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Abstract—A method for solving self-adjoint eigenproblems for linear Hamiltonian systems with equa-
tion, coefficient, and boundary conditions nonlinearly dependent on the spectral parameter is pre-
sented. The suggested approach is based on the iterative Newton procedure with spectral correction.
The fast convergence of the method is demonstrated, and two-sided estimates of the eigenvalue sought
are obtained. The results of the test application of the outlined algorithm are presented for the problem
of the transverse natural oscillations of nonhomogeneous rods with a density defect, using the Euler–
Bernoulli, Rayleigh, and Timoshenko models.
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1. INTRODUCTION

Eigenvalue (EV) problems arise in applications, mainly as a result of the separation of variables of par-
tial differential equations. In the simplest case of a homogeneous oscillating system of the string type, the
boundary value problem takes the form of a second-order equation with constant coefficients and self-
adjoint boundary conditions: this is the classical Sturm–Liouville problem (SLP). When we study
mechanical systems described by more complicated models and admit vector notation, or when the
parameter of separation of variables enters the equations nonlinearly, the formulation in the form of the
linear Hamiltonian system can appear more convenient, due to its generality. Here, in contrast to the
terms extensively used in mechanics [1, 2], EV is understood as the parameter on which the system matrix
depends (including nonlinear dependence). Equations of this type are studied developing both Sturm–
theory [3–7] and the constructive methods to solve boundary value problems for eigenvalues and eigen-
functions [8, 9].

The suggested method differs from the methods mentioned above because the interval length in which
the boundary value problem is posed, corresponding to the length of a string, rod, f luid vessel, etc., is con-
sidered as an independent variable. The difference between initial length l and actual value  correspond-
ing to the given approximation  of EV , is taken as a residual function. This approach allows a con-
structive search for EV , varying value l and correcting  by value  (see below). This method
(the method of accelerated convergence [10]) was developed for the classical and generalized SL problems
[11, 12], for the vector SL problem [13], for the transverse oscillations of the Euler–Bernoulli rod [14, 15],
and for the vector SL problem with a nonlinear dependence on the spectral parameter [16–18], and it has
also been applied in a variety of theoretical-experimental studies [19–22]. The results described below
generalize the mentioned cases and allow employing the method of accelerated convergence to the oscil-
lation problems for mechanical systems of the more general form, for instance, to the model of transverse
oscillations of the Timoshenko rod, to the models of the pipelines oscillations [23, 24], etc., including the
problems with the (dynamic) boundary conditions depending on the spectral parameter [12, 25, 26].
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2. PROBLEM FORMULATION

Consider the following boundary value problem for eigenvalues and eigenfunctions of the linear Ham-
iltonian system, self-adjoint at fixed  [3–6, 8, 9]: we need to find  within the domain of admitted values

 such that nontrivial solution  to the problem

(2.1)

with the boundary conditions

(2.2)

exists. Here, J is the simplectic matrix, On and In are the null and unit matrices of dimension   is the
continuously differentiable vector function depending on scalar variable x. The system matrix is symmet-
ric, and the matrices of the boundary conditions satisfy the adjointness conditions

(2.3)

where asterisk denotes the transposition.

Elements  of matrix A are considered to be continuously differentiable with respect to x and 
functions; the derivative of the matrix with respect to parameter  does not vanish (see below); the ele-
ments of matrices  are also continuously differentiable with respect to ; and EVs  are considered
smoothly dependent on interval length l in some range   with the same being true for the inverse
function  Further, in the cases where no confusion is possible, the dependence of matrix A on  or
on x is dropped. It is assumed that the solution to the problem, the eigenpair   exists and the spectrum
of the problem is discrete. For brevity, we limit ourselves by the case of simple EVs. Thus, we are studying
a classical non-singular oscillating system, whereas mechanical systems with nonstandard behavior in the
spectrum (for instance, inhomogeneous media to which the averaging procedure is applied [27] and which
have the segments of continuous spectrum in some cases) are ignored, at least with reference to these seg-
ments of the spectrum.

3. DIFFERENTIAL PROPERTIES OF THE SOLUTION

As stated above, length  is usually considered to be fixed. In the present approach, the mechanical sys-
tem is assumed to have the following property: when the length of this system (or some parameter corre-
sponding to the length) is changed by a small value, the system frequencies also change by a small value.
This assumption allows an algorithm to be developed that takes the rate of this change into consideration.

Considering the free parameter length l and differentiating the problem (2.1) and (2.2) with respect to
parameter l, we obtain

(3.1)

We consider the scalar product of the studied equation and solution y in  (in the following,

 where  is the scalar product of the function values at point x in  or ,

). Integrating by parts, we obtain

(3.2)

We rewrite the boundary conditions and adjointness conditions, Eqs. (2.2), (2.3), and (3.1), in the form
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where

Without loss in generality, we consider that  In the other case, we consider the canonical
change of coordinates leading to the required property:  where C0 is the symplectic orthogonal

matrix,  Then

and, dropping the tilde, we obtain

We denote  and . Then the expression for  in the original coordinates takes the
following form

(3.3)

Similarly, assuming  and applying, if needed, the change of coordinates, we obtain

Thus, by using the denotations  and  similar to (3.3), from Eq. (3.2) we obtain

(3.4)

Value N(l) is considered nonvanishing.
If the boundary conditions do not depend on spectral parameter , then the formula (3.4) simplifies

to the following:

(3.5)

If the first-order system (2.1) is the reformulated generalized vector SL problem [16–18] (for simplic-
ity, for the boundary conditions independent from the spectral parameter)

then in the problem (2.1)

×
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and the expression (3.5) takes the form [18]:

The system (2.1) corresponds to the linear Hamiltonian system (here x = t):

(3.6)

In terms of the quadratic Hamiltonian (3.6), the expression for the derivative (3.5) becomes

Note that the pseudonorm  in formulas (3.4) (for some problems that are linear in parameter, for
instance SL problems, this value coincides with the classical norm) contains an integral quadratic in y
term  and can be determined by the solution of the differential equation

(3.7)

with the initial condition  Therefore,

Indeed, multiplying Eq. (3.7) by  in  we obtain

Note also that, as follows from the derivation of expression (3.4), this formula holds true for complex-
valued functions and for complex EVs where the scalar products and Hermitian matrix A are adequately
determined. However, in this case, the application of the computational procedure described below may
remove EV from the domain of admitted values and lead to a non-self-adjoint boundary value problem.
Therefore, in the following, for simplicity, we examine only real eigenvalues and eigenfunctions. Here, the
non-self-adjointness of the original problem is not a limitation of the proposed approach. In this case we
should consider the adjoint system 

together with the original system  with the added adjoint boundary conditions.

4. APPROXIMATION OF EIGENVALUES

In the problem formulation, we assumed the smoothness of dependence  which corresponds to the
property of a small variation in the natural frequency at a small variation in the length parameter of the
system. This property is well-known and has been widely observed in many mechanical systems. Conse-
quently, we may conclude that for some   the expansion is valid:

(4.1)
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where y is the solution of the system (2.1) for  that satisfies the boundary conditions at points
:

Now, we construct such solution and determine point : let Y(x) be the solution to the matrix equation

Then because of continuous dependency , there exists a constant m-vector c such that the function
 satisfies the left and right boundary conditions at some, adjoint for x = 0, point 

Hence, at this point , the determinant of the  matrix  is equal to zero:

Thus, by the numerical and analytical determination of value ξ and by calculating the vector c as a solu-
tion of the homogeneous equation  we may construct the eigenfunction sought y(x) = 
that corresponds to EV  and here

5. ITERATIVE PROCEDURE AND TWO-SIDED ESTIMATE
Following from the above discussion, we define the iterative procedure:

1. For a given approximation , numerically or analytically, construct a solution  to the matrix
equation given by

(5.1)

2. Find  as an appropriate root (nearest to l or kth if the number k of EV is known and if for the stud-
ied system the corresponding oscillation Sturm theorems are satisfied):

3. Construct the eigenfunction  where  is the solution of the homogeneous linear
system 

4. Compute the next approximation of EV:

In many special cases, there is no need to calculate an entire fundamental system of solution to m-order
Eq. (5.1). For instance, for   it is sufficient to consider the initial conditions in
the form:
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Note also that steps 1–3 of the algorithm, although they are laborious, may be replaced for the corre-
sponding modification by the process of transition of the boundary conditions to an unknown point 
[9, 28] and require a separate investigation.

For the practical application of this method, in the described approach the criterion of solution accu-
racy will be the residual value  when the value of degree of accuracy of the Cauchy problem (5.1) is
achieved, the approximated boundary value problem becomes close to the original, which means that the
same is true for the eigenvalues and eigenfunctions.

However, the method allows a more direct estimation of the found EV. From the expression (3.4), it
follows clearly that a two-sided estimate can be obtained: if  keeps its sign in some neighborhood  of
admitted values  and for some i, j, and points  and  lie in this neighborhood, then,
for the positive value

(5.2)

and , we have , correspondingly. For the negative value of (5.2), the signs of the

last four inequalities are changed to the opposite ones. Thus, the sought EV is enclosed between  and
 for some i and j.
When the boundary conditions are independent from the spectral parameter, the rule for obtaining the

two-sided estimate may likewise be related to the property of having a fixed sign of matrices A and .
Then, this rule, based on the signs of the value (5.2) considered above, is now based on the consideration
of the sign of the value

The obtained two-sided estimate theoretically allows finding EV with an arbitrary degree of accuracy,
which in practice however, cannot exceed the degree of accuracy of the calculation of point  that is, the
degree of accuracy of the solution to the initial problem (5.1).

Note also that, despite the assumption that EVs are simple, the outlined procedure may be also used
in the case of multiple eigenvalues, at least where there are no bifurcation points in the considered domain.
Then, the system  has several linearly independent solutions  and the eigenfunc-

tions are defined as  However, the justification of convergence of the procedure becomes
here substantially more complicated and requires additional investigation.

6. CONVERGENCE OF ITERATIVE PROCEDURE

Abstracting ourselves from assumption (4.1), we draft the proof for the following theorem:
Theorem. When the assumptions of Sect. 2 are satisfied for a sufficiently close initial guess λ(0), the

application of the step of the procedure of Sect. 5 leads to the following estimate uniform in  :

The proof is follows the perturbation method and the method of successive approximations, like the
method of accelerated convergence for the scalar and generalized vector SL problems [11, 17, 29], but with
some changes. We note a number of technical distinctions. Consider an estimate  of the sought EV λ
for the problem (2.1). According to the assumption made in Sect. 2, λ smoothly depends on l, and, hence,
for some  the equation

is true, and the boundary conditions are met
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Function  is constructed in the standard manner with the algorithm of Sect. 5: if  is a solution to the
matrix equation

and  is some vector and the solution of the system of linear equations (see Sec. 5) , then

.
Considering that the value λ(0) is sufficiently close to the sought value  we introduce the small param-

eter

and denote

Then, original problem (2.1) is represented in the form:

Applying the expansion in powers of 

for the zero power we have the boundary value problem:

(6.1)

Hence,  In the following, we consider that 

To simplify, we represent the desired eigenvalue and eigenfunction in the form of perturbation of the
known solution λ(0), z(0) of the problem (6.1):

Then, to determine this perturbation, we derive the inhomogeneous boundary value problem
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where function  (  ) is Lipschitzian with respect to λ(1) and z(1).
Not taking small term F into account, the result is a problem whose equation we multiply by z(0) in
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where, similarly to Sect. 3, using the boundary conditions, we reduce the expressions at the end points to
the form:
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We also reorganize the right-hand side with integration by parts into the relation

where

Thus, the expression for the perturbation is obtained (it is the orthogonality condition between the
solution to the homogeneous equation and the solution to the inhomogeneous one)

(6.3)

analogous to the expression (3.4) with an accuracy up to . We substitute the found value of the correction
into the problem without perturbation G, Eq. (6.2), and, after that, similar to function , we construct
the function  by using the solution of the Cauchy problems and by satisfying the inhomogeneous
boundary conditions. Using the method of successive approximations, we substitute the found λ(0, 1), 
into function F (6.2), and in the next step we have the following boundary value problem:

(6.4)

The expression for the EV correction (orthogonality condition) takes the following form:

where the denominator N is determined similarly to the denominator in expression (6.3) for . As
above, we substitute the found value  into problem (6.4) and determine  and so on. The squeeze

theorems allow us to state that the presented iterative procedure converges to the unique solution  z(1).
Further, the uniformity of the estimate is demonstrated in a similar way to the simpler case of the linear
scalar problem [11], with the integral representation of a solution to (6.2).

Applying the iterative procedure from Sect. 5 allows the quadratic estimates of the following type at the
kth step to be obtained:

Note that, in the case of multiple EV, perturbation techniques can also be employed; however, expan-
sion is needed in the fractional powers of small parameters [30].

7. TEST EXAMPLE
The proposed general technique was tested for special cases of problems having an analytical solution;

for instance, it was examined for the problem of the natural oscillations of a pipeline [24] and in the scalar
and vector SL problems [16–18], including problems with boundary conditions dependent on the spectral
parameter [12]. Keeping in mind the application of the suggested method to the study of natural oscilla-
tions of rod systems, to illustrate the general concept and the convergence rate, we limit ourselves to a
comparison with the results of numerical experiments that are well-known in the literature for fourth-
order equations with variable coefficients without parameters in the boundary condition. Here, we use the
implementation of the above-discussed algorithm in Maple package. To integrate Eq. (5.1), we used the
dsolve procedure and the fourth-fifth order Runge–Kutta method with the default accuracy parameters
(henceforth, an absolute error of 10–7 and a relative error of 10–6 are meant) and with increased accuracy
parameters (with an absolute error of 10–16 and a relative error of 10–16). To determine the conjugate point
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(the solution to equation ), we utilized the fsolve procedure. We used 20 significant digits for
notionally low accuracy computations and 40 significant digits for increased accuracy computations.

Consider the boundary value problem

(7.1)

which can be interpreted as the equation of the natural transverse oscillations of a rod with variable tension
in an inhomogeneous medium.

We rewrite it in form (2.1):

(7.2)

The numerical solution to boundary value problem (7.1) is known obtained through different methods
[31–35], including the use of the packages SLEUTH [36] and SLEING2 [37]. The presented data differ
by in the sixth digit [31–35]. According to the criterion taken in the present technique (residual value εl),
we take the values of the first and second EVs as the closest to the true EVs [34]:

In the current implementation with increased accuracy, they correspond to the following residual val-
ues:

In the general case of a system that is nonlinear in its parameter, the initial guess for the iterative pro-
cedure can be obtained with a standard shooting procedure. In the special case of the rod systems, varia-
tional principles of the Rayleigh type [38] may be used to provide the upper estimates. For problem (7.1),
we have

(7.3)

We choose the following functions satisfying the boundary conditions as approximations of the first
and second eigenfunctions:

and have the sufficiently accurate estimates for the first and second EV,  and  = 2.75784.
These correspond to the residual values  and  The application of the iterative

procedure gives values  and  with relative errors of  and  for residual values
 and  after the first step and  (relative error of

 residual value ) and  (i.e., equal to the exact value) after the second
step. Thus, to create an accurate initial estimate, we employed fast convergence to a value very close to the
exact one.

A different, simple way to estimate EV can be suggested if the solution is known to a problem that is
near in some sense. Its EV can be also used as an initial guess, and to increase the accuracy of approxima-
tion, perturbation techniques can be used that are similar to the techniques discussed in Sect. 6.

Let , y0 be the solution that generates the boundary value problem given by
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Fig. 1.
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(for simplicity we suppose that the boundary conditions do not depend on the parameter). Taking into
account that the system matrix of the studied system (2.1) can be represented in the form

we have the following boundary value problem:

We suppose that the sought solution, , is a perturbation of the known one, ; that is,

and obtain for the correction value [24]
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Then, as an initial guess we can take 
For the problem (7.1), as a generating problem, we consider

Hence,

Matrices A0 and K and vector  can apparently be determined. It is easy to check analytically that for the
present problem, the estimate of the value  coincides with the estimate derived from relation (7.3)
for all functions  chosen above.

For a vivid demonstration of the quadratic convergence rate of the algorithm, we increase the error of
the initial guess and observe the results at low accuracy. In the following, as an initial guess  , we
take values which differ from the exact one by 10, 20, 30, and 40%. In Fig. 1, residual values  and values

 and  are shown after the ith iteration of the method with the integration at default accuracy. The
calculations were performed up to achieving the value lower than 10–6 by a relative error of EV. Curve 1
corresponds to the variation of  in Fig. 1a and to the variation of  in Fig. 1b; curves  correspond to
the variation of  for  (Fig. 1a) and  (lower part) at 10% of initial error; curves , , and 
correspond to the 20, 30, and 40% of initial error, respectively. Let us note (see Sec. 4) that, at every step
of the algorithm, we compute  for current approximation  and subsequent approximation  for

instance,  corresponds to the initial guess  and after that, we compute the correction and . Thus,
the calculation of the last residual,  is strictly speaking redundant. The calculations for the increased
accuracy of integration showed similar results in the convergence rate.

As the presented results show, in solving the Cauchy problem (with the use of the shooting procedure),
several iterations are sufficient, even with a relatively moderate accuracy to achieve a relative error of about
10–6–10–7.

Note that in the case when the condition of the smoothness of function  does not fulfill, the numer-
ical procedure may not converge or may converge to the different EV (see the analytical example in [17]).

8. SMALL TRANSVERSE OSCILLATIONS OF INHOMOGENEOUS ROD
As a benchmark example of the capability of the application of the described technique, we consider

the calculation of the lowest eigenvalue for three widely used engineer models of natural transverse oscil-
lations of the elastic rod: the Bernoulli–Euler model, the Rayleigh model, and the Timoshenko model
with the hinged boundary conditions [39].

In the Bernoulli–Euler model, the problem considering the natural oscillations of the inhomogeneous
rod taking into account the Rayleigh correction (the second term) has the form

where  is the displacement, E is the Young modulus,  is the moment of inertia of the cross section area,
 is the cross section area,  is the linear density,  is the frequency of natural oscillations, and  is the rod

length.
In the Timoshenko model, the oscillations are described by the system
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where G is the shear modulus, κ is the Timoshenko coefficient of the cross-sectional expansion (for the
circle rod it is  and  is the Poisson coefficient).

We transit to dimensionless quantities and introduce the following denotations:

From this point on, zero subscript denotes the characteristic value of a physical quantity. We introduce
the vector functions

and the matrix functions

where subscripts E, R, and T correspond to the Euler–Bernoulli, Rayleigh, and Timoshenko model,
respectively. Thus, the equations for the rod oscillations are written in a unified form (2.1) with the matri-
ces of the boundary conditions,  (7.2).

In problems of nondestructive testing, the behavior of the frequencies of rod systems with various
defects are of major interest. In the present approach, we illustrate the possibility of the efficient calcula-
tion of the lowest frequencies. Consider the oscillations of a circle rod with a density defect [21]. For sim-
plicity, the other physical parameters will be considered to be constant.

The case of longitudinal oscillations of a free rod when modeling the density defect with function was
considered in [21]:

Using the algorithm implementation outlined in Sect. 7, we computed the first two lower frequencies
of the transverse oscillations of the hinged rod. These calculations were performed up to achieving the rel-
ative error of EV lower than 10–6 for the parameter values   (due to the symmetry
around the center of the segment of the density function definition, the EV is also symmetric), 

 and  for the rod length  (short rod) and  (long rod), where  is
the radius of the rod cross section. Under the chosen parameter values f, the defect of density reaches 30%
for  and 50% for . To start the iteration procedure, as an initial estimate we took the frequency of the
homogeneous rod found analytically (that is, a solution to the “close” problem). Then, we passed along
parameter d (we used the determined value of the frequency as the starting guess for the next parameter
value).

In Fig. 2, we present EV curves for the short and long rod, computed with a relative error lower than
10–6, dependent on the position of the defect center (that is, on parameter d). Figure 2a corresponds to
the natural oscillations in the Euler model (solid lines); Fig. 2b shows the oscillations with the Rayleigh
correction; and Fig. 2c is the Timoshenko model. Solid lines 1 in Figs. 2a–2c reproduce the behavior of
the first EV scaled to the EV of the homogeneous rod,  for  curves 2 reproduce 
for  curves 3 reproduce the behavior of  for  and curves 4 reproduce 
for f = f2. In Figs. 2a (dashed lines) and 2d we use a similar enumeration of the curves; however, in Fig. 2a,
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Fig. 2.
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using the dashed lines we indicate the EV curves for oscillations with the Rayleigh correction, whereas in
Fig. 2d, we use dashed lines in the Timoshenko model. The following scaling is utilized:

Note that the EVs in the Euler model for the short, , and long, , rods are here linked with the rela-

tionship .
The behavior of EVs in our case is similar to the case of longitudinal oscillations of the free rod [21];

the variation of them is moderate (several percent), and the maximum shear appears near the node points
(the ends and the middle of the segment). As for the homogeneous rod [40], an increase in the rod length
leads to the approaching of EVs found with different models.
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The results allow for the suggestion that the method can be applied to investigate a wide range of
boundary value problems for EVs and to calculate them with a high degree of accuracy.
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