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Abstract—The fundamental spatial problems of the theory of elasticity such as the problem of
constructing Green tensor and the Boussinesq problem of the action of a concentrated force on a
half-space are considered. According to the classical theory of elasticity, these problems are singular.
It is shown that an analytical solution of such problems can be constructed by the Papkovich–
Neuber representation without invoking symmetry conditions. This makes it possible to present
the solution of the problems under consideration in a single form and allows us to write an explicit
solution of half-space loaded by a concentrated vector-force having non-zero projections onto the
normal to the plane bounding the half-space and onto the plane itself.
This paper deals with the generalized regular solutions of the considered fundamental problems of
the elasticity. The solutions are limited at a singular point and damp at infinity.
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1. INTRODUCTION

The solutions of the fundamental problems of the theory of elasticity such as Boussinesq and Flamant
problems, the problems of constructing Green functions are the basis for obtaining many important
theoretical and applied results in the study of the stress-strain state of elastic solids and also in
estimating the strength and fracture of materials. However, the classical solutions of these problems
are singular for displacement fields, deformations, and stresses. As noted in [1, 2], the singularity of
the solution in the problems of the theory of elasticity is not physically determined and appears due to
a mismatch between the mathematical and physical models of a continuum. In recent works [3–8], it
has been shown that the use of the generalized theory of elasticity makes it possible to obtain regular
solutions for problems that are singular in the classical theory. The relations of the generalized theory of
elasticity are constructed on the basis of consideration of the equilibrium of a finite medium fragment, but
not of an infinitely small medium element as it is done in the conventional elasticity. Generalized fields
of displacements, deformations, and stresses are introduced by averaging over a representative fragment
and they take into account high gradients. It is shown that the constructed generalized theory makes
it possible to implement the regularization of a number of singular solutions and obtain regular ones
for the rigid die problem [7], problems in the theory of cracks [6], etc. Note that the gradient theories of
elasticity were also previously used to regularize classical singular solutions for problems of continuous
dislocation theory [9]. In [10], the simplest one-parameter gradient theory was used to obtain a regular
solution of the Flamant problem, and in [11] the regular solutions for the Green function in gradient
theories of elasticity were constructed by Fourier transforms. We note that to obtain regular solutions for
point dislocations [9] and the Green function [11], it was not necessary to use boundary conditions, but
only general representations of fundamental solutions were used. Such problems do not require a clear
definition of the physical meaning of generalized solutions, as well as the constitutive relations, which,
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as is well known, are often contradictory in gradient theories. In the Flamant problem [10], there is a
question about the fulfillment of boundary conditions; it has not been solved correctly. In [7], an analytic
regular generalized solution of the Boussinesq problem was first obtained for loading a half-space with
a force normal to the half-space boundary under the assumption that the solution was constructed in
cylindrical coordinates and had the properties of the generalized solution in the direction of the radial
coordinate in the boundary plane.

In this article, we give complete generalized solutions for the Green function and for the Boussi-
nesq problem. They are constructed by the Papkovich–Neuber representation. It is shown that the
generalized theory of elasticity makes it possible to find regular, every where limited solutions for the
displacement and stress fields that damp at infinity. The explicit expressions are given for the components
of displacements and stresses for the cases of local loading of the surface of a half-space by the force
applied along the normal to the surface of the boundary and by the force lying in the plane.

2. BASIC EQUATIONS OF THE GENERALIZED THEORY OF ELASTICITY
In [3, 4, 8] a version of the theory of elasticity was developed on the basis of the analysis of a medium

element having a form of a parallelepiped, which has small but finite dimensions. The definitions of
generalized displacement fields, deformations, and stresses are proposed to introduce as a special case of
the determination of a generalized tensor field as described below. Suppose that there is some tensor field.
For its components in Cartesian coordinates, it is suggested to introduce the corresponding averaging
over the considered medium fragment with a certain weight. Further, for the tensor components in
the expression under the integral sign, Taylor series expansions in local coordinates are used in the
neighborhood of the origin of the fragment coordinates and it is proposed to remain in these expansions
the terms containing derivatives up to the third order (inclusive). The result of integrating the expressions
obtained over a representative fragment is the definition of a generalized non-local tensor field. In the
general case, the generalized tensor field is formally defined in terms of the tensor field and its derivatives
in the considered fragment with an accuracy up to three structural parameters having the dimension
of the order of a squared length. For an isotropic medium, it can be assumed that these parameters
are equal. Thus, the generalized tensor field takes into account the variability of the tensor field over a
representative fragment and is determined with an accuracy of a structural dimensional parameter.

When averaging, the appropriate choice of the weight function allows us to introduce the following
definitions of generalized non-local fields of displacements Ui, deformations Eij , and stresses Tij ,
respectively, in terms of the fields of true displacements Ri(x, y, z), deformations εij(x, y, z), and stresses
σij(x, y, z):

Ui = Ri − s2ΔRi, Eij = εij − s2Δεij , Tij = σij − s2Δσij, (2.1)

Δf =
∂2f

∂x21
+

∂2f

∂x22
+

∂2f

∂x23
= f,kk.

It was shown [8] that nonlocal partial derivatives of functions Ri(x, y, z) coincide with traditional
derivatives of a generalized function Ui(x, y, z). Therefore, for generalized stresses and strains, the
Cauchy relations remain valid:

Eij =
1

2
(Ui,j + Uj,i), Ui,j =

∂Ui

∂xj
. (2.2)

The direct derivation of the equilibrium equations in terms of generalized stresses is presented in [3, 4] as
a result of the analysis of the equilibrium of a representative fragment. These equations have a classical
form and can be written in the divergence form if we take into account the definitions of generalized
derivatives. In the absence of bulk forces, the equilibrium equations for generalized stresses have the
classical form

Tij,j = 0. (2.3)

The generalized stresses T ij are associated with generalized deformations Emn by Hooke law, that is,

Tii = CijmnEmn, Cijmn = λδijδmn + μ(δimδjn + δinδjm), (2.4)

where λ and μ are Lame coefficients.
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Taking (2.4) into account, we can write the equilibrium equations for a vector in terms of generalized
displacements U in a vector form. For an elastic isotropic solid, these equations completely coincide
with the equilibrium equations for classical theory of elasticity.

L(U) = 0, L(U) = μΔU+ (μ+ λ)∇divU. (2.5)

If we use the virtual displacements principle and write the expression for the work of the resulting forces
applied on variations of generalized displacements (mean displacements for this element), then we get∫∫∫ [

Tij,jδUi

]
dx1dx2dx3 = 0.

This equality allows us to write down the natural boundary conditions, which at the point of surface
intersection with the normal nj for generalized stresses and displacements have the traditional form

TijnjδUi = 0. (2.6)

As a result, a generalized theory of elasticity has been constructed. In the framework of this theory, the
generalized fields of displacements and stresses are determined via the true fields of displacements and
stresses by relations (2.1). For the generalized theory the Cauchy relations (2.2) are valid and the tensor
of generalized stresses satisfies the equilibrium equations (2.5) written in the classical form. A feature
of this theory is that the physical relations are formulated for generalized stresses and strains (2.4), and
static boundary conditions are written by the traditional way for generalized stresses (2.6).

These features of the theory allow us to formulate a consistent algorithm for constructing solutions
of the problems under static boundary conditions. This solution has two stages. At the first stage,
the traditional boundary value problem for the equilibrium equation in terms of displacements with
traditional boundary conditions is considered and the field of classical displacements and stresses is
determined. Thus, as a solution at the first stage, it is proposed to use the traditional problem solution of
mathematical physics. It can be regular or singular. At the second stage, the first equation from (2.1) is
considered and the traditional solution obtained above is substituted into its left-hand side as a function
Ui(x1, x2, x3). The complete solution of the desired problem includes a particular solution defined by a
function f and a general solution of the corresponding homogeneous equation, i.e. Helmholtz equations.
Hereafter, the solutions of the Helmholtz equations found by the classical traditional solutions for
displacements Ui(x1, x2, x3) (or stresses Tij(x1, x2, x3)) will be called generalized solutions. In [5–8],
it has been shown that such a structure of generalized solutions allows us to eliminate the singularity, if
the traditional solution (the left side of the Helmholtz equation (2.1)) is singular.

Then we construct regular solutions of two problems: the problem of determining the Green function
and the Boussinesq problem for a half-space. Both fundamental problems are singular in the classical
theory of elasticity. To solve these problems, the representation of the general solution of the theory of
elasticity in the form of the Papkovich–Neuber representation [12, 13] in terms of scalar and vector
potentials that satisfy the Laplace equation is used.

3. GREEN TENSOR IN THE SPATIAL PROBLEM OF THE CLASSICAL THEORY
OF ELASTICITY

The system of Lame equilibrium equations in terms of displacements for an elastic isotropic body in
the classical theory of elasticity is analyzed.

L(U) = h, L(U) = μΔU+ (μ+ λ) ∇divU. (3.1)

The solutions of the Lame equation (3.1), as shown in [12, 13], can be represented as a differential
expression in terms of auxiliary potentials that satisfy the Poisson equation

U(P ) =
f(P )

μ
+

∇(φ− r f)
4μ(1− ν)

, Δf = h(P ), Δφ = r h(P ). (3.2)

Here h(P ) is the density vector of the bulk forces acting on an elastic body at a point P ; r is the radius
vector from the origin to the point P = (x1, x2, x3).

The representation (3.2) allows one to write the fundamental solution of the Lame equations (3.1)
using the fundamental solution of the Laplace equation via a harmonic vector potential f acting in a
certain direction. As shown in [13, 14], the Green tensor for the Lame equation is three column vectors
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Gi = Gik, which are the response of the displacement vector with components Uk to the action of a
concentrated force in the direction of one of the coordinate axes xi. The vector of a concentrated force
acting in the direction of one of the coordinate axes xi corresponds to the vector potential fi in the
Papkovich–Neuber representation (3.2).

Since the fundamental solution of the 3D Laplace equation is a function (4πr)−1, then the com-
ponents of the Green tensor Gi = {Gik}, being the response to the concentrated force acting in the
direction of the axis xi, correspond to the potential fi = {δik/4πr}. Substituting this expression into
(3.2), we reduce the Green tensor (see [14]) to the differential superposition of the fundamental solutions
of the biharmonic r and harmonic r−1 equations

Gik =
1

4πμ

( δik
r

− 1

4(1 − ν)

∂2r

∂xi∂xk

)
. (3.3)

4. THE GENERALIZED GREEN TENSOR FOR THE SPATIAL PROBLEM
OF THE GENERALIZED THEORY OF ELASTICITY

We denote the generalized solutions for the Green function as G̃ik . According to the relations
(2.1)–(2.3) and the algorithm for obtaining the generalized solutions described above, the generalized
Green tensor G̃ik is determined using the classical Green tensor Gik by the gradient smoothing formula
with the scale parameter s

G̃ik − s2ΔG̃ik = Gik. (4.1)

Considering the representation of the Green tensor in the differential form (3.3), we construct the
generalized Green tensor G̃ik in the differential form. We find the representation for the generalized Green
tensor G̃ik in (3.1) in terms of the fundamental solutions φ(r) and ψ(r) of the Helmholtz equations

G̃ik =
1

4πμ

(
δikφ− 1

4(1 − ν)

∂2ψ

∂xi∂xk

)
, φ− s2Δφ = r−1, ψ − s2Δψ = r. (4.2)

In order to construct a generalized Green tensor G̃ik, we first find particular solutions of the Helmholtz
equation φ(0)and ψ(0) that compensate the right-hand side r−1 and r in (4.2). Then, as a general solution
of the homogeneous Helmholtz equation, we add the fundamental solution of the Helmholtz equation
h0 = e−r/s/r damping at infinity by choosing the coefficient at it so as to compensate the singularities
of the functions φ(0) and ψ(0).

Since the function on the right-hand side of the Helmholtz equation for a function ψ(r) is a function
that satisfies the biharmonic equation, the particular solution of the Helmholtz equation for the function
ψ(r) is represented as the sum of two terms

ψ(0) = r + s2Δr = r + 2s2r−1.

Obviously, the right-hand side itself φ(0) = r−1 is a particular solution of the Helmholtz equation
for the function φ(r), since it is a harmonic function. The general solutions for the function φ and
ψ with smoothed singularities determined by the function r−1 are built by adding the corresponding
fundamental solutions −e−r/s and −2s2e−r/s/r:

φ(r) =
1

r
− h0(r), ψ(r) = r + 2s2

( 1

r
− h0(r)

)
, h0(r) =

e−r/s

r
. (4.3)

As a result, the generalized Green tensor G̃ik is written as a differential combination of the difference
between the fundamental solutions of the Laplace and Helmholtz equations.

G̃ik =
1

4πμ

{
δik

( 1

r
− h0

)
− 1

4(1 − ν)

∂2

∂xi∂xk

[
r + 2s2

( 1

r
− h0

)]}
, h0 =

e−r/s

r
. (4.4)

The asymptotic behavior of functions (4.3) with smoothed singularities and their derivatives in a
neighborhood of the origin follows from the expansions of the fundamental solutions (4.3) into series
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that absolutely converge everywhere in powers of the parameter r/s:

φ(r) =
1

s

∞∑
k=0

(−1)k(rs−1)k

(k + 1)!
, ψ(r) = 2s

(
1 +

∞∑
k=0

(−1)k(rs−1)k+2

(k + 3)!

)
. (4.5)

Taking into account (4.4), (4.5) we find the convergent expanding for the Green tensor

G̃ik =
s−1

8π(1 − ν)μ

∞∑
k=0

(−1)k(rs−1)k

k!

[ 2(1− ν)δik
k + 3

+
s−1

(k + 2)(k + 4)

xixk
r

]
. (4.6)

The generalized Green tensor G̃ik has no singularities at the origin, since all coefficients in the expansion
(4.6) (starting from s−2) are equal to zero and take a finite value G̃ik(0) = s−1[δik/(12πμ)] that grows
inversely proportional to the scale parameter.

5. THE GENERALIZED BOUSSINESQ PROBLEM FOR A HALF SPACE

Let us consider the classical problem of loading a half-space with a concentrated force in the direction
normal to the half-space boundary under condition of a free half-space surface, i.e. the Boussinesq
problem [13]. We construct a generalized solution of the Boussinesq problem. This solution unlike the
classical case does not have a singularity at the point of applying a load.

To construct the solution, we use the Papkovich–Neuber representation (3.2) with the potential
f(P ) = {fx, fy, fz} corresponding to the fundamental solution of the Laplace equation Δf = h with a
vector delta function h(P ) directed along the normal to the half-space surface, i.e. in the direction of the
axis z. This potential determines the local force acting in the direction of the axis z.

fz(P ) =
A

r
, fx = fy = 0. (5.1)

A static boundary condition for stresses should be satisfied on the surface of a half-space z = 0

σzz = δ(0), σxz = σyz = 0 (σ13 ≡ σxz, σ23 ≡ σyz, σ33 ≡ σzz), (5.2)

where δ(x) is the Dirac delta function.
The stress tensor expressed in the Papkovich–Neuber representation (3.2) in terms of auxiliary

potentials f and φ is written as follows:

σij(U) = fi,j + fj,i +
(φ− rf),ij + 2νδij div f

2(1 − ν)
. (5.3)

The relation (5.3) can be obtained by substituting (3.2) into the expression for isotropic body stresses
expressed via the displacements

σij(U) = 2μεij + λ δij div U,
λ

μ
=

2ν

1− 2ν
, div U =

div f
2μ + λ

.

The solution of the Boussinesq problem (5.2) for the Lame equation that has been constructed using the
Green tensor based on potentials (5.1) does not satisfy the boundary conditions (5.2) on the free surface.
Nevertheless, we will show further that one can use an arbitrary (for now) harmonic function φ so that
the static conditions (5.2) are satisfied on the border of the half-space. These conditions determine the
equalities to zero of normal and tangential forces everywhere except the point of applying the local load.

Prove the following statement.
Theorem 1. For potentials determining the components of the Green tensor in the Papkovich–Neuber

f(P ) representation one can always find a harmonic function φ (P ) such that solution (5.3) satisfies the
static boundary conditions of the free surface on a plane z =0 every where except at the point of applying
the load x=y=z=0. The harmonic function that ensures the fulfillment of conditions (5.2) for potentials
(5.1) has the form

φ(P ) = −A (1− 2ν) ln(r + z). (5.4)
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Proof. Convert the components σxz , σyz , σzz. Of the stress tensor (5.3) on the boundary of the half-
space so as to clearly distinguish nonzero components of the surface forces at z = 0. To compensate
for the residual errors from these components in the boundary conditions at z = 0 we use additional
potential φ (P ).

We rewrite equation (5.3) for j = 3 in the form

σiz = fz,i + fi,z +
(φ− xfx − yfy − zfz),iz + 2νδi3 div f

2(1 − ν)
.

In the third term of the written equation, we open the derivatives (zfz),iz, select the term fz,i, and group
the expressions as follows:

σiz = fi,z −
zfz,iz

2(1 − ν)
+

δi3(2ν div f − fz,z)

2(1− ν)
+

(1− 2ν)fz,i + (φ− xfx − yfy),iz
2(1− ν)

.

The first two terms in the written expression vanish on the surface z = 0 outside the point of applying the
load. It is enough to take into account that the derivative of the potential f with respect to a variable z
gives a factor z outside the regular function, since f is a function of the radial coordinate. We now select
the harmonic combination in the last term.

σiz = fi,z +
δi3(2ν div f − fz,z)− zfz,zi

2(1− ν)
+

1

2(1− ν)

∂

∂xi

[
φ,z + z(fx,x + fy,y)

− (xfx,z + yfy,z)− z(fx,x + fy,y) + (1− 2ν)fz

]
.

The main goal of the transformations is to compensate for the residual error in static boundary
conditions. The residual error is associated with the term in square brackets. It can be verified that the
combination of functions z(fx,x + fy,y)− (xfx,z + yfy,z) satisfies the Laplace equation, that is, it is a
harmonic function, and the term [z(fx,x + fy,y)],i in the last equality is transformed as follows:

∂

∂xi

[
z(fx,x + fy,y)

]
= δi3(fx,x + fy,y) + z(fx,x + fy,y),i.

As a result, we obtain the expression

σiz = fi,z +
δi3(2ν div f − fx,x − fy,y − fz,z)− z(fx,x + fy,y + fz,z),i

2(1 − ν)

+
1

2(1− ν)

∂

∂xi

[
φ,z + z(fx,x + fy,y)− (xfx,z + yfy,z) + (1− 2ν)fz

]
.

The last equation can be rewritten in the following form:

σiz = fi,z −
δi3(1− 2ν) div f + z div f,i

2(1− ν)
+

1

2(1 − ν)

∂

∂xi

[
(φ− xfx − yfy),z + z(fx,x + fy,y)

+ (1− 2ν)fz

]
. (5.5)

We insert the second term in square brackets in formula (5.5) into the sign of the derivative:

(φ− xfx − yfy),z + z(fx,x + fy,y) = (φ− xfx − yfy + z(Fx,x + Fy,y)),z − (Fx,x + Fy,y)

= (φ+ z div F − r f),z − divF + fz.

Here F is the primitive function of potential f for the integration with respect to z, that is f = F,z. It
is possible to verify that for such a transformation, the combination z divF − rf is a harmonic function,
and one can consider a harmonic function ψ = φ+ z divF − rf instead of a function φ.

In the equality (5.5), the first two terms satisfy the static boundary conditions, since, according to
(5.1), (1− 2ν) div f = 2(1− ν)fz,z and fx,z = fy,z = 0 on the boundary of the half-space. Then we
rewrite the expression for surface stresses (5.5) in the following form

σiz = fi,z −
δi3(1− 2ν) div f + z div f,i

2(1− ν)
+

∂

∂xi

[ ψ,z − divF + 2(1 − ν)fz
2(1− ν)

]
. (5.6)
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In order to satisfy boundary conditions for stresses σiz for z = 0, it is necessary to require the square
bracket in formula (5.6) to be equal to zero. Thus, the harmonic potential φ(P ) is determined by the
equality

∂

∂z

[
φ+ z div F − r f

]
− divF + 2(1 − ν)fz = 0. (5.7)

From here we find that for the fundamental solution (5.1) the harmonic potential φ(P ) is determined
explicitly by integrating the fundamental solution fz:

divF = fz =
A

r
, z divF − rf = 0,

∫
dz

r
= ln(r + z).

As a result we obtain

φ(P ) = −A(1− 2ν) ln(r + z)

and the theorem is proved.

Note that the considered theorem is valid for potentials of a more general form than those dictated
by conditions (5.1). It is enough to require for them the harmonicity in the half-space, the fulfillment of
equality (5.7) and the following conditions on the border of the half-space:

fz,z − (1− 2ν)(fx,x + fy,y) = 0, fx,z = fy,z = 0, z = 0. (5.8)

This generalization turns out to be essential if we consider the more general conditions for loading a
half-space.

Let us return to the potentials (5.1). When (5.7) is satisfied, the stresses are found by explicit formulas
and contain derivatives with respect to the argument z of the fundamental solution

σiz = − zfz,zi
2(1− ν)

, i �= 3, and σzz =
fz,z − zfz,zi
2(1 − ν)

, fz,z = −Az

r3
.

It can be seen that for the recorded stresses at the boundary of the half-space, static boundary
conditions (5.2) are satisfied at all points except the origin.

By opening all derivatives in these representations, we obtain

σxz = − 3A

2(1− ν)

xz2

r5
, σyz = − 3A

2(1 − ν)

yz2

r5
, σzz = − 3A

2(1− ν)

z3

r5
.

The choice of the constant A is determined by the properties of the delta function of the component of
the surface stress σzz and the static conditions (5.2). The integral action of the force must be equal to
−1, since the outward normal to the surface is directed in the negative direction. Performing integration
σzz over a parallel surface {z = d}, we find

− 3A

2(1− ν)

∞∫

−∞

∞∫

−∞

z3dxdy

r5
= − 3A

2(1− ν)

2π∫

0

∞∫

0

d3(t2 + d2)−5/2t dt dϕ

= − 3Aπ

2 (1− ν)

∞∫

0

d3(t2 + d2)−5/2d(t2 + d2) =
Aπ

(1− ν)
d3(t2 + d2)−3/2

∣∣∣∞
0

= − Aπ

(1− ν)
= −1.

Consequently, the constant in the definition of potentials (5.1) is A = (1− ν)/π.
Thus, the solution of the Boussinesq problem on the action of a unit concentrated force on a free

half-space is given by the Papkovich–Neuber representation (3.2) with the following potentials

fx = fy = 0, fz =
1− ν

πr
, φ = − (1− 2ν)(1 − ν)

π
ln(r + z), (5.9)

and the surface forces σz = {σiz} acting on a small area oriented perpendicular to the axis z, are
determined by the formula σz = −3rz2/2πr5 (r is the radius vector of the current point) and satisfy
the static boundary conditions (5.2) at z = 0.
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6. DETERMINATION OF DISPLACEMENTS IN THE BOUSSINESQ PROBLEM
The components of the displacement vector are calculated directly using the Papkovich–Neuber rep-

resentation (3.2) and considering the specific form (5.9) for the potentials. As a result, the displacement
field for the classical Boussinesq problem on a half-space {z ≥ 0} loaded by a concentrated force applied
at a point x = y = z = 0 is determined by the relations

Ux = − 1

4πμ

[ (1− 2ν)x

r (r + z)
− xz

r3

]
, Uy = − 1

4πμ

[ (1− 2ν)y

r (r + z)
− yz

r3

]
, (6.1)

Uz =
1

4πμ

[ 2(1 − ν)

r
+

z2

r3

]
. (6.2)

Note that in the solution structure of the Boussinesq problem, there are harmonic functions x/(r + z)
and y/(r + z) depending only on the angular coordinates ϕ = arctan(y/x) and θ = arccos(z/r):

x

r + z
=

cosϕ sin θ

1 + cos θ
,

y

r + z
=

sinϕ sin θ

1 + cos θ
, Δ

( x

r + z

)
= Δ

( y

r + z

)
= 0. (6.3)

These functions are also the fundamental solution for the Laplace operator. However, they are bounded
across the space, in contrast to the singular function r−1.

The solution of the Boussinesq problem (6.1), (6.2) in terms of displacements can be written by
analogy with formula (3.3) for the Green tensor in differential form by highlighting the fundamental
solution of the Laplace operator and derivatives of the fundamental solution of the biharmonic equation.
There is a following statement.

Theorem 2. The displacements in the problem of a concentrated force action on a free half-space
can be represented as a superposition of angular harmonic functions (6.3), a fundamental solution of a
harmonic equation, and derivatives of a fundamental solution of a biharmonic equation:

Ux = − 1

4πμ

( x

r + z

1− 2ν

r
+

∂2r

∂x ∂z

)
, Uy = − 1

4πμ

( y

r + z

1− 2ν

r
+

∂2r

∂y ∂z

)
, (6.4)

Uz =
1

4πμ

( 3− 2ν

r
− ∂2r

∂z2

)
. (6.5)

The proof of the last assertion can be carried out by direct verification of relations (6.4), (6.5).
Note also that the stresses (5.8) in the classical Boussinesq problem are also rewritten in differential

form via two fundamental solutions of the harmonic and biharmonic equation (the angular functions
(6.3) are not involved in the formula):

σxz =
1

2π

∂

∂x

( 1

r
− ∂2r

∂z2

)
, σyz =

1

2π

∂

∂y

( 1

r
− ∂2r

∂z2

)
, σzz =

1

2π

∂

∂z

( 3

r
− ∂2r

∂z2

)
. (6.6)

7. THE DETERMINATION OF DISPLACEMENTS AND STRESSES IN THE
GENERALIZED BOUSSINESQ PROBLEM

The generalized theory of elasticity deals with displacements R that are associated with classical
displacements U by the Helmholtz equation with a parameter s2 that is

R − s2ΔR = U. (7.1)

We construct a generalized solution of equation (7.1) that has no singularities at the origin. To do this,
we use the representation of displacements in differential form (6.4), (6.5). Taking into account the
structure of the solution, it can be seen that a part of the necessary functions φ(r) and ψ(r) from (4.2)
for the components of generalized displacements have already been obtained in (4.3). Thus, it suffices to
determine the solutions of the equations for the terms containing the angular functions (6.3):

φx − s2Δφx =
x

r + z
r−1, φy − s2Δφy =

y

r + z
r−1. (7.2)

Using the properties of harmonic functions (6.3) (dependent only on the angular coordinates), the

particular solution of equations (7.2) have the forms φ
(0)
x = r−1x/(r + z) and φ

(0)
y = r−1y/(r + z),
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and the compensating singularity general solution of the homogeneous Helmholtz equation has a form
of product of the angular function and the fundamental solution h0(r) of the Helmholtz equation. As
a result, the solution of equations (7.2) has the form of the product of the angular function and the
solution already constructed φ(r). The asymptotic behavior of φx, φy and their regularity follows from
the expanding (4.5) for the function φ(r).

As a result, the generalized solutions for displacements in the Boussinesq problem that are regular at
the point of applying the load are represented as follows:

Rx = − 1

4πμ

{
(1− 2ν)

( 1

r
− h0

) x

r + z
+

∂2

∂x ∂z

[
r + 2s2

( 1

r
− h0

)]}
, h0 =

e−r/s

r
, (7.3)

Ry = − 1

4πμ

{
(1− 2ν)

( 1

r
− h0

) y

r + z
+

∂2

∂y∂z

[
r + 2s2

( 1

r
− h0

)]}
, (7.4)

Rz =
1

4πμ

{
(3− 2ν)

( 1

r
− h0

)
− ∂2

∂z2

[
(r + 2s2

( 1

r
− h0

)]}
. (7.5)

The regularity of functions (7.3)–(7.5) follows from the expansion of displacements over the whole space
into series obtained on the basis of expansions (4.5):

Rx = xd, Ry = yd, d = − s−1

4πμ

∞∑
k=0

(−1)k(r/s)k

k!

[ 1− 2ν

(k + 1)(r + z)
− 2s−1

(k + 2)(k + 4)

z

r

]
, (7.6)

Rz =
s−1

4πμ

∞∑
k=0

(−1)k(r/s)k

k!

[ 1

k + 1

(
3− 2ν − 2

k + 3

)
+

2s−1

(k + 2)(k + 4)

z2

r

]
. (7.7)

From these expansions, it follows that at the origin the displacement component takes a finite value
Rz = s−1[(7− 6ν)/12πμ] inversely proportional to the scale parameter, that is, the displacements in the
generalized theory of elasticity have no singularities at the origin. Similarly, using (6.6) and (4.3), the
generalized stresses are written in the Boussinesq problem

σxz =
1

2π

∂

∂x

{( 1

r
− h0

)
− ∂2

∂z2

[
r + 2s2

( 1

r
− h0

)]}
, h0 =

e−r/s

r
, (7.8)

σyz =
1

2π

∂

∂y

{( 1

r
− h0

)
− ∂2

∂z2

[
r + 2s2

( 1

r
− h0

)]}
, (7.9)

σzz =
1

2π

∂

∂z

{
3
( 1

r
− h0

)
− ∂2

∂z2

[
r + 2s2

( 1

r
− h0

)]}
. (7.10)

The expansions of generalized stresses into series converging over the whole space have the form

σxz = − xd

r
, σyz = − yd

r
,

d =
s−2

2π

∞∑
k=0

(−1)k(r/s)k

k!

[ 1

k + 1

( 2(z2/r2 − 1)

k + 4
+ 1

)
+

2s−1

(k + 3)(k + 5)

z2

r

]
, (7.11)

σzz = − z

r

s−2

2π

∞∑
k=0

(−1)k(r/s)k

k!

[ 1

k + 1

( 2(z2/r2 − 3)

k + 4
+ 3

)
+

2s−1

(k + 3)(k + 5)

z2

r

]
. (7.12)

The generalized stresses have a finite value at the origin. This value is inversely proportional to the square
of the scale parameter.

Writing in (7.3)–(7.5), (7.8)–(7.10) the derivatives in an explicit form, we can present the solution
of the generalized Boussinesq problem in algebraic form separating the classical part of the generalized
solution, that is,

Rx = − x

4πμ

[ 1− 2ν

r(r + z)
− z

r3
− 2z(r + z) + (1− 2ν)r2

r2(r + z)
h0 +

6s2z

r2

( 1

r3
+ h1

)]
,

Ry = − y

4πμ

[ 1− 2ν

r(r + z)
− z

r3
− 2z(r + z) + (1− 2ν)r2

r2(r + z)
h0 +

6s2z

r2

( 1

r3
+ h1

)]
,
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Rz =
1

4πμ

[ 2(1− ν)

r
+

z2

r3
+

2z2 − (3− 2ν)r2

r2
h0 −

2s2(3z2 − r2)

r2

( 1

r3
+ h1

)]
,

σxz =
x

2π

[
− 3z2

r5
+

2z2 − r2

r2
h1 +

2s2(5z2 − r2)

r2

( 3

r5
− h2

)]
,

σyz =
y

2π

[
− 3z2

r5
+

2z2 − r2

r2
h1 +

2s2(5z2 − r2)

r2

( 3

r5
− h2

)]
,

σzz =
z

2π

[
− 3z2

r5
+

2z2 − 3r2

r2
h1 +

2s2(5z2 − 3r2)

r2

( 3

r5
− h2

)]
,

h0 =
e−r/s

r
, h1 =

h′0
r

= − (1 + r/s)e−r/s

r3
, h2 =

h′1
r

=

[
3(1 + r/s) + (r/s)2

]
e−r/s

r5
.

8. COMPARISON WITH THE SOLUTION OBTAINED BY SMOOTHING OVER
THE BOUNDARY OF THE HALF-SPACE

In [7], a generalized solution of the Boussinesq problem on the surface of applying a concentrated
force was obtained by using the smoothing operator (7.1) to the projection of the deflection function
(6.2) onto the plane {z = 0}. In other words, a model in which the representative fragment is a plane
square and is determined by one scale parameter s has been used. It can be seen that this solution is
reduced to the construction of a fundamental solution φ− s2Δφ = 1/r on the plane by using the plane
Laplace operator Δφ = φ′′ + φ′/r. The solution is expressed in terms of the Macdonald and Bessel
functions of zero-order [7]:

φ(r) =
[ π
2

−
r̄∫

0

K0(r̄)dr̄
]
I0(r̄) +K0(r̄)

r̄∫

0

I0(r̄)dr̄, r̄ = r/s, r =
√

x2 + y2.

The corresponding generalized displacement can be expressed via this function in the form w1(r) =
(1− ν2)φ′(r)/(πE) and expanded by analogy with (37) in a series of powers r/s

w1(r)=
1− ν2

2πE s

∞∑
k=0

( r

2s

)2k[ π

(k!)2
+

r

2s

k∑
l=0

1

(l! (k − l)!)2(l + 1/2)

( (k − 2j)hj
k − j − 1/2

− 1

2j + 1

)]
, (8.1)

where hj =
∑j

l=1 1/l, E is the Young modulus, ν is Poisson ratio.
The comparison of solution (8.1) with expansion (7.7) obtained by smoothing the fundamental

solution by the spatial Laplace operator indicates a discrepancy in the asymptotic behavior of the
displacements at the origin. The discrepancy corresponds to the multiplier 3π(1 − ν)/(7− 6ν) and
indicates the need to fit the scale parameter s in the 2D and 3D case. The difference disappears if in the 2D
case the scale parameter is increased by a factor of 3π(1− ν)/(7− 6ν). In this case, the main term of the
asymptotics for generalized displacements is the same in both cases. This problem of matching is similar
to that when, for example, the effective properties of a discretely reinforced composite are compared in
2D and 3D cases. In this case, the scale parameter is found by matching the relative concentrations of
inclusions having different dimensions in the 2D and 3D cases.

Fig. 1 demonstrates a comparison of the graphs for the generalized displacement w1(r) from [7]
obtained with the help of a plane operator (thin line) and the function Rz(r) (7.7) obtained with the
help of a spatial operator (ordinary line) on a plane {z = 0} at matching the scale parameters and
at E = 1.2 GPa, ν = 0.3. The results of the comparison show a good agreement of functions in the
neighborhood of the singular point.

9. GENERALIZATION: THE BOUSSINESQ PROBLEM FOR A CONCENTRATED FORCE
ACTING TANGENTIALLY TO THE HALF-SPACE BOUNDARY

The solution constructed in Section 7 is easily generalized using Theorem 1 to a problem in which
the concentrated force acts tangentially to the half-space boundary, i.e. in the direction of the axis x or
y. The vector delta function h(P ) from the Papkovich–Neuber representation (3.2) in this case has a
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Fig. 1.

component directed along the x or y axis. Thus, we believe that the Papkovich–Neuber potential f(P ) is
a fundamental solution of the Laplace equation with a non-zero component fx(P ) = A/r.

To provide the necessary static boundary conditions in a problem with a force acting tangentially to
the half-space boundary

σxz = δ(0), σyz = σzz = 0, (σ13 ≡ σxz, σ23 ≡ σyz, σ33 ≡ σzz) (9.1)

in accordance with Theorem 1, it is necessary to introduce an additional component fz from the condition
that follows from (5.8)

∂fz
∂z

− (1− 2ν)
∂fx
∂x

= 0. (9.2)

For the fundamental solution that determines the action of a concentrated force in the direction of the
axis x, we obtain from (5.7) and (9.2)

φ = (1− 2ν)2
Ax

r + z
, fx =

A

r
, fz = (1− 2ν)

Ax

r(r + z)
. (9.3)

Performing the derivation of first and last relations (9.3), the formulas have been used to integrate the
fundamental solution∫

dz

r3
= − 1

r(r + z)
,

∫
dz

r(r + z)
= − 1

r + z
,

∫
dz

r
= ln(r + z).

As a result, when conditions (5.7) and (9.2) are fulfilled, the components of the stress tensor are equal to
zero on the half-space surface and are determined by the formulas

σiz = fi,z −
z div f,i
2(1 − ν)

, σzz = − z div f,i
2(1− ν)

. (9.4)

The normalization of the solution (the choice of a constant A) is determined by the properties of the
component σxz of surface stresses (9.4) as δ–function and is found when integrating over a parallel
surface {z = d}. Calculating the derivatives of potentials in (9.3), we obtain σxz =−3Azx2/r5. Carrying
out integration over a parallel surface, we find

− 3A

∞∫

−∞

∞∫

−∞

zx2dxdy

r5
= −3A

2π∫

0

∞∫

0

d(t2 + d2)−5/2t3 cos2 ϕdtdϕ

= − 3Aπ

2

∞∫

0

d(t2 + d2)−5/2t2d(t2 + d2) = − 3Aπ

2

∞∫

0

d(t2 + d2)−3/2d(t2 + d2)

+
3Aπ

2

∞∫

0

d3(t2 + d2)−5/2d(t2 + d2) = Aπ
(
3d(t2 + d2)−1/2 − d3(t2 + d2)−3/2

)∣∣∣∞
0

= 2Aπ.
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Taking into account that the integral action of the tangential force σxz must be equal to 1, we obtain a
constant A = 1/(2π).

Thus, the solution of the Boussinesq problem for a concentrated force acting tangentially to the
half-space surface is obtained. This solution determines the potentials in the representation (3.2) in
the form (9.4) with constant A = 1/(2π). By opening the derivatives in (9.4), we obtain the formula
σz = −3rxz/2πr5 for the surface forces σz = {σiz} acting on the platform orthogonal to z.

Based on (3.2) and (9.4), we calculate the components of the displacement vector in differential form
via the biharmonic functionr, the angular functions (of a new type), and the fundamental solution of the
Laplace equation r−1

Ux =
1

4πμ

[ 2
r
+ (1− 2ν)

( r

r + z
− x2

(r + z)2

) 1

r
− ∂2r

∂x2

]
, (9.5)

Uy = − 1

4πμ

[ (1− 2ν)xy

(r + z)2
1

r
+

∂2r

∂x∂y

]
, Uz = − 1

4πμ

[ (1− 2ν)x

r + z

1

r
+

∂2r

∂x ∂z

]
. (9.6)

We construct a smoothed solution of the generalized Boussinesq problem. Here the structure of the
solution is determined not only by the functions r, r−1, but also by angular harmonic functions x/(r+ z)
and xy/(r + z)2, and r/(r + z)− x2/(r + z)2 depending only on the angular variables in the spherical
coordinate system:

r

r + z
− x2

(r + z)2
=

1

1 + cos θ
−

( cosϕ sin θ

1 + cos θ

)2
, ∇2

[ r

r + z
− x2

(r + z)2

]
= 0,

xy

(r + z)2
= sinϕ cosϕ

( sin θ

1 + cos θ

)2
, ∇2

[ xy

(r + z)2

]
= 0.

The product of these functions by the fundamental solution r−1 is a singular harmonic function with a
first order singularity depending on the angular coordinates and the generalized solution is constructed,
as before, using the product of these angular functions by the smoothed fundamental solution φ(r).

The differential stresses have the form

σxz =
1

2π

∂

∂z

( 1

r
− ∂2r

∂x2

)
, σyz = − 1

2π

∂3r

∂x∂y∂z
, σzz =

1

2π

∂

∂x

( 1

r
− ∂2r

∂z2

)
. (9.7)

The representation for displacements in algebraic form is obtained by expanding the derivatives in (9.5),
(9.6):

Ux =
1

4πμ

[ 1
r
+ (1− 2ν)

( 1

r + z
− x2

r(r + z)2

)
+

x2

r3

]
,

Uy = − 1

4πμ

[ (1− 2ν)xy

r(r + z)2
− xy

r3

]
, Uz = − 1

4πμ

[ (1− 2ν)x

r(r + z)
− xz

r3

]
.

In accordance with the structure of solution (9.5)–(9.7) and the properties of the angular functions, the
solution of the Boussinesq problem in the generalized theory of elasticity is written in differential form
and is determined by the difference between the fundamental solutions of the Laplace and Helmholtz
equations and the angular functions. (The solution has no singularities at the origin)

Rx =
1

4πμ

{[
2 + (1− 2ν)

( r

r + z
− x2

(r + z)2

)]( 1

r
− h0

)
− ∂2

∂x2

[
r + 2s2

( 1

r
− h0

)]}
, (9.8)

Ry = − 1

4πμ

{ (1− 2ν)xy

(r + z)2

( 1

r
− h0

)
+

∂2

∂x∂y

[
+ 2s2

( 1

r
− h0

)]}
, h0 =

e−r/s

r
, (9.9)

Rz = − 1

4πμ

{ (1− 2ν)x

r + z

( 1

r
− h0

)
+

∂2

∂x∂z

[
+ 2s2

( 1

r
− h0

)]}
, (9.10)

σxz =
1

2π

∂

∂z

{( 1

r
− h0

)
− ∂2

∂x2

[
r + 2s2

( 1

r
− h0

)]}
, (9.11)

σyz = − 1

2π

∂3

∂x∂y∂z

[
r + 2s2

( 1

r
− h0

)]
, (9.12)
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σzz =
1

2π

∂

∂x

{( 1

r
− h0

)
− ∂2

∂z2

[
r + 2s2

( 1

r
− h0

)]}
. (9.13)

The regularity of the functions (9.8)–(9.13) follows from the asymptotics (4.5) for smoothed fundamental
solutions φ(r) and ψ(r) used in the construction of the solution

Rx =
1

4πμ

[ 4
3
+ (1− 2ν)

( r

r + z
− x2

(r + z)2

)]
s−1 +O(s−2), Ry = − 1− 2ν

4πμ

xy

(r + z)2
s−1 +O(s−2),

Rz = − 1− 2ν

4πμ

x

r + z
s−1 +O(s−2), σxz = − 1

8π

z(r2 + x2)

r3
s−2 +O(s−3),

σyz = − 1

8π

xyz

r3
s−2 +O(s−3), σzz = − 1

8π

x(r2 + z2)

r3
s−2 +O(s−3).

According to these asymptotic formulas, displacements and stresses in the generalized theory of
elasticity do not have singularities at the origin, but take a finite value inversely proportional to the scale
parameter or its square (for stresses).

10. EXAMPLES

Figure 2 shows the graphs of the function Rz on the boundary of the half-space along the axis x
for different values of the scale parameter s in the Boussinesq problem with the force applied along the
normal to the surface of the half-space. Characteristics of the material are: E = 1.2 GPa, ν = 0.3. Figure
3 shows the graphs of the function σzz , (formula (7.10)) at different distances d from the boundary of the
half-space along a straight line y = 0 for a fixed value of the scale parameter s = 1 in the Boussinesq
problem with a force applied normal to the surface of the half-space.

Fig. 2. Fig. 3.

11. CONCLUSION

In the class of solutions for the generalized theory of elasticity, a regular representation for the
Green tensor is found and a solution of the Boussinesq problem is constructed. For the Boussinesq
problem, we obtain explicit solutions that are regular everywhere in the half-space and damp at infinity.
Finite relations for displacements and stresses are written and explicit expressions that determine the
asymptotic behavior of a regular solution in a neighborhood of a singular point are presented.
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