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Abstract—The TGAVM schemes based on the Kovalevskaya gyroscope with both spherical
electrostatic and spring suspensions are described. The differential equations of motion of the
gyroscope are given, formulae for the output information on the three components of the angular
velocity of MO. The formula for determining the third component includes the first and second
derivatives on the coordinates of the translational movements of the gyroscope in the equatorial
plane. To determine them, an algorithm is used to filter the interference of derivatives, based on the
Luenberger identification device. The results of mathematical simulation by the derivation of the
three components of the angular velocity, which confirmed the validity of the premises, are given. An
analytical approximate solution of the problem is given for the self-centering mode of the gyroscope
rotor and for the resonance mode. It is shown that in the second case the sensitivity of the device
can be an order of magnitude higher than in the first. The approximate solution is confirmed by
calculations of the third component of the angular velocity based on measuring only the coordinates
of the translational movement of the gyroscope, without derivatives.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The problem is to provide a technical solution that makes it possible to measure by the Kovalevskaya
single-rotor gyroscope three components of the absolute angular velocity vector of a moving object
(MO). This predetermines the imposition of links in five degrees of freedom due to correction and
suspension systems providing the point of suspension of the gyroscope to MO and the property of
tracking its own rotation axis for one of the MO axes during all its turns practically coinciding with
it. This technical solution corresponds to a system of five linearized differential equations of motion and
the possibility of removing information, in known way — through the indicated correction systems on
two components of angular velocity lying in the equatorial plane of the rotor. The third component is
determined by measuring the coordinates of the translational motion of the rotor in the equatorial plane,
determining their first and second derivatives in time and using them in the found calculation algorithm
using an onboard computer. Considering that information about the angular velocity is contained in
additional oscillations of the same frequency as the carrier oscillations from centrifugal forces due to
the displacement of the center of mass of the rotor. It is important not only to identify the useful
oscillation components, but also to find conditions when they will stand out with greater certainty.
Thus, it is necessary to find alternative analytical solutions and use them to measure the influence of
the parameters of the gyroscope on the sensitivity and error of solving the problem. Bearing in mind the
possibility of using a contact suspension, apply a method of self-centering to eliminate the influence of
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Fig. 1.

centrifugal forces on the suspension supports and analyze the effectiveness of the problem solution in this
case. In addition, to produce mathematical modeling of processes in order to illustrate the effectiveness
of algorithms based on differential equations. The device and some properties of a three-component
gyroscopic angular velocity meter (TGAVM) based on a Kovalevskaya gyroscope (TGAVM-K) with
an electrostatic suspension (ESS) are described in [1]. From the studies [1–3] some schematic design
solutions, equations and algorithms are used. The gyroscope oscillation method proposed in [2] in the
Kovalevskaya gyroscope is solved in a natural way due to the equatorial displacement of the center
of mass. Along with the ESS-based scheme, TGAVM can be used on a mechanical suspension, for
example, with a rotor in ball bearings enclosed in a gyro camera suspended in the instrument housing
on spring supports similar to those used in MMG [4] and performing the same functions as the ESS. To
create radial correction systems, traditional angle sensors and magnetoelectric moment sensors can be
used.

2. ELEMENTS OF THEORY OF A TGAVM BASED ON THE KOVALEVSKAYA
GYROSCOPE

The circuit of the sensitive element and the circuit for connecting two radial correction channels
are shown in Figs. 1 and 2. Mathematical models of both constructive options with accuracy up to
instrument errors are identical.

A three-component angular velocity meter based on a spherical rotor with an electrostatic suspen-
sion, shown in Fig. 1, contains: a spherical rotor 1, made entirely of lightweight conductive material,
for example, beryllium. The rotor 1 is hollow, made in the form of the so-called heavy Kovalevskaya
gyroscope, the outer surface of which is spherical, and the center of gravity OLC is displaced relative to
the center of suspension (center of the sphere “0” in the equatorial plane on the shoulder l perpendicular
to the kinetic moment vector H [1, 3]. Fig. 2 is applied on it to retrieve information with the help of lasers
and photodetectors mounted on housing 3.

To determine the angular velocity around the OZ axis of the instrument housing, a measuring circuit
[1, 3] is inserted into the structure, containing a pair of electrically isolated measuring segment electrodes
4 and 4′, located along the OX axis (electrodes 6 and 6′ are located along the OY axis); 5 is a block of
amplifiers of radial correction systems 24, 25 according to Fig. 2 (which shows the equivalent circuit
of correction systems). The circuit is made as a measuring. For this purpose, a phase-sensitive rectifier
with a filter is used in it, the output of which is designed to determine the angular velocity around the
OX axis of the device body and connected to one input of the controller 28 (Fig. 1), 29 (Fig. 2), and the

MECHANICS OF SOLIDS Vol. 53 No. 4 2018



THEORETICAL BACKGROUND OF RATIONALE FOR THE POSSIBILITY 363

Fig. 2.

output of another PSR with filter OY is connected to the second input of the controller. Elements 7, 7′;
8, 8′; 9, 9′ are the suspension electrodes of the rotor 1 along the axes OX, OY , OZ respectively; 10, 11,
12, 13 are the windings of an asynchronous rotor drive electric motor; 14, 15, 16, 17 are winding of the
torque sensor (DMy) around the axis OY; 18, 19 are a laser L and a photodetector PD, forming the angle
sensor β; 20, 21, 22, 23 are the windings of the torque sensor (DMx) around the axis OX; 26, 27 are a
laser L and a photodetector PD, forming an angle sensor α. Linearized equations of TGAVM angular
motion are given in [5]. Axial moments of inertia of the rotor 1: Jx = Jy = A, Jz = A/2, where A is the
equatorial moment of inertia. Shifts of the center of mass along the rotor axes: xLC = l, yLC = zLC = 0.

2.1. 2.1. Differential Equations of Gyroscope Angular Motion. Algorithms for Determining the
Equatorial Angular Velocity ωx, ωy of a MO

Differential equations of angular motion are of the form:

Jα̈+ nαα̇+ Cαα+Hβ̇ +Kββ = −Hωy +mlWz sinϕ+mα,

Jβ̈ + nββ̇ + Cββ −Hα̇−Kαα = Hωx −mlWz cosϕ+mβ,
(2.1)

where Kα, Kβ are the transfer coefficients of the radial correction; Cα, Cβ are the suspension stiffness
coefficients; mα, mβ are the moments of disturbing forces. The device uses axial radial correction. By
virtue of this, we have:

Mky = Kαα = KDMPDMy = −Hωx + Cββ,

from where

ω∗
x = −KDM

H
PDMy +

Cββ

H
,

where PDMy is the effective electromagnetic power of the torque sensor (axis OY) based on an
asynchronous motor in the inhibited mode, defined as the product of the alternating voltage at the output
of the amplifier 24 and the current [7]. Similarly, for the OX axis, we have:

Mkx = Kββ = KDMPDMx = −Hωy + Cαα,

from where

ω∗
y = −KDM

H
PDMx −

Cαα

H
.

For magnetoelectric TS we have:

Mky = Kαα = KDMyIy = −Hωx + Cββ, Mkx = Kββ = KDMxIx = −Hωy + Cαα,
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We have:

ω∗
x = −KDM

H
Iy +

Cββ

H
, ω∗

y = −KDM

H
Ix −

Cαα

H
. (2.2)

Here KDM is the TS transfer ratio of the asynchronous type;KDMx, KDMy, Ix, Iy are the TS transfer
ratio and the currents of the corresponding TS of the magnetoelectric type. Thus, signals about angular
velocities around the axes OX and OY are determined directly by the work of the radial correction. The
main problem is to determine the third component of the angular velocity ωz. It is solved on the basis
of a system of differential equations describing the translational motion of the rotor of the Kovalevskaya
gyroscope relative to the body.

2.2. Equations of Translational Motion of a Gyroscope. The Algorithm for Determining the Third
Component ωz of the Angular Velocity of the MO

Differential equations of relative motions have the form:

mẍ+ nxẋ+ Cxx = mΩ2l cos Ωt+ 2mωz ẏ −mWx − 2mżωy,

mÿ + nyẏ + Cyy = mΩ2l sinΩt− 2mωzẋ−mWy + 2mżωx,

mz̈ + nzż +Czz = −mWz − 2mωyẋ− 2mẏωx,

(2.3)

where m is the mass of the rotor; nx, ny, nz , Cx, Cy, Cz are damping and stiffness coefficients. In the
case of a TGAVM-K with a mechanical suspension with the second derivatives (ẍ,...) the multiplier
is the mass M of the rotor with the gyro camera. The process of determining the signal about the
angular velocity ωz is explained below. When the rotor rotates with an angular velocity ϕ̇ = Ω due
to the displacement l of the center of mass of the rotor OLC relative to the center of suspension
O, centripetal acceleration −Ω2l occurs and, accordingly, the centrifugal force FC = mΩ2l (m is
the mass of the rotor 1). Due to the rotation of the rotor, this force is projected on the axis of the
Resal’s coordinate system OXres, OY res, OZres, and each of the projections has a periodic character:
FC
x = lm(Ω)2 cosφ, FC

y = lm(Ω)2 sinφ, φ = Ωt. These forces cause oscillations of the center of mass
of the rotor 1 along the OX and OY axes with relative speeds ẋ and ẏ, and since there is a moving
angular velocity ωz, corresponding accelerations and forces FK

x and FK
y occur: FK

x = 2mẏωz − 2mżωy,
FK
y = −2mẋωz + 2mżωx. These forces are summed with the forces FC

x and FC
y and create additional

oscillations of the rotor, in which information about ωz is hidden. The differential equations (2.3) of the
motion of the center of mass of the rotor contain the above-mentioned forces and inertial forces mWx,
mWy of the apparent acceleration of the object. Let us turn to the equations in the dimensions of the
accelerations, which are obtained by dividing the left and right parts by the mass of the rotor:

ẍ+ nxẋ+ Cx = mΩ2l cosΩt+ 2ωz ẏ −Wx − 2żωy,

ÿ + nyẏ + Cy = Ω2l sinΩt− 2ωzẋ−Wy + 2żωx,

z̈ + nzż +Cz = −Wz − 2ωyẋ− 2ẏωx.

(2.4)

Adopted to simplify the calculations: Cx/m = Cy/m = C, nx/m = ny/m = n. Angular speeds ωx, ωy,
speed ż are measured in the device. Assuming that apparent accelerations are measured by additional
accelerometers, these variables are taken into account in one way or another, and terms with these
variables are excluded from equations (2.4). In this case, the third equation describes a perturbed motion
along the OZ axis, the ESS stiffness in which is large, for the ωz calculation algorithm, its influence is
insignificant, and therefore is not considered. The analysis of the solutions (2.4) revealed the periodic
nature of the established motions; therefore, the algorithm for calculating ωz given in [5] is not quite
correct, since it involves dividing the numerator by a periodic value passing through zero. Therefore, we
use a stable algorithm in the form of a phase detector for signals from the first two equations of system
(2.4). It is obtained by solving an inverse problem, in which the coordinates x and y and their derivatives
with respect to time are considered known, and the angular velocity ωz is unknown. It is derived from
(2.4) by multiplying the first equation by ẏ, the second equation by ẋ and subtracting the results. As a
result, we obtain an algorithm:

ωz =
ẍẏ − ÿẋ+ n(ẋẏ − ẏẋ) + C(xẏ − yẋ)− Ω2l(cos Ωtẏ − sinΩtẋ)

2(ẏ2 + ẋ2)
(2.5)
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The formula is an algorithm for the problem solution at all stages of the instrument operation, except the
initial one, when the translational velocities are very small, at which the error is large. To eliminate the
division operation by a value close to zero, the following algorithm is used:

ωz =
ẍẏ − ÿẋ + C(xẏ − yẋ)− Ω2l(cos Ωt ẏ − sinΩt ẋ)

2(ẏ2 + ẋ2 + e−a·t)
(2.6)

The exponent introduced to prevent the solution divergence at the initial stage of the transition process
quickly decreases when the speed of the translational movements of the rotor is very small. The constant
a is determined based on the time of the transition process.

Further, differential equations in normal form are used, which for the initial system (2.4) take the form

ẋ0 = x1,

ẋ1 = −nx1 − Cx0 +Ω2l cos Ωt+ 2ωzy1 + x2,

ẋ2 = 0,

ẏ0 = y1,

ẏ1 = −ny1 − Cy0 +Ω2l sinΩt− 2ωzx1 + y2,

ẏ2 = 0.

(2.7)

Here we have the following notation: ẋ0 = ẋ, ẏ0 = ẏ, the equations also contain the terms denoted as
Wx = x2, Wy = y2. They are introduced to extend the order of the system and serve to obtain second
derivatives of the coordinates. Differential equations of the Luenberger observer identification device
(OID) [5] for the initial system (2.7) are:

ẋ∗0 = x∗1 +K1(x0 − x∗0),

ẋ∗1 = −nx∗1 − Cx∗0 +Ω2l cos Ωt+ x∗2 +K2(x0 − x∗0),

ẋ∗2 = K3(x0 − x∗0),

ẏ∗0 = y∗1 +K1(y0 − y∗0),

ẏ∗1 = −ny∗1 − Cy∗0 +Ω2l sinΩt+ y∗2 +K2(y0 − y∗0),

ẏ∗2 = K3(y0 − y∗0),

(2.8)

where x̂0, ..., ŷ0 are estimates of the coordinates of the state spatial vector; Ki(i = 1, 2, 3) are OID
transmission coefficients; input variables are the x0 and y0 coordinates. To determine the coefficients of
the observing device, relations are applied based on the standard Butterworth form for the characteristic
polynomial of system (2.8):

τ3

8
s3 +

τ2

2
s2 + τs+ 1, K1 =

4

τ
− n, K2 =

8

τ2
−K1n− C, K3 =

8

τ3
, τ =

2

ωC
, (2.9)

where τ and ωC are the time constant and cutoff frequency of the OID; s is the differentiation symbol.
Algorithm (2.5) for the accepted assumptions is exact, formula (2.6) with a small a quickly converges to
it in calculations.

2.3. Mathematical Modeling of the Device Exploitation

The results of the simulation of operation of the TGAVM-K based on the Kovalevskaya gyroscope,
produced by equations (2.1), (2.7), (2.8) and algorithm (2.6), which was performed in the MathCad
environment are discussed below. Instrument parameters and OID: m = 50g; nx = ny = nz =

10 cN · s/cm; l=10−4 cm; Ω =400 1/s; Cx=Cy=Cz=500 cN/cm; H=25 cN · cm · s; ωx=0.6 rad/s;
ωy = 0.4 rad/s; ωz = 0.6 rad/s; τ = 10−3 s; K1 = 3990 1/s; K2 = 8× 106 1/s2; K3 = 8× 109 1/s3;
Kα = Kβ = 104 cN · cm/rad; Kdm = 1cN · cm/mA.

The simulation results are presented in figure 3 in the form of graphs ωx, ωy. (rad/s) depending on
time t (s) for given values of ωx, ωy. Fig. 4 a, b shows the simulation results for given laws of motion
along ωz .
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Fig. 3.

Fig. 4.

The graphs of angular velocities ωx, ωy reflect the processes of TGAVM functioning with radial
correction systems based on TS of the magnetoelectric type according to equations (2.1) and relations
(2.2). The graphs for harmonic and step changes given by ωz0, defined for ωz1 by algorithm (2.5)
and for ωz2 by the algorithm (2.6) using equations (2.7) and Lewinberger’s OID (equations (2.8)) by
mathematical simulation of the instrument, are shown in Fig. 4 a, b.

It also presents errors in the form of the difference ωz2 and ωz0 with an increased by an order of
magnitude and two scale, dotted line. They indicate that the angular velocity MO around the axis OZ is
determined from the measured translational oscillations of the rotor along the axes OX and OY, followed
by their differentiation. On Fig. 4 a, b the simulation results for algorithms (2.7), (2.8) and (2.6) are
presented as a solid line. In the same figure, for comparison, the result from [3] is shown for ordinary
differentiation algorithms as a dashed line. Dash-dotted lines denote the specified angular velocities
MO. The graphs confirm the effectiveness of the proposed algorithms.

3. AN APPROXIMATE ANALYTICAL SOLUTION OF THE PROBLEM OF DETERMINING
THE ANGULAR VELOCITY ωz

For a simplified system with the same coefficients for the two coordinates of the rotor motion, we have
a system of differential equations:

ẍ+ nẋ+ Cx = Ω2l cosΩt+ 2ωz ẏ,

ÿ + nẏ +Cy = Ω2l sinΩt− 2ωzẋ.
(3.1)

The solution is sought by the method of successive approximations in the form of rows:

x = x0 + x1 + x2 + · · · , y = y0 + y1 + y2 + · · · (3.2)

MECHANICS OF SOLIDS Vol. 53 No. 4 2018



THEORETICAL BACKGROUND OF RATIONALE FOR THE POSSIBILITY 367

Zero Approximation Equations

ẍ0 + nẋ0 + Cx0 = Ω2l cos Ωt,

ÿ0 + nẏ0 + Cy0 = Ω2l sinΩt.
(3.3)

First approximation equations

ẍ1 + nẋ1 + Cx1 = Ω2l cos Ωt+ 2ωz ẏ
0,

ÿ1 + nẏ1 +Cy1 = Ω2l sinΩt− 2ωzẋ
0.

(3.4)

3.1. Solution for Self-Centering Mode (Ω2 � C)

For steady motion, applying the principle of self-centering, practically removing the radial load on the
supports for TGAVM with a contact hanger, we obtained a solution for two members of the expansion
in series (3.2):

x = −l cos Ωt+
2lωz

Ω
cosΩt, (3.5)

y = −l sinΩt+
2lωz

Ω
sinΩt. (3.6)

The ratio of the amplitudes of the carriers and information oscillations is Ω/2ωz .
For values of Ω = 100 1/s and ωz = 0.5 rad/s, we have a ratio of amplitudes equal to 100. Thus, the

amplitude of the carrier oscillations is 100 times greater than the amplitude of the information, that
is, useful oscillations. The solution of the problem considered in this subsection is applicable when
accurately measuring the amplitudes of oscillations along two axes and subtracting from them the
amplitudes of the original oscillations, when ωz = 0.

3.2. Solution for Resonant Mode (Ω2 = C)

For steady motion, the solution is:

x =
lΩ

n
sinΩt− 2lΩωz

n2
cos Ωt, (3.7)

y = − lΩ

n
sinΩt− 2lΩωz

n2
sinΩt. (3.8)

Multiplying (3.8) by sinΩt, and (3.7) by cos Ωt, we obtain the formulae for the detected variables xs
and ys, which are used below for calculations. From the results of multiplication, the average value was
obtained:

x∗ = y∗ = − lΩωz

n2
. (3.9)

The gain in the resonant mode is higher than with self-centering, but the error is greater because of
the instability of the damping coefficient n. The ratio of the amplitudes of the carrier oscillations, due
to centrifugal forces, to the amplitudes useful, due to the angular velocity ωz , is equal to n/2ωz. With
n = ni/m = 200; ωz= 1 rad/s, this ratio is 100. With n = 20, the amplitude ratio is 10. Thus, in the
resonant mode, the amplitudes of the useful, that is, information oscillations can be made an order of
magnitude higher than in the self-centering mode. However, the damping coefficient n due to greater
instability than the shoulder l, will lead to a greater error in determining ωz than in the first case. For the
contact suspension, the load on the supports will also be greater (for an electrostatic suspension this is
not observed).

3.3. Formulae for the Approximate Determination of the Angular Velocity ωz

We write the formulae for the detected signals:

xs = x cos Ωt, ys = y sinΩt. (3.10)
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For the self-centering mode, taking into account formulae (3.5), (3.6), we have:

xs = −l
( 1

2
− ωz

Ω

)
− l

( 1

2
− ωz

Ω

)
cos 2Ωt,

ys = −l
( 1

2
− ωz

Ω

)
+ l

( 1

2
− ωz

Ω

)
cos 2Ωt.

Added up, we got:

xs+ ys = −l + 2l
ωz

Ω
. (3.11)

To estimate the angular velocity, we have the following algorithm:

ωz = (xs + ys+ l)
Ω

2l
. (3.12)

We derive equations for the resonant mode. To do this, we expand the expressions for xs and ys based
on the formulas (3.7), (3.8) and, multiplying (3.7) by cos Ωt, and (3.8) by sinΩt, obtained:

x1s = l
Ω

2n
sin 2Ωt− l

Ωωz

2n2
− l

Ωωz

2n2
cos 2Ωt,

y1s = −l
Ω

2n
sin 2Ωt− l

Ωωz

2n2
+ l

Ωωz

2n2
cos 2Ωt.

(3.13)

Add up the expressions in (3.13), we have:

x1s+ y1s = −2l
Ωωz

2n2
.

To estimate the angular velocity, the following expression was obtained:

ωz =
x1s+ y1s

2lΩ
. (3.14)

When accounting for TGAVM-K errors, errors will appear in the output signal.
So, the algorithms (3.12) and (3.14) of the approximate calculation of the angular velocity estimates

ωz of TGAVM-K for self-centering and resonant modes, respectively, are derived. The second mode
provides greater sensitivity, but also slightly larger error values. These algorithms are much simpler than
algorithms (2.5) or (2.6). Most importantly, when using them, it is not necessary to calculate the first
and second derivatives of the coordinates of the translational oscillatory movements of the gyroscope
along two equatorial axes.

4. Conclusion

1. A technical solution for TGAVM based on the Kovalevskaya gyroscope is described, in which the
center of suspension is provided either by a non-contact suspension or by a contact mechanical
suspension [10]. Two channels of radial inter-axial correction were used, providing with high
accuracy the alignment of the axis of proper rotation with one of the axes of the moving object
during all its rotations (in modeling, the error was 5 arc min). This indicates the limitations
of the two angular degrees of freedom of the Kovalevskaya gyroscope and the small observable
(measured) movements along the x and y axes. An electric drive similar to the gyro instruments
was used, which in the case of ESS after the acceleration of the rotor is turned off, and its rotation
occurs by inertia due to the high vacuum in the rotor cavity.

2. By virtue of the described technical solution, the TGAVM-K mathematical model is a system
of five differential linearized second-order equations with variable coefficients describing small
angular and translational movements relative to the instrument body, containing in the right-
hand parts members with portable angular velocities and apparent accelerations of the MO. This
fundamentally distinguishes the mathematical model of the TGAVM-K from the mathematical
model of the classical gyroscope of S. V. Kovalevskaya.
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3. The formula (2.5) is derived, as well as the algorithm (2.6) for calculating (using the on-board
computer) the third component around the axis of its own rotation of the gyroscope, which
almost coincides with the oz axis of the MO. This algorithm contains the first and second order
derivatives on time from the two coordinates of the translational relative movements of the center
of suspension of the rotor relative to the body of the device.

4. For the development of these derivatives in the on-board computer provides for the use of
algorithms for observing the Lewinberger identification device, in which interference filtering is
performed. This is done by proper selection of the cutoff frequency OID and the coefficients of the
characteristic Butterworth polynomial.

5. Approximate analytical (in the form of finite relations) solutions for oscillatory motions of
TGAVM-K in x and y coordinates are given for the conditions of self-centering and resonance,
indicating a greater sensitivity of the second variant compared to the first to the action of angular
velocity The formulas indicate that the useful oscillations caused by the angular velocity ωz have
the same frequencies as the carrier oscillations from the centrifugal forces due to the displacement
of the center of mass. This fact predetermines the difficulty of extracting information from the total
oscillations about the third component of the angular velocity of the MO. The detected signals
about the indicated oscillations contain coefficients, with a change in which the above-mentioned
sensitivity can be adjusted. They also indicate a greater stability of the transmission coefficient in
the self-centering method.

6. Mathematical modeling of TGAVM-K operation was performed using full equations and algo-
rithm (2.6), which confirmed the theoretical background on the possibility of creating a three-
component angular velocity meter based on a Kovalevskaya single-rotor gyro.

7. The algorithms (3.12) and (3.14) of the approximate calculation of the angular velocity estimates
ωz of TGAVM-K for self-centering and resonant modes are derived. These algorithms are
much simpler than algorithms (2.5) or (2.6). The main thing is that when using them it is not
necessary to calculate the first and second derivatives of the coordinates of the translational
movements of the gyroscope along two equatorial axes. A calculation based on the formulas of
these analytical solutions demonstrated a simpler method for solving the problem of determining
the third component of the angular velocity ωz of the MO.

REFERENCES
1. S. V. Kovalevskaya, “Sur le problème de la rotation d’un corps solide autour d’un point fixe,” Acta Math. 12 (1),

177–232 (1889).
2. V. Ph. Zhuravlev, “A strapdown inertial system of minimum dimension (A 3D oscillator as a complete inertial

sensor),” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 5–10 (2005) [Mech. Sol. (Engl. Transl.) 40 (5), 1–5
(2005)]

3. V. Ph. Zhuravlev, “Strapdown Inertial Navigation System of Pendulum Type,” Izv. Akad. Nauk. Mekh. Tverd.
Tela, No. 1, 6–17 (2014) [Mech. Sol. (Engl. Transl.) 49 (1), 1–10 (2014)]

4. V. Ph. Zhuravlev, P. K. Plotnikov, RF Patent No. 155046 “A three-component angular velocity meter based on
a spherical gyroscope with electrostatic suspension,” MPK G01C 19/00 (2015)

5. P. K. Plotnikov, RF Patent No. 163835 “A three-component angular velocity meter based on a Kovalevskaya
spherical gyroscope with an electrostatic suspension,” IPC G01C 19/00 (2016)

6. V. Ya. Raspopov, Micromechanical devices (Mashinostroenie, Moscow, 2007) [in Russian]
7. N. T. Kuzovkov, Modal control and monitoring devices (Mashinostroenie, Moscow, 1976) [in Russian]
8. N. P. Ermolin, Electric cars of low power (Vysshaya Shkola, Moscow, 1967) [in Russian]
9. P. K. Plotnikov, RF Patent No. 175218 “A three-component angular velocity meter based on a Kovalevskaya

gyroscope with a spring hanger,” MPK G01C 19/00 (2017)

MECHANICS OF SOLIDS Vol. 53 No. 4 2018


