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Abstract—We study the evolution of characteristics of natural longitudinal vibrations of a circular
bar in the case of increasing defect in its cross-section. It is shown that, in the limit case where
the defect separates the bar into two independent fragments, the natural frequencies of the initially
defect-free bar pass into the natural frequencies of its separate parts. The respective evolution of the
natural modes of vibrations is observed. The evolution predicted by the theoretical analysis can be
observed experimentally by using the resonance method and constantly increasing the defect till the
final separation of the bar into two parts.
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1. STATEMENT OF THE PROBLEM

The studies of natural frequencies of inhomogeneous systems with distributed parameters and
defects of various nature are of great interest in the science-cognitive, general-theoretical, and applied
aspects [1–8]. Their results are especially important and actual for the purposes of defect diagnostics
based on the data of resonance vibration measurements in the nondestructive testing. But there are
practically no meaningful publications describing the qualitative evolution of natural frequencies and
natural modes of vibrations in the case of increasing defect in the cross-section [3]. In what follows, we
analyze the properties of vibrations in the case where the cross-section decreases to the values at which
the bar practically splits into two independent fragments.

So there is a bar with a defect in the cross-section. In the linear approximation, we study the natural
vibrations of the bar of length l with a defect in the cross-section (Fig. 1). It is required to reveal how the
frequency and mode shapes of longitudinal vibrations vary as the defect of a certain shape increases until
the bar splits into two parts.

Assume that longitudinal vibrations are excited in the bar. When studying the influence of the
defects on the natural vibrations, it is expedient to assume that the bar ends are free, because the
vibrating system has the largest quality factor in this case. This property allows one to use experimental
methods [3] to discover the influence of small and significant defects on the natural frequencies and mode
shapes of vibrations; moreover, the boundary conditions of the second kind are the simplest to be realized
experimentally.

In the dimensionless variables, we have the eigenvalue (eigenfrequency) problem, i.e., the problem of
determining the eigenvalues and eigenfunctions (mode shapes) [2, 3, 9–11],

[p(x)u′]′ + λr(x)u = 0, p(x) ≥ p0 > 0, r(x) ≥ r0 > 0, (1.1)

u′(0) = u′(1) = 0, 0 ≤ x ≤ 1. (1.2)
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Fig. 1.

In the dimensionless variables, the desired quantities are the parameter λ, i.e., the eigenvalue (λ = ω2

and ω = Ωl/c are the dimensionless natural frequency of vibrations, c is the speed of sound), and u(x, λ),
i.e., the eigenfunction (shape). The boundary conditions (1.2) correspond to the case of free ends of the
bar.

For p(x) = p0 = 1 and r(x) = r0 = 1, we have (conditionally) ideal bar without defects; the desired
quantities are

ωn =
√

λn = πn, un = cn cos(πnx), cn = const, c0 = 1, c1 =
√

2, n ≥ 1. (1.3)

The defect in the circular cross-section is modeled by the functions contained in (1.1), which are
described by the relations

p(x) = r(x) = S(x), S(x) = πR2(x). (1.4)

2. SOLUTION OF THE SPECTRUM PROBLEM
FOR A BAR WITH A DEFECT IN THE CROSS-SECTION

The radius of the cross-section in (1.4) is given as

R(x) = R0[1 ± h(x)], h(x) =
1 − ξ

1 + (x − a)2/α2
(R0 = 1). (2.1)

Here R0 is the bar radius in the defect-free case (ξ = 1), the parameter ξ characterized the defect depth
(minimal radius of the bar), α characterizes the defect width, and a characterizes the defect position. The
maximal value of the defect is attained at the point x = a. The choice of the negative (positive) sign in
expression (2.1) means the narrowing (extension) of the cross-section in a sufficiently narrow (for α� 1)
neighborhood of the point x = a. In the further calculations, to be definite, we consider an example where
the defect in at an arbitrary point x = a (0 ≤ a ≤ 1) and assume that the defect “depth” parameter ξ is
positive and ranges from 1 to ξ = 5 × 10−4, while the value of the defect “width” parameter α is small
(for definiteness, we set α = 0.001 � 1).

For all admissible values of the defect “depth” parameter ξ, using the accelerated convergence
method (described in detail in [3] and tested in [2, 3]), we calculated the first six eigenvalues, corre-
spondingly, the first six frequencies ωn =

√
λn with relative error O(10−6). The results of calculations

are given in the table. We note that the problem has the solution ω0 = λ0 = 0 and ω0 = 2π (see [3]).
A numerical analysis (up to O(10−7)) of the behavior of natural frequencies depending on the defect

position a (0 ≤ a ≤ 1) is shown in Fig. 2 for the first four natural frequencies for α = 0.001. The arrows
show the limit values to which the natural frequencies tend as the defect disappears (ξ→ 1) and when the
bar splits into parts (ξ → 0, α → 0). Using A. Fock’s model [12, 13], one can analytically determine the
defect positions corresponding to the limit values of the frequencies from the condition of solvability of
the boundary-value problem which can be written as the transcendental equation relating the vibration
frequency, defect position, and minimal radius of the bar as follows:

Δ(ω) = sin ω +
π

4
ψ(ξ)

ξ
ω sin(aω) sin[(a − 1)ω] = sinω +

π

8
ψ(ξ)

ξ
ω{cos ω − cos[(2a − 1)ω]} = 0,

(2.2)

ψ(ξ) ≈ ψ∗(ξ) = 1 − 1.41ξ + 0.34ξ3 + 0.07ξ5, ψ∗(0) = 1, ψ∗(1) = 0.
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Fig. 2.

Then the extrema of the dependence ωn(a) are determined by the system of equations

sin[(2a − 1)ω] = 0,

2q sinω = −ω(cos ω ± 1), q =
4
π

ξ

ψ(ξ)
.

(2.3)

From the first equation in system (2.3), we have (2a − 1)ω = πn, and the plus (minus) sign in
the right-hand side of the second equation corresponds to even (odd) values of n. The solution of the
second equation in system (2.2) is graphically illustrated in Fig. 2 a, b. Since the vibration frequencies
are positive definite, it follows from the implicit dependence of the frequency on the defect position (2.2)
that the graph ω(a) is symmetric with respect to the bar center a = 1/2.

The values of the frequency maxima are independent of the defect depth, and their positions are fixed:

ω = π, a = 0, 1; ω = 2π, a = 0,
1
2

, 1;

ω = 3π, a = 0,
1
3

,
2
3

, 1; ω = 4π, a = 0,
1
4

,
1
2

,
3
4

, 1.
(2.4)

The frequency minima change their position. Their limit values (their positions are shown in Fig. 2)
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Fig. 3.

can be determined taking into account the fact that the parameter q vanishes as ξ → 0 and unboundedly
increases as ξ → 1 (the defect-free case). They are equal to

ξ → 0: a =
1
2

, ω → 0+, 2π+,

ω → π+, a → 0, 1; ω → 2π+, a → 0, 1; ω → 3π+, a → 0,
1
3

,
2
3

, 1,

ξ → 1 : a =
1
2

, ω → π−, 3π−,

ω → 2π−, a → 1
4

,
3
4

; ω → 3π−, a → 1
6

,
5
6

; ω → 4π−, a → 1
8

,
3
8

,
5
8

,
7
8

.

(2.5)

The dependence of the vibration natural frequencies on the parameters ξ and a (their charts are shown
in Fig. 3, where the digits from 1 to 7 indicate the level lines for the following frequency values: in Fig. 3 a:
2.775, 2.390, 2.005, 1.620, 1.235, 0.850, 0.465; in Fig. 3 b: 5.928, 5.535, 5.143, 4.750, 4.357, 3.965, 3.573;
in Fig. 3 c: 9.081, 8.693, 8.304, 7.915, 7.526, 7.138, 6.749; in Fig. 3 d: 12.244, 11.858, 11, 471, 11.085,
10.699, 10, 313, 9.926) numerically calculated by the accelerated convergence method implies that, for
the values of the hole relative radius ξ greater than 0.2, the vibration natural frequencies ωn remain
practically unchanged (the defect influence is small and independent of its position).

Let us consider the evolution of the bar frequencies and mode shapes for the defect position a = 0.4
in more detail. We note that, for ξ = 5.07 × 10−4, the ratio of the area of the cross-section of the
partition between the left and right parts of the bar to the area of the cross-section of the bar itself
is S(ξ)/S(0) ≈ 2.57 × 10−7. From the standpoint of computational practice, we can assume that these
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Fig. 4.

two parts are independent of each other, but passing to the limit is still singular. The natural mode shapes
observed in the process of calculations are qualitatively shown in the figure for ξ = 1 and ξ = 0.045.

The eigenvalues (natural frequencies) obtained in calculations permit, with the required accu-
racy O(10−7), constructing the eigenfunctions (natural mode shapes) which satisfy the boundary
conditions (see Fig. 4).
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Fig. 5.

3. EVOLUTION OF NATURAL FREQUENCIES OF VIBRATIONS
The results of calculations of the first six natural frequencies depending on the defect depth are

shown in the table. Let us analyze the relations between the natural frequencies and mode shapes of
the entire bar with defect and of its separate parts into which the bar practically splits when the partition
diameter becomes extremely small. So for example, for ξ = 5.07× 10−4, the ratio of the area of the cross-
section of the partition joining the two parts of the bar to the area of the cross-section of the bar itself
is S(ξ)/S(0) = 2.57 × 10−7, i.e., the bar parts are practically separated from each other.

The second mode of the entire bar evolves into the first mode of the right part of the bar whose natural
frequency is equal to ω2 = 2π × 0.5/0.6 = 5.23578.

The third mode of the entire bar evolves into the first mode of the left part of the bar whose natural
frequency is equal to ω3 = 2π × 0.5/0.4 = 7.85398.

The fourth mode of the entire bar evolves into the second mode of the right part of the bar whose
natural frequency is equal to ω4 = 2π × 1.0/0.6 = 10.46779.

The fifth mode of the entire bar evolves into the third mode of the right part of the bar whose natural
frequency is equal to ω5 = 2π × 1.5/0.6 = 15.70796.

The sixth mode of the entire bar evolves into the second mode of the right part of the bar whose
natural frequency is equal to ω2 = 15.70796. But the further decrease in the parameter ξ to the value
ξ = 5.07 × 10−4 results in the instability of calculations. The amplitude of the second mode of the left
part of the bar sharply decreases for ξ = 8.25 × 10−4 and the picture takes the form described below.

The further decrease in the parameter ξ leads to ξ = 1.89 × 10−4, λ5 = 248.6231884, and
ω5 = 15.76778.
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We arrive at the final result of evolution when the right part of bar has natural frequency of the third
mode ω̄3 = 15.70796.

An “attempt” to evolve into the second mode of the left part of the bar failed, because both parts have
the same natural frequencies for a = 0.4.

The studies showed that, in the case of positive sign of the defect (the choice of the sign “+”
in formula (2.1)), i.e., in the case of extension of the bar cross-section, the natural frequencies vary
insignificantly (1–2%) with respect to the unperturbed value up to the defect heights equal to the
doubled radius of the bar. The calculated charts of the dependence of the vibration natural frequencies ωn

on the defect position a and the defect height ξ (in Fig. 5, the digits from 1 to 7 indicate the level lines for
the following frequency values: in Fig. 5 a: 3.151, 3.142, 3.132, 3.123, 3.113, 3.104, 3.094; in Fig. 5 b:
6.301, 6.282, 5.263, 6.244, 6.225. 6.206, 6.187; in Fig. 5 c: 9.453, 9.424, 9.396, 9.368, 9.339, 9.311,
9.282; in Fig. 5 d: 12.602, 12.564, 12.527, 12.490, 12.452, 12.415, 12.377) showed that the position of
the maxima (minima) of the frequency dependence ωn(a) for positive defects coincides with the position
of the minima (maxima) for the negative defects.

4. CONCLUSIONS
The natural vibrations of an elastic system with distributed parameters and defects were investigated.

By using numerical-analytical methods, the frequencies and mode shapes of an elastic bar with free ends
and variable cross-section area were analyzed with high accuracy. The influence of the values of the
defect parameters varying in a wide range (nearly admissible in the limit) was studied. The theoretical
and experimental results obtained by the resonance method of nondestructive testing developed by the
authors were compared.
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