also that the left -
hand sides of equations (3.31) and (3.35) of normal forms are more complicated than the left-hand sides
of equations (3.5) and (3.6) of oscillatory forms because they contain additional terms 2r0(u0 · s0)s0
and 2r1(u1 · s1)s1, and the right hand sides of these equations are the same. In addition, in the right-
hand sides of equations (3.32) and (3.36) for Kepler energies that complement the normal forms of the
equations, in contrast to equations (3.7) and (3.8) for Kepler energies that complement the oscillatory
forms of the equations, the factors r20 and r21 are additionally included. Therefore, the reduced normal
forms of local regular equations (3.30)–(3.33) and (3.34)–(3.37) of the perturbed spatial restricted
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three-body problem are simpler than the oscillatory forms of local regular equations (3.5), (3.7), (3.10)
and (3.6), (3.8), (3.13) of this problem. At the same time, the use of normal forms of equations allows
one to obtain normal forms of global regular equations of the perturbed spatial restricted three-body
problem.

Passing in equations (3.25), (3.26) and (3.27), (3.28) to a new independent variable τ by using
the formula dτ = r−2

0 r−2
1 dt and complementing the equations obtained with differential equations for

Kepler energies h∗0 and h∗1 that follow from the equations for these energies and are given before the
equations (3.7) and (3.8), we obtain other sets of local regular quaternion equations of the perturbed
spatial restricted three-body problem (3.39)–(3.42) and (3.43)–(3.45), (3.42) in the normal Cauchy
form:

du0
dτ

= r20r
2
1s0, (3.39)

ds0
dτ

+ 2r0r
2
1(u0 · s0)s0 −

1

2
r21h

∗
0u0 (3.40)

= − 1

2
fm1r

2
0r

−1
1 u0 +

1

2
r0r

2
1i ◦ u0 ◦ [fm1(r

−3
01 − r−3

1 )R01 − P ],

dh∗0
dτ

= r20

[
− fm1r

−1
1 r0

dr0
dt

+ fm1(r
−1
1 − r21r

−3
01 )

( dr0
dt

· r01
)
+ r21

dr0
dt

· p
]
, (3.41)

dt

dτ
= r20r

2
1, (3.42)

du1
dτ

= r20r
2
1s1, (3.43)

ds1
dτ

+ 2r20r1(u1 · s1)s1 −
1

2
r20h

∗
1u1 (3.44)

= − 1

2
fm0r

−1
0 r21u1 +

1

2
r20r1i ◦ u1 ◦ [fm0(r

−3
0 − r−3

01 )R01 − P ],

dh∗1
dτ

= r21

[
− fm0r

−1
0 r1

dr1
dt

+ fm0(r
2
0r

−3
01 − r−1

0 )
( dr1

dt
· r01

)
+ r20

dr1
dt

· p
]
. (3.45)

The procedure of using normal forms of local regular equations (3.39)–(3.42) or (3.43)–(3.45), (3.42),
supplemented with the relations (3.29), (3.38), to study the motion of a point M in a neighborhood of a
point M0 or M1 can be carry out by the same methodology as the use of oscillatory forms of local regular
equations (3.5), (3.7), (3.10) and (3.6), (3.8). (3.13) (as well as the use of normal forms of local regular
equations (3.30)–(3.33) and (3.34)–(3.37)). Normal forms of local regular equations (3.39)–(3.42) and
(3.43)–(3.45), (3.42) differ from the normal forms of local regular equations (3.30)–(3.33) and (3.34)–
(3.37) in greater complexity and use more complex time transformations containing the product of the
raised to the second power distances from the body of negligibly small mass to two bodies of finite mass.
However, in normal forms of local regular equations (3.39)–(3.42) and (3.43)–(3.45), (3.42), in contrast
to the normal forms of local regular equations (3.30)–(3.33) and (3.34)–(3.37) and oscillatory forms of
local regular equations (3.5), (3.7), (3.10) and (3.6), (3.8). (3.13), we use not two different independent
variables τ0 and τ1, but one independent variableτ , that is their advantage.

Let us pass in equations (3.25), (3.26) and (3.27), (3.28) to the new independent variable τ by using
the formula dτ = r−3

0 r−3
1 dt and supplement the obtained equations with the differential equations for

Kepler energies h∗0 and h∗1, that follow from the equations given before the equations (3.7) and (3.8).
As a result, we obtain the normal global regular quaternion equations of the perturbed spatial restricted
three-body problem (3.46)–(3.49) and (3.50)–(3.52), (3.49):

du0

dτ
= r30r

3
1s0, (3.46)

ds0
dτ

+2r20r
3
1(u0 · s0)s0−

1

2
r0r

3
1h

∗
0u0 (3.47)

− 1

2
fm1r

3
0u0+

1

2
r20i◦u0◦[fm1(r

−3
01 r

3
1−1)R01−r31P],
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dh∗0
dτ

= r30

[
− fm1r0

dr0
dt

+ fm1(1− r31r
−3
01 )

( dr0
dt

· r01
)
+ r31

dr0
dt

· p
]
, (3.48)

dt

dτ
= r30r

3
1, (3.49)

du1

dτ
= r30r

3
1s1, (3.50)

ds1
dτ

+2r30r
2
1(u1 · s1)s1−

1

2
r30r1h

∗
1u1 (3.51)

= − 1

2
fm0r

3
1u1+

1

2
r21i◦u1◦[fm0(1−r−3

01 r
3
0)R01−r30P],

dh∗1
dτ

= r31

[
− fm0r1

dr1
dt

+ fm0(r
3
0r

−3
01 − 1)

( dr1
dt

· r01
)
+ r30

dr1
dt

· p
]
. (3.52)

The equations (3.46)–(3.49), supplemented with the relations (3.29), (3.38) and (3.11), (3.12), and also
the equations (3.50)–(3.52), (3.49), supplemented with the same relations (3.29), (3.38) and (3.11),
(3.12), are two different normal forms of global regular equations of the perturbed spatial restricted
three-body problem. They form systems of nonlinear differential equations of tenth order with respect
to the Kustaanheimo–Stiefel variables uij (j = 0, 1, 2, 3) (component of a quaternion variable ui), their
first derivatives with respect to time sij = duij/dt (component of a quaternion variable si = dui/dt),
Kepler energy h∗i and time t (i = 0, 1). Any of these systems can be separately used as a closed system
of differential equations for regular study of the motion of a point M both in a neighborhood of a point
M0 (when distances r0 and r1 satisfy the inequality m1r

2
0 ≤m0r

2
1) and to study the motion of a point M

in a neighborhood of a point M1 (when distances r0 and r1 satisfy the inequality m0r
2
1 < m1r

2
0).

Note that in [21] (R. Roman, I. Szucs–Csillik, 2014) a generalization of Levi–Civita regularization in
the unperturbed plane restricted three-body problem was given. For the regularization of the equations of
the problem, complex Levi–Civita variables and a time transformation dt = r30r

3
1dτ analogous to (3.49),

that contains the product of raised to the third power distances from a body of negligibly small mass to
two bodies of attraction with finite mass, were used.

Note also that in an unbounded three-body problem to make a regularization, another time trans-
formation dt = r0r1dτ is often used [22, 23]. It contains the product of the distances from a body of
negligibly small mass to two bodies of finite mass. In [22] (S. J. Aarseth, K. Zare, 1974) it is noted
that for the purposes of regularization, a time transformation dt = r30r

3
1dτ containing raised to the third

power distances can also be used. However, the authors of [22] point out that when using this time
transformation, regularization is not actually achieved, because the new time becomes infinite when two
bodies collide. In fairness it must be said that this effect of the infinite growth of the new time also takes
place when using time transformations that contain smaller powers of specified distances, including the
case when using time transformation dt = r0r1dτ containing the first power of distances. However, this
growth takes place to a far less degree. Therefore, first of all, it is of interest to construct such local
and global regular equations of the perturbed spatial restricted three-body problem, in which the time
transformations containing powers (less than third)of distances from a body of negligibly small mass to
two bodies of attraction of finite masses are used.

4. GLOBAL REGULAR QUATERNION DIFFERENTIAL EQUATIONS OF THE
PERTURBED SPATIAL RESTRICTED THREE BODY PROBLEM THAT USE THE FULL

ENERGY OR JACOBI VARIABLES AS THE ADDITIONAL VARIABLES
4.1. The Normal Form of the Global Regular Equations of the Perturbed Spatial Restricted

Three-Body Problem that Use the Total Energy
In the normal local regular equations (3.39)–(3.42) and (3.43)–(3.45), (3.42) of the perturbed spatial

restricted three-body problem, we replace the Kepler energies h∗0 and h∗1 by the total energies h0 and
h1 of motions of the point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1, respectively.
Total energies are defined by the relations (3.18) and (3.19) and satisfy the differential equations
(3.2) and (3.3) [2]:

dh0
dt

= −fm1[r
−3
01 (v0 · r01) + r−3

1 (v01 · r1)] + v0 · p, (4.1)
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dh1
dt

= −fm0[r
−3
01 (v1 · r10) + r−3

0 (v10 · r0)] + v1 · p, (4.2)

v0 =
dr0
dt

, v01 =
dr01
dt

; v1 =
dr1
dt

, v10 =
dr10
dt

.

For this replacement of energies, we transform the right-hand sides of equations (3.40) and (3.44) using
the equations

r0i ◦ u0 ◦R1 = −r21u0 + u0 ◦R01 ◦ R1, r1i ◦ u1 ◦R0 = −r20u1 − u1 ◦ R01 ◦ R0.

As a result of such transformations from equations (3.39)–(3.45) and (4.1), (4.2) we obtain the following
global regular differential equations of the perturbed spatial restricted three-body problem in the normal
Cauchy form:

du0

dτ
= r20r

2
1s0 (4.3)

ds0
dτ

+ 2r0r
2
1(u0 · s0)s0 −

1

2
r21h0u0 (4.4)

=
1

2
fm1r

−1
1 u0 ◦ R01 ◦ R1 +

1

2
r0r

2
1i ◦ u0 ◦ (fm1r

−3
01 R01 −P),

dh0
dτ

= r20r
2
1[−fm1[r

−3
01 (v0 · r01) + r−3

1 (v01 · r1)] + v0 · p] (4.5)

= −fm1[r
2
0r

2
1r

−3
01 (v0 · r01) + r20r

−1
1 (v01 · r1)] + r20r

2
1v0 · p,

du1

dτ
= r21r

2
0s1 (4.6)

ds1
dτ

+ 2r1r
2
0(u1 · s1)s1 −

1

2
r20h1u1 (4.7)

=
1

2
fm0r

−1
0 u1 ◦R10 ◦R0 +

1

2
r1r

2
0i ◦ u1 ◦ (fm0r

−3
10 R10 −P),

dh1
dτ

= r20r
2
1[−fm0[r

−3
01 (v1 · r10) + r−3

0 (v10 · r0)] + v1 · p] (4.8)

= −fm0[r
2
0r

2
1r

−3
01 (v1 · r10) + r−1

0 r21(v10 · r0)] + r20r
2
1v1 · p.

dt

dτ
= r20r

2
1. (4.9)

Here r10 = r01, the quantities Ri and ri are determined by the relations (3.16):

R01 = x01i+ y01j+ z01k, R10 = −R01, P = p1i+ p2j+ p3k,

(ui · si) = ui0si0 + ui1si1 + ui2si2 + ui3si3, sij = u̇ij =
duij
dt

, i = 0, 1, j = 0, 1, 2, 3,

vi · r01 = −vi · r10 =
dri
dt

· r01 = 2x01(ui0si0 + ui1si1 − ui2si2 − ui3si3)

+ 2y01(ui2si1 + ui1si2 − ui3si0 − ui0si3) + 2z01(ui3si1 + ui1si3 + ui2si0 + ui0si2)

v01 · ri = −v10 · ri = ˙x01(u
2
i0 + u2i1 − u2i2 − u2i3)

+ 2 ˙y01(ui1ui2 − ui0ui3) + 2 ˙z01(ui1ui3 + ui0ui2), i = 0, 1,

dri
dt

· p = 2p1(ui0si0 + ui1si1 − ui2si2 − ui3si3) + 2p2(ui2si1

+ ui1si2 − ui3si0 − ui0si3) + 2p3(ui3si1 + ui1si3 + ui2si0 + ui0si2), i = 0, 1.

(4.10)

In the case of a perturbed restricted circular three-body problem, the derivatives ẋ01, ẏ01, ż01
occurring in (4.10) are determined by the relations (3.8), (3.9) [2]:

ẋ01 = −an sin(nt) = −ny01, ẏ01 = an cos(nt) = nx01, ż01 = 0,

n2 =
f(m0 +m1)

a3
, a =| r01 | .
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The quaternions r−1
1 R1 and r−1

0 R0 appearing in equations (4.4) and (4.7) correspond to the vectors
r−1
1 r1 and r−1

0 r0 occurring in equations (4.5) and (4.8). The norms and moduli of these quaternions
and vectors are equal to unit. Therefore, the equations (4.3)–(4.9) of the perturbed spatial restricted
three-body problem are global and regular. They form a system of normal nonlinear differential equations
of the 5th order with respect to four quaternion variables u0, s0, u1, s1 and three scalar variables:
total energies h0, h1, and time t. This quaternion system of equations is equivalent to a scalar system
of nonlinear differential equations of 19th order with respect to the Kustahanheimo–Stiefel variables
uij (j = 0, 1, 2, 3) (component of a quaternion variable ui), their first derivatives with respect to time
sij = duij/dt (component of a quaternion variable si = dui/dt), total energies hi and time t (i = 0, 1).

4.2. The Normal and Oscillatory Forms of Global Regular Quaternion Equations of the Perturbed
Spatial Restricted Circular Three-Body Problem that Use the Jacobi Variables

Using equations (4.3)–(4.9), we obtain the global regular equations of the perturbed spatial restricted
circular three-body problem, in which the Jacobi variables H0 and H1 defined by relations (3.20) and
(3.21) are used instead of the total energies h0 and h1. From the relations (3.20) and (3.21) we express
the total energies h0 and h1 via the Jacobi variables H0 and H1 and substitute the obtained relations

h0 = H0 − fm1r
−3
01 (r0 · r01)− n(y0ẋ0 − x0ẏ0),

h1 = H1 − fm0r
−3
01 (r1 · r10)− n(y1ẋ1 − x1ẏ1)

(4.11)

into the equations (4.4) and (4.7). In the differential equations (3.22) and (3.23) for the variables H0 and
H1 we pass from time t to new independent variable τ in accordance with equation (4.9). We use these
obtained equations instead of equations (4.5) and (4.8).

As a result, we obtain the following global regular equations of the perturbed spatial restricted circular
three-body problem:

du0

dτ
= r20r

2
1s0, (4.12)

ds0
dτ

+ 2r0r
2
1(u0 · s0)s0 −

1

2
r21[H0 − fm1r

−3
01 (r0 · r01)− n(y0ẋ0 − x0ẏ0)]u0 (4.13)

=
1

2
fm1r

−1
1 u0 ◦ R01 ◦ R1 +

1

2
r0r

2
1i ◦ u0 ◦ (fm1r

−3
01 R01 −P)

dH0

dτ
=

dr0
dτ

· p+ nr20r
2
1(y0p1 − x0p2), (4.14)

du1

dτ
= r21r

2
0s1, (4.15)

ds1
dτ

+ 2r1r
2
0(u1 · s1)s1 −

1

2
r20[h1 − fm0r

−3
01 (r1 · r10)− n(y1ẋ1 − x1ẏ1)]u1 (4.16)

=
1

2
fm0r

−1
0 u1 ◦ R10 ◦ R0 +

1

2
r1r

2
0i ◦ u1 ◦ (fm0r

−3
10 R10 −P),

dH1

dτ
=

dr1
dτ

· p+ nr20r
2
1(y1p1 − x1p2), (4.17)

dt

dτ
= r20r

2
1, (4.18)

r0 · r01 = a[cos(nt)x0 + sin(nt) y0], r1 · r10 = −a[cos(nt)x1 + sin(nt) y1],

xi = u2i0 + u2i1 − u2i2 − u2i3, yi = 2(ui1ui2 − ui0ui3), i = 0, 1,

− (yiẋi − xiẏi) = ciz = 2ri[ui3si0 − ui2si1 + ui1si2 − ui0si3], i = 0, 1.

other values have been explained above.
The resulting system of regular quaternion equations (4.12)–(4.18) is equivalent to a scalar system

of nonlinear differential equations of 19th order with respect to the Kustahanheimo–Stiefel variables
uij (j = 0, 1, 2, 3) (component of a quaternion variable ui), their first derivatives with respect to time
sij = duij/dt (component of a quaternion variable si= dui/dt), Jacobi variables Hi, and time t (i=0, 1).

MECHANICS OF SOLIDS Vol. 53 No. 6 2018



QUATERNION REGULARIZATION OF THE EQUATIONS 647

In the case of an unperturbed spatial restricted circular three-body problem (for p1 = p2 = p3 = 0) the
variables Hi become the Jacobi costants of motion: Hi(τ) = Hi(0) =const. Therefore, the differential
equations (4.14) and (4.17) are out of consideration and the unperturbed spatial restricted circular three-
body problem is described by global regular equations (4.12), (4.13), (4.15), (4.16), (4.18), which are
equivalent to the scalar system of nonlinear differential equations of the 17th order with respect to
the Kustahanheimo–Stiefel variables uij (j = 0, 1, 2, 3), their first derivatives with respect to time
sij = duij/dt and time t (i = 0, 1).

In the quaternion differential equations of the perturbed spatial restricted three-body problem in the
Kustaanheimo–Stiefel variables (2.19) and (2.20) we pass to the new independent variable τ using the
formulas

dt = r0r1dτ,
d2

dt2
= (r0r1)

−2 d2

dτ2
− (r0r1)

−3 d(r0r1)

dτ

d

dτ
, i = 0, 1, (4.19)

and taking into account the equalities

r0i ◦ u0 ◦R1 = −r21u0 + u0 ◦R01 ◦R1, r1i ◦ u1 ◦R0 = −r20u1 + u1 ◦R10 ◦R1.

As a result, we obtain the equations

d2u0

dτ2
− 1

2
r21h0u0 =

1

r1

dr1
dτ

du0

dτ
+

1

2

fm1

r1
u0 ◦R01 ◦R1 +

1

2
r0r

2
1i ◦ u0 ◦

[ fm1

r301
R01 −P

]
, (4.20)

d2u1

dτ2
− 1

2
r20h1u1 =

1

r0

dr0
dτ

du1

dτ
+

1

2

fm0

r0
u1 ◦R10 ◦R0 +

1

2
r1r

2
0i ◦ u1 ◦

[ fm0

r310
R10 −P

]
. (4.21)

Here hi (i = 0, 1) are the total energies defined by relations (3.18), (3.19) and satisfying the equations
(4.1), (4.2).

We show that the terms (1/r1)(dr1/dτ)(du0/dτ) and (1/r0)(dr0/dτ)(du1/dτ) of equations (4.20)
and (4.21) are finite values for r1 → 0 and r0 → 0, consequently, under the condition that the velocities
v0 and v1 of the point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1 are finite. In accordance
with (3.17) and (4.19) we have

1

r1

dr1
dτ

du0

dτ
= − 1

2

dr1
dτ

i ◦ u0 ◦V0 = r20r1
dr1
dt

du0

dt
,

1

r0

dr0
dτ

du1

dτ
= − 1

2

dr0
dτ

i ◦ u1 ◦V1 = r21r0
dr0
dt

du1

dt
.

From these relations it can be seen that the indicated terms are finite quantities under the condition that
the velocities v0 and v1 have finite values and for r1 = 0 and r0 = 0 these terms do not tend to the infinity
in time t, but are equal to zero.

Using equations (4.20), (4.21), we obtain the oscillatory global regular equations of the perturbed
spatial restricted circular three-body problem, in which the Jacobi variables H0 and H1 defined by the
relations (3.20) and (3.21) are used instead of the total energies h0 and h1. To this end, we substitute
relations (4.11), which establish the connections of the energies h0 and h1 with the Jacobi variables H0

and H1 into the equations (4.20), (4.21). Let us supplement the obtained equations with differential
equations (3.22) and (3.23) for Jacobi variables H0 and H1, having previously passed to the new
independent variable τ using the formula dt= r0r1dτ . As a result, we obtain the following global regular
quaternion equations of the perturbed spatial restricted circular three-body problem:

d2u0

dτ2
− 1

2
r21

[
H0 − fm1r

−3
01 (r0 · r01)− n(y0ẋ0 − x0ẏ0)

]
u0 (4.22)

=
1

r1

dr1
dτ

du0

dτ
+

1

2

fm1

r1
u0 ◦R01 ◦R1 +

1

2
r0r

2
1i ◦ u0 ◦

[ fm1

r301
R01 −P

]
,

dH0

dτ
=

dr0
dτ

· p+ nr0r1(y0p1 − x0p2), (4.23)

d2u1

dτ2
− 1

2
r20

[
H1 − fm0r

−3
01 (r1 · r10)− n(y1ẋ1 − x1ẏ1)

]
u1 (4.24)
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=
1

r0

dr0
dτ

du1

dτ
+

1

2

fm0

r0
u1 ◦R10 ◦R0 +

1

2
r1r

2
0i ◦ u1 ◦

[ fm0

r310
R10 −P

]
,

dH1

dτ
=

dr1
dτ

· p+ nr0r1(y1p1 − x1p2), (4.25)

dt

dτ
= r0r1, (4.26)

Ri = xii+ yij+ zik = ūi ◦ i ◦ ui, ri = ui ◦ ūi = u2i0 + u2i1 + u2i2 + u2i3, i = 0, 1,

r0 · r01 = a[cos(nt)x0 + sin(nt) y0], r1 · r10 = −a[cos(nt)x1 + sin(nt) y1],

xi = u2i0 + u2i1 − u2i2 − u2i3, yi = 2(ui1ui2 − ui0ui3), i = 0, 1,

− (y0ẋ0 − x0ẏ0) = c0z = 2r−1
1

[
u03

du00
dτ

− u02
du01
dτ

+ u01
du02
dτ

− u00
du03
dτ

]
,

− (y1ẋ1 − x1ẏ1) = c1z = 2r−1
0

[
u13

du10
dτ

− u12
du11
dτ

+ u11
du12
dτ

− u10
du13
dτ

]
,

dri
dτ

· p = 2p1

[
ui0

dui0
dτi

+ ui1
dui1
dτi

− ui2
dui2
dτi

− ui3
dui3
dτi

]

+ 2p2

[
ui2

dui1
dτi

+ ui1
dui2
dτi

− ui3
dui0
dτi

− ui0
dui3
dτi

]

+ 2p3

[
ui3

dui1
dτi

+ ui1
dui3
dτi

+ ui2
dui0
dτi

+ ui0
dui2
dτi

]
, i = 0, 1.

The quaternions r−1
1 R1 and r−1

0 R0, appearing in equations (4.22) and (4.24), have norms equal to
unit. The terms (1/r1)(dr1/dτ)(du0/dτ) and (1/r0)(dr0/dτ)(du1/dτ) of these equations are, as shown
above, the finite values for r1 → 0 and r0 → 0 under the condition that the velocities v0 and v1 are finite.
Moreover, for r1 = 0 and r0 = 0, these terms do not tend to the infinity in timet, but are equal to zero.
Therefore, the equations (4.22)–(4.26) are global regular ones.

The resulting system (4.22)–(4.26) of global regular quaternion equations of a perturbed spatial
restricted circular three-body problem is equivalent to a scalar system of nonlinear differential equations
of the 19th order with respect to the Kustahanheimo–Stiefel variables uij (j = 0, 1, 2, 3) (component
of the quaternion variable ui), their first derivatives duij/dτ with respect to a new independent variable
τ (component of the quaternion variable dui/dτ ), the Jacobi variables Hi and time t (i = 0, 1). The
advantage of these global regular equations is that they use a time transformation that contains the
product of the first power of the distance from a body of negligibly small mass to two bodies of attraction
of finite masses.

In the case of an unperturbed spatial restricted circular three-body problem, the perturbing ac-
celerations p1, p2, p3 are equal to zero and the variables Hi become the Jacobi costants of motion:
Hi(τ) = Hi(0) = const. Therefore, the differential equations (4.23) and (4.25) drop out of consideration
and the unperturbed spatial restricted circular three-body problem is described by global regular
equations(4.22), (4.24), (4.26) that are equivalent to a scalar system of nonlinear differential equations of
17th order with respect to the Kustahanheimo–Stiefel variables uij (j = 0, 1, 2, 3), their first derivatives
duij/dτ and time t (i = 0, 1).

In conclusion, we note that the choice of one or another constructed regular quaternion differential
equations of the spatial restricted three-body problem (both non-circular and circular) can be made
on the basis of numerical integration of these equations and comparing the accuracy of the obtained
solutions. Therefore, one of the directions for the further study of the problem of regularization of
the equations of the spatial restricted three-body problem using the proposed quaternion approach is
connected with the construction and study of numerical solutions of the obtained regular quaternion
equations of this problem.

We also note that each of the systems of local regular quaternion equations for the perturbed three-
body spatial problem in the Kustaanheimo–Stiefel variables (3.5), (3.7), (3.10)–(3.12) and (3.6), (3.8),
(3.13)–(3.15) is close to a linear system of differential equations when considering the movement of a
body under study M in the vicinity of an attracting body M0 or M1. Indeed, in the absence of perturbing
accelerations p1, p2, p3 and body M1 (for m1 = 0), the Kepler energy h∗0 =const and quaternion
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differential equation (3.5) becomes equivalent to the equation of motion for a single-frequency four-
dimensional harmonic oscillator, and the differential equation (3.7) for Kepler energy h∗0 drops out of
consideration. Similarly, in the absence of perturbing accelerations p1, p2, p3 and body M0 (for m0 = 0)
the Kepler energy h∗1 = const and quaternion differential equation (3.6) becomes equivalent to the
equation of motion for a single-frequency four-dimensional harmonic oscillator, and the differential
equation (3.8) for Kepler energy h∗1 drops out of consideration. Therefore, in the case of small perturbing
accelerations p1, p2, p3, the movement of the body under study M in the vicinity of the attracting body
M0 or M1is described by the above mentioned equations , which are close to linear differential equations,
since the terms of these equations that describe the effect of the body M1 or M0 on the body under study
M in these cases are also small.

If the mass of the body M1 or M0 is equal to zero, each of the systems of regular quaternion equations
(3.5), (3.7), (3.10)–(3.12) and (3.6), (3.8), (3.13)–(3.15) coincides with the known regular quaternion
equations of the perturbed spatial two-body problem in the Kustahanheimo–Stiefel variables that were
proposed by the author of this study in [6] (see also articles [9–11]). These regular quaternion equations
of the two-body problem in scalar form coincide with the well-known regular equations of the perturbed
spatial two-body problem obtained by P. Kustaanheimo and E. Stiefel [19] (coincide with the regular
equations of the two-body spatial problem in variables, which are now called Kustaanheimo–Stiffel
variables). E. Stiefel, G. Sheyfele, T. V. Bordovitsyna and other scientists [19, 24, 25] state that using
the regular equations of the perturbed two-body problem in the Kustaanheimo–Stiefel variables makes
it possible to increase the accuracy of the numerical solution of a number of problems in celestial
mechanics and astrodynamics (for example, the problems of the motion of an artificial satellite of the
Earth in orbits with large eccentricities) from three to five orders of magnitude compared to solutions
obtained using classical (Newton) equations in the Cartesian coordinate system.

Taking into account the influence of the body M1 on the movement of the body under study M with
a negligibly small mass in the vicinity of the body M0 or, conversely, taking into account the influence
of body M0 on the movement of the body under stud M with a negligibly small mass in the vicinity
of the body M1, in the above mentioned local regular quaternion equations of the spatial restricted
three-body problem that have the same order as the perturbations taken into account in the well-
known equations of the two-body problem in the Kustaanheimo–Stiefel variables. Therefore, in view
of this qualitative analogy between the well-known regular equations of the spatial two-body problem
in the Kustaanheimo–Stiefel variables and the regular equations of the spatial restricted three-body
problem (3.5), (3.7), (3.10)–(3.12) and (3.6), (3.8), (3.13)–(3.15), it is arguable that the numerical
integration of these local regular equations of the perturbed three-body problem in the Kustahanheimo–
Stiefel variables is more effective than the numerical integration of the three-body problem equations
in rectangular coordinates from the point of view of integration accuracy. However, the degree of
effectiveness of these and other quaternion equations for numerical integration of the spatial restricted
three-body problem that have been proposed in this article should be studied further.
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