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Abstract—We consider a non-autonomous Hamiltonian system with two degrees of freedom, whose
Hamiltonian function is a 2π-periodic function of time and is analytic in the neighborhood of an equi-
librium point. It is assumed that the system exhibits a first-order resonance, i.e., the linearized system
in the neighborhood of the equilibrium point has a unit multiplier of multiplicity two. The case of the
general position is considered when the monodromy matrix is not reduced to the diagonal form, and
the equilibrium point is linearly unstable. In this case, a nonlinear analysis is required to draw conclu-
sions on the stability (or instability) of the equilibrium point in the complete system. In this paper, a
constructive algorithm for the rigorous-stability analysis of the equilibrium point of the above-men-
tioned system is presented. This algorithm has been developed on the basis of a method proposed by
Markeev. The sufficient conditions for the instability of the equilibrium position, as well as the condi-
tions for its formal stability and stability in the third approximation, are expressed in terms of the coef-
ficients of the normalized map. Explicit formulas are obtained that allow one to calculate the coeffi-
cients of the normal form of the Hamiltonian in terms of the coefficients of the generating function of
the symplectic map. The developed algorithm is used to solve the problem of the stability of the reso-
nant rotation of a symmetric satellite.
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The main idea of the methodology proposed by Markeev [1] and used below in the development of the
stability analysis algorithm, consists in constructing and normalizing the symplectic map generated by the
phase f low of the system under consideration.

1. INTRODUCTION
Consider a mechanical system with two degrees of freedom whose motion is described by a non-auton-

omous canonical system of differential equations

(1.1)

We assume that the Hamiltonian H is a -periodic function of time t, analytic in the neighborhood of the
equilibrium point of the system, which coincides with the origin of coordinates  = 0. This means
that in a small neighborhood of the origin, the Hamiltonian can be represented as a convergent series

(1.2)

where  is the form of degree m with coefficients 2π-periodic in t.
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If, among the roots of the characteristic equation of the linear canonical system with the Hamiltonian
H2, there is a root with an absolute value that is not equal to unity, then the equilibrium point is Lyapunov
unstable [2, 3]. If the critical case takes place when all these roots are equal to unity in absolute value, a
nonlinear analysis taking into account the terms of degree higher than two in the expansion of the Ham-
iltonian (1.2) is required to draw conclusions on the stability of the equilibrium point.

The most general approach to the study of the stability of the equilibrium point of Hamiltonian systems
in critical cases is constructing a canonical change of variables that reduces the system (1.1) to a form con-
venient for stability analysis, for which the expansion of the Hamiltonian (1.2) to terms of some finite
degree has the simplest form, the normal form (NF). The conclusions regarding the stability or instability
of the equilibrium point can be drawn on the basis of the sufficient conditions [4], which are written in the
form of inequalities containing the NF coefficients of the Hamiltonian (1.2). In the general case, these
coefficients can only be calculated numerically. Both the classical Birkhoff method [5] and the Deprit–
Hori method [6] lead to calculations that are rather cumbersome from an algorithmic point of view.

The procedure for finding the NF of the Hamiltonian is essentially simplified if we normalize not the
Hamiltonian system itself, but the symplectic map generated by it. Knowing the generating function of the
normalized map, we can obtain the Hamilton function of the corresponding canonical system of differ-
ential equations. The Hamiltonian function thus constructed will be the desired NF of the original Ham-
iltonian. An algorithm for constructing the NF of the Hamiltonian (1.2) was proposed, based on the sym-
plectic mapping method [1]. It was developed for the case when the system parameters lie inside the linear
stability region of the equilibrium point, i.e., when all the roots of the characteristic equation of a linear
canonical system with the Hamiltonian H2 are simple and their absolute values are equal to unity. A sim-
ilar algorithm [7] was developed for the case when the characteristic equation has two simple roots with
modules equal to unity and a double root equal to –1 (the case of a second-order resonance). This algo-
rithm was used in the problem of the orbital stability of plane oscillations of a satellite-plate in a circular
orbit [8].

In this paper, it is assumed that the system (1.1) has a first-order resonance, i.e., its characteristic equa-
tion has a double root equal to unity. This means that the system parameters lie on the boundary of the
stability region of the equilibrium point. In what follows, we will consider only the case of general position,
when the monodromy matrix of a linear system has nonsimple elementary divisors. In this case, the linear
system with the Hamiltonian H2 is unstable; however, this does not imply the instability of the equilibrium
point in the complete nonlinear system. Rigorous conclusions on the stability of the equilibrium point of
the system (1.1) may be drawn from analysis of the NF coefficients of the Hamiltonian (1.2) [9].

The goal of this paper is to develop an efficient algorithm for constructing the NF of the Hamilto-
nian (1.2) in the presence of a first-order resonance in the system.

2. LINEAR NORMALIZATION

In the case of first-order resonance, the characteristic equation of the linear system with a Hamiltonian
 can be written as

(2.1)

where  are the diagonal elements of the fundamental matrix  of a linear system. This matrix sat-
isfies the differential equation

(2.2)

with the initial condition

The Hess matrix of the Hamiltonian H2 of the linear system is denoted by , , and  are the identity
matrices of order two and four, respectively.

In addition to the multiple root ρ = 1 the characteristic equation (2.1) has two simple complex conju-
gate roots  and , where , and the quantity  is found from the relation .
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ON THE CONSTRUCTIVE ALGORITHM FOR STABILITY INVESTIGATION S17
Consider the following symplectic map generated by a linear system with the Hamiltonian H2:

(2.3)

where  denotes the initial values of the variables , and  denotes their values at t = 2π
.

By making a linear canonical change of variables,

(2.4)

we can reduce the map (2.3) to a simpler form:

(2.5)

where r and s denote, respectively, the real and the imaginary part of the eigenvector, which corresponds
to the simple complex root  of the Eq. (2.1), and u and v denote the eigenvector and adjoined vec-
tor, which correspond to the multiple root ρ = 1.

The matrix (2.4) of the linear change has the form

(2.6)

This can be shown by an immediate verification. The coefficients c1 and c2 are obtained from the con-
dition that the change (2.4) be univalent.

It is straightforward to show that in a linear system with the following Hamiltonian

(2.7)

one can choose as a linear canonical system whose phase f low generates a map (2.5), which indicates the
NF of the quadratic part H2 of the initial Hamiltonian (1.2).

3. NONLINEAR NORMALIZATION

We show how, in the case of a first-order resonance, using a non-linear symplectic map generated by the
phase flow of the initial canonical system, obtain the NF of Hamiltonian (1.2), up to terms of degree four
inclusive.

Having performed the linear change of variables (2.4), we arrive at the canonical system with the Ham-
iltonian H*, which is obtained by substituting the linear change formulas into the Hamilton function (1.2).
Following the method of [1], the symplectic map generated by a canonical system with the Hamiltonian
H*, in variables ,  ( ) can be obtained in the form
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(3.1)

Here and what follows,  denotes convergent power series of canonical variables that contain no terms
of degree lower than k.

The forms  ( ) are

The functions  are defined by solving equations

(3.3)

with the initial conditions

The quantities  on the right-hand sides of Eqs. (3.3) are coefficients of the forms

(3.4)

Explicit expressions for coefficients  of the forms Gk are obtained from the relations:

(3.5)

where

(3.6)

The forms  have been obtained by substituting

(3.7)

into the forms  ( ). Elements of the matrix Y(t) satisfy the differential equations

(3.8)

with the initial condition

Thus, the coefficients of the forms F3 and F4 are obtained as a result of numerical integration on the
interval  of a system of 71 equations (55 equations (3.3) for  and 16 equations (3.8) for ).

We now make a linear univalent change of variables using the formulas

(3.9)

where i is the imaginary unit.
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In the new variables , , ( ), the map (3.1) takes the following form:

(3.10)

where

(3.11)

Here,  denote the forms Fk in which ,  are expressed in terms of , , through the formula (3.9)

Let us construct a canonical change of variables , which allows a simplification of the
form of the symplectic map (3.10). We will search for the generating function of this change in the form

(3.12)

(3.13)

The old and new variables are related in the following way:

(3.14)

Taking into account the structure of the generating function R, we have from Eqs. (3.14) the following
explicit formulas that express the old variables in terms of new ones:

(3.15)

Substituting these expressions into the map (3.10), we get

(3.16)

Here,
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The still undetermined coefficients  of the forms R3 and R4 are defined from Eqs. (3.17) in such a
way that the maximal number of terms in the forms  and  vanishes. Calculations show that for the
specified choice of the coefficients  of the forms  and , they will have the form
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where

(3.19)

Since the formulas for the coefficients  and  are rather cumbersome, they are presented sep-
arately in Section 5.

Formulas (3.16) and (3.18) define the explicit form of the normalized map (3.1) up to third-degree
terms inclusive. On the other hand, the initial map (3.1) is generated by the phase f low of the canonical
system with the Hamiltonian H*. Therefore, by an appropriate choice of canonical variables, the Hamil-
tonian H* can be reduced to a form in which it will correspond to the normalized map (3.16). Note that
that the above-mentioned choice of variables (and hence the type of the Hamiltonian) is not uniquely
defined [4]. In particular, the Hamilton function corresponding to the map (3.16) can be searched for in
the form

(3.20)

where

(3.21)

and the still undefined coefficients  are taken to be constant. Here,  denotes a convergent power
series that begins with terms of degree at least five in the canonical variables   whose coeffi-
cients 2π-periodically depend on t.

The symplectic map generated by the phase f low of the canonical system with Hamiltonian (3.20) has
the form (3.1). Since the quadratic part of the Hamiltonian (3.20) does not explicitly depend on t, one can
solve analytically Eqs. (3.3) and (3.8) and obtain expressions for the coefficients  of the forms  and

 in terms of the coefficients  of the Hamiltonian (3.20), which should obviously be chosen in such
a way that the equalities

(3.22)
are satisfied identically.

Equating the coefficients with equal monomials in the left-hand and right-hand sides of Eqs. (3.22),
one can obtain a system of algebraic equations from which the coefficients  of the Hamiltonian (3.20)
are uniquely defined in terms of the coefficients of the forms  and W4. The explicit form of the
coefficients  is presented in Section 5.

The canonical univalent near-identity change of variables  ( ) which is given by the
generating function

(3.23)
The Hamiltonian (3.20) is reduced to the NF

(3.24)

where b1101 = f1002 + f1200, and the expression for b2101 is given in section 5 (see Eqs. (5.2)). Real variables
 are introduced by the formulas
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The expressions for the coefficients  of the forms S3 and S4 are given in Section 5.
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The problem of the stability of the equilibrium point of a system with the Hamiltonian (3.24) was inves-
tigated in detail in [9]. Using the results obtained in [9] and the notations therein, we formulate sufficient
conditions for stability and instability as follows. If , then the equilibrium point is unstable.
If , however, when  the equilibrium point is unstable, when  there is stabil-
ity when the terms of degree higher than four in the Hamiltonian (3.24) are taken into account, and when
the inequalities  < 0 and  are satisfied simultaneously, the equilibrium point is formally
stable. In the case of  an additional analysis is required to solve the stability problem.
It can be performed by taking into account terms of degree higher than four in the expansion of the
Hamiltonian (3.24).

Conclusions on the stability of a system with a normalized Hamilton function (3.24) also hold for a
system with an initial Hamilton function (1.2). Thus, the problem of investigating the stability of the trivial
equilibrium point of system (1.1) amounts to the following. It is necessary to construct a symplectic
map (3.1) generated by the phase f low of system (1.1) and, using formulas (3.19), to calculate the coeffi-
cient  and if it turns out to be zero, then the coefficient . Then, based on the above-mentioned
sufficient conditions, to draw conclusions on the stability of the equilibrium point.

4. ON THE STABILITY OF THE RESONANT ROTATION
OF A DYNAMICALLY SYMMETRIC SATELLITE

Consider a satellite moving in a central Newtonian gravitational force field. The satellite is modeled by
a dynamically symmetric rigid body. To describe the motion of the satellite with respect to the center of
mass, we introduce an orbital coordinate system OXYZ and a satellite-fixed coordinate system . The
axes X, Y, and Z of the orbital coordinate system are directed along the radius vector of the center of mass
relative to the attracting center, along the transversal and along the normal to the orbit, respectively.

The axes of the coordinate system rigidly connected with the satellite  are directed along its prin-
cipal central axes of inertia; the axis  is directed along the axis of symmetry. The orientation of the satel-
lite-fixed coordinate system relative to the orbital coordinate system is given by the Euler angles , , .

Introducing the generalized momenta , , , which canonically conjugate angles , , , we can
write the equations of motion in Hamiltonian form. By virtue of the dynamical symmetry of the satellite
the angle of proper rotation, , is a cyclic coordinate and, therefore, the corresponding momentum 
keeps a constant value  on the satellite’s motions.

In what follows, we assume , that is, we will consider the limited problem of the motion of a
symmetric satellite, assuming that the projection of the absolute angular velocity onto the axis of its
dynamic symmetry is zero. Under this assumption the Hamiltonian of the problem has the following
form [10, 11]:

(4.1)

where ,  is the eccentricity of the orbit,  is the true anomaly, and  and  are, respec-
tively, the equatorial and the polar moment of inertia.

If the parameters  and e satisfy the ratio

then the system of equations with Hamiltonian (4.1) has an exact solution [12]

(4.2)

and corresponds to the planar motion of the satellite, in which one of its main central axes of inertia is
perpendicular to the plane of the orbit, and the satellite completes one rotation in absolute space during
two orbital revolutions of its center of mass.

The stability of the resonant rotations (4.2) in various formulations was investigated earlier in [13–17].
It was established that as the eccentricity approaches unity, intervals of linear stability and intervals of
instability alternate.

The stability of the resonant rotation (4.2) in the case of a dynamically symmetric satellite was exam-
ined in [17], and five intervals of linear stability were found inside which rigorous conclusions on stability
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for most initial conditions, formal stability, stability in the third approximation, or instability were
obtained based on a nonlinear analysis. The values of eccentricity regarding the boundaries of the above-
mentioned intervals, which correspond to first-order and second-order resonances, remained unex-
plored. The first-order resonance takes place at the following boundary points of stability intervals:

(4.3)

The problem of the stability of the resonant rotation for these values of eccentricity can be solved using
the results of Sections 2 and 3. As before [17], the stability study will be performed with respect to pertur-
bations that retain the zero value of the projection of the satellite’s absolute angular velocity onto its axis
of dynamic symmetry, i.e., in the framework of the limited problem considered here.

To describe the motion in the vicinity of the resonant rotation (4.2), we introduce the perturbations
 ( ) with the following formulas:

(4.4)

The canonical equations of perturbed motion have the following form

(4.5)

We present the necessary terms of series expansion of the Hamilton function H in the neighborhood
of  ( ) [17]

(4.6)

For e = e1, the numerically found monodromy matrix of the linear system has the form

(4.7)

As a result of a linear change of variables (2.4) with a matrix

(4.8)

and using the method of Section 3, a symplectic map (3.1) was constructed, for which
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(4.9)

Because the coefficient  is non-zero, in this case the instability of the resonant
rotation (4.2) takes place.

Similarly, stability was studied for eccentricity values , , and . Calculations showed that for all
these values the resonant rotation is unstable.

5. CALCULATED FORMULAS
We present formulas for calculating the coefficients of the normalized map (3.16):

(5.1)

(5.2)

to calculate the coefficients of the Hamiltonian (3.20):
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(5.3)

and to calculate the coefficients of the generating function (3.23):

(5.4)
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