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Abstract—We develop a quaternion method for regularizing the differential equations of the per-
turbed spatial restricted three-body problem by using the Kustaanheimo–Stiefel variables, which is
methodologically closely related to the quaternion method for regularizing the differential equations
of perturbed spatial two-body problem, which was proposed by the author of the present paper.
A survey of papers related to the regularization of the differential equations of the two- and three-
body problems is given. The original Newtonian equations of perturbed spatial restricted three-body
problem are considered, and the problem of their regularization is posed; the energy relations and the
differential equations describing the variations in the energies of the system in the perturbed spatial
restricted three-body problem are given, as well as the first integrals of the differential equations
of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations
of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems
whose angular motion is described by the rotation quaternions (Euler (Rodrigues–Hamilton)
parameters) are considered; and the differential equations for angular momenta in the restricted
three-body problem are given.
Local regular quaternion differential equations of perturbed spatial restricted three-body problem in
the Kustaanheimo–Stiefel variables, i.e., equations regular in a neighborhood of the first and second
body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventh-
order differential equations. These equations employ, as additional dependent variables, the energy
characteristics of motion of the body under study (a body of a negligibly small mass) and the time
whose derivative with respect to a new independent variable is equal to the distance from the body of
negligibly small mass to the first or second body of finite mass.
The equations obtained in the paper permit developing regular methods for determining solutions, in
analytical or numerical form, of problems difficult for classical methods, such as the motion of a body
of negligibly small mass in a neighborhood of the other two bodies of finite masses.
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1. REGULARIZATION PROBLEMS FOR DIFFERENTIAL EQUATIONS
OF PERTURBED SPATIAL TWO-BODY PROBLEM

AND PERTURBED BOUNDED THREE-BODY PROBLEM
1.1. Kustaanheimo–Stiefel Regularization of Differential Equations

of Perturbed Spatial Two-Body Problem

The celestial mechanics and astrodynamics are based on the vector Newtonian differential equation
of perturbed spatial two-body problem

d2r
dt2

+ f(m + M)r−3r = p
(

t, r,
dr
dt

)
, (1.1)
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614 CHELNOKOV

where r is the radius vector of the center of mass of the second body (under study) which is drawn from
the center of mass of the first (central) body, r = |r|, m and M are the masses of the second and first
bodies, f is the gravitation constant, p is the vector of perturbing acceleration of the center of mass of
the second body, and t is the time.

This equation degenerates in collision of the second body with the central body (when the distance r
between the bodies is zero), and hence it is inconvenient to use this equation to study the motion of the
second body in a small neighborhood of the central body or its motion in strongly elongated orbits. The
singularity at the origin creates not only theoretical but also practical (computational) difficulties.

The problem of removing this singularity, which is known in the celestial mechanics and astrody-
namics as the problem of regularization of differential equations of perturbed two-body problem, dates
back to L. Euler [1] and T. Levi-Civita [2–4], who solved the one- and two-dimensional problems of
collision of two bodies (in the cases of rectilinear and plane motions). The most efficient regularization
of equations of perturbed spatial two-body problem, the so-called spinor or KS-regularization, was
proposed by P. Kustaanheimo and E. Stiefel [5, 6]. This regularization is a generalization of the Levi-
Civita regularization of equations of plane motion, and its most complete presentation is given in the
widely known monograph by E. Stiefel and G. Scheifele [7].

The KS-regularization is based on a nonlinear non-unique transformation of Cartesian coordinates
of the body under study, the so-called KS-transformation, which generalizes the Levi-Civita transfor-
mation and has the form⎛

⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1 −u2 −u3 u0

u2 u1 −u0 −u3

u3 u0 u1 u2
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⎞
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⎛
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= L(uKS)
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u1

u2

u3

u0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.2)

where xk (k = 1, 2, 3) are the coordinates of the center of mass of the body considered in inertial
coordinates with origin at the center of mass of the central body and coordinate axes directed to remote
stars, uj (j = 0, 1, 2, 3) are new variables (KS-variables), and L(uKS) is the generalized Levi-Civita
matrix, called the KS-matrix, which contains the two-dimensional square Levi-Civita matrix in its left
upper corner.

In scalar form, transformation (1.2) becomes

x = u2
0 + u2

1 − u2
2 − u2

3, x2 = 2(u1u2 − u0u3), x3 = 2(u1u3 + u0u2), (1.3)

and up to permutation of indices, it coincides with the Hopf mapping [8].
The regular Kustaanheimo–Stiefel differential equations of perturbed spatial two-body problem in

scalar form become [7]

d2uj

dτ2
− h

2
uj =

r

2
qj (j = 0, 1, 2, 3), (1.4)

dh

dτ
= 2

(
q0

du0

dτ
+ q1

du1

dτ
+ q2

du2

dτ
+ q3

du3

dτ

)
, (1.5)

dt

dτ
= r, r = |r| = u2

0 + u2
1 + u2

2 + u2
3, (1.6)

q0 = u0p1 − u3p2 + u2p3, q1 = u1p1 + u2p2 + u3p3,

q2 = −u2p1 + u1p2 + u0p3, q3 = −u3p1 − u0p2 + u1p3.

Here τ is a new independent variable called the fictive time which is related to the time t by differential
equation (1.6), h is an additional variable which has the meaning of Kepler energy and is determined by
the relation h = 1

2 v2 − f(m + MN)r−1 (v = |v|, v = dr/dt), and pk (k = 1, 2, 3) is the projection of
perturbed acceleration p of the center of mass of the second body on the axes of the inertial coordinate
system.

These equations form a system of ten ordinary nonlinear nonstationary differential equations with
respect to the Kustaanheimo–Stiefel variables uj , the Kepler energy h, and the time t. Equations (1.4)
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are equivalent to the matrix equation

d2uKS

dτ2
− h

2
uKS =

r

2
LT (uKS)PKS , (1.7)

where uKS is the four-dimensional column vector of KS-variables uKS = (u1, u2, u3, u0), and PKS

is the four-dimensional column vector associated with the three-dimensional vector of perturbed
acceleration p, PKS = (p1, p2, p3, 0); here the superscript T is the transposition symbol.

Let us note the following advantages of Kustaanheimo–Stiefel equations [7, 9–15]:
— they, in contrast to Newtonian equations, are regular at the center of attraction;
— they are liner for unperturbed Kepler motions and, in this case, have the form

d2uj

dτ2
− h

2
uj = 0, h = const (j = 0, 1, 2, 3)

(for the elliptic Kepler motion with the Kepler energy h < 0, these equations are equivalent to the
equations of motion of four-dimensional one-frequency harmonic oscillator whose squared frequency
is equal to half the Kepler energy with minus sign);

— they permit developing a unified approach to studying all three types of Kepler motion;
— they are closely related to linear equations for perturbed Kepler motions;
— they permit representing the right-hand sides of differential equations of motion of celestial and

cosmic bodies in polynomial form which is convenient for solving them by computers.
These facts allowed one to develop efficient methods for determining solutions in analytic or numerical

form of problems difficult for the classical methods such as the study of motion near attracting masses
or motion in large eccentricity orbits. So in [7, 10, 11], it was shown that the use of regular equations
in KS-variables permits increasing the accuracy of numerical solution of several problems in celestial
mechanics and astrodynamics (for example, the problem of motion of artificial satellite of the Earth
(AES) in large eccentricity orbits) from three to five orders of magnitude as compared to the solutions
obtained using the classical (Newtonian) equations in rectangular coordinates.

As was already noted, the KS-regularization is based on a nonlinear non-unique transformation
of Cartesian coordinates (1.3), and this transformation consists in the transition from the three-
dimensional space of Cartesian coordinates xk to a four-dimensional space of new coordinates uk.
Therefore, according to E. Stiefel and G. Scheifele, it is impossible to derive regular equations directly
in the three-dimensional (i.e., spatial) case. In the book [7], they postulate a matrix regular equation
of spatial two-body problem (1.7), which they wrote by analogy with the Levi-Civita matrix regular
equation of plane motion, and use several theorems to prove that the old vector Newtonian equation (1.1)
is satisfied in this case. Such an approach to the construction of regular equations of spatial two-body
problem is artificial in many aspects and hardly visual.

1.2. Quaternion Regularization of Differential Equations of Perturbed Spatial Two-Body Problem
Given by the Author of the Paper, and Its Generalization

Soon after the KS-regularization was discovered, it was proposed to use quaternions (four-
dimensional hypercomplex numbers) and four-dimensional quaternion matrices to regularize the
equations spatial two-body problems. But in their book, E. Stiefel and G. Scheifele completely rejected
this idea. They wrote ([7, p. 288]): “Any attempt to replace the theory of KS-matrices by a more popular
theory of quaternion matrices fails or, in any case, leads to a very cumbersome formalism.” This assertion
was first disproved by the author of this paper who, in the end of the 1970s and at the beginning of the
1980s, showed in [16–19] that, in fact, the quaternion approach to the regularization permits obtaining a
direct and visual derivation of regular equations in KS-variables, makes the basic postulates underlying
the KS-regularization more natural and visual, and permits constructing a theory generalizing the KS-
regularization.

The author of this paper showed that the regularizing KS-transformation of coordinates (1.2) or (1.3)
means the transition from Cartesian coordinates of the center of mass of the second body in inertial
coordinates to new variables which are components (normalized in certain way) of the conjugate rotation
quaternion characterizing the orientation of a rotating coordinate system η in the inertial coordinate
system. The axis η1 of this rotating coordinate system is directed along the radius vector r of the center
of mass of the second body. The normalizing coefficient is equal to the square root of the distance r
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from the center of mass of the second body to the attraction center. The bilinear Kustaanheimo–Stiefel
relation

u1
du0

dτ
− u0

du1

dτ
+ u3

du2

dτ
− u2

du3

dτ
= 0, (1.8)

relating the KS-variables and their first derivatives and, according to E. Stiefel and G. Scheifele,
playing the key role in their construction of regular celestial mechanics [7, p. 29], imposes an additional
(nonholonomic) condition the motion of the trihedron η, which means that the projection ω1 of the vector
of absolute angular velocity of the trihedron η on the direction of the radius vector r (axis η1) is zero.

Thus, the transition in the equations of spatial two-body problem from Cartesian coordinates of
the center of mass of the second body to the KS-variables actually means that these equations are
written in the rotating coordinate system η, where the Euler (Rodrigues–Hamilton) parameters, which
are components of the quaternion of rotation of this coordinate system, are taken as the parameters of
orientation of this rotating coordinate system. The further transformations of these equations are related
to the normalization of the Euler parameters (rotation quaternion) by the above-described method with
introduction of additional dependent variables of the Kepler energy and time and with transition to a new
independent variable (fiction time).

The quaternion regular equations of perturbed spatial two-body problem in KS-variables has the form
[16, 17] (also see [14, 15])

d2u
dτ2

− h

2
u =

r

2
q,

dh

dτ
= 2scal

(
dū
dτ

◦ q
)

,
dt

dτ
= r,

(1.9)

r = ‖u‖2 = u ◦ ū = ū ◦ u = u2
0 + u2

1 + u2
2 + u2

3,

q = −i ◦ u ◦ P, P = p1i + p2j + p3k,

R = x1i + x2j + x3k = ū ◦ i ◦ u,

(1.10)

V =
dR
dt

= 2ū ◦ i ◦ du
dt

=
2
r
ū ◦ i ◦ du

dτ
. (1.11)

Here and below, the symbol ◦ denote the quaternion multiplication; i, j, k are the Hamiltonian vector
imaginary units; the upper bar is the symbol of quaternion conjugation; scal( ) is the scalar part of
quaternion placed in parentheses; u is the quaternion regular variable defined by the relations

u = u0 + u1i + u2j + u3k = r1/2λ̄, λ = r−1/2ū,

u0 = r1/2λ0, uk = −r1/2λk (k = 1, 2, 3),

‖u‖2 = u ◦ ū = ū ◦ u = u2
0 + u2

1 + u2
2 + u2

3 = r,

where uj are still regular Kustaanheimo–Stiefel variables, λj are Rodrigues–Hamilton (Euler) pa-
rameters characterizing the orientation of the coordinate system η in inertial coordinates. Quaternion
relations (1.10) and (1.11) are used to determine the Cartesian coordinates of the second (studied) body
in inertial coordinates and the projections of its velocity vector on the axes of this coordinate system.

In quaternion equations (1.9), the role of variables is played by the quaternion u whose components
are regular KS-variables uj , the Kepler energy h, and the time t. In scalar form, equations (1.9) coincide
with regular equations (1.4)–(1.6) derived by P. Kustaanheimo and E. Stiefel. Therefore, quaternion
equations (1.9) have all previously mentioned advantages of regular Kustaanheimo–Stiefel equations.
At the same time, they permit using the convenient and well-developed formalism of quaternion algebra
in analytic and numerical studies.

The author of this paper also obtained [16, 17] (also see [14, 15]) more general quaternion regular
equations of perturbed spatial two-body problem in KS-variables under the assumption that the bilinear
Kustaanheimo–Stiefel relations (1.8) do not hold. These equations contain additional terms with the
projections ω1 and ε1 of the vectors of angular velocity and angular acceleration of the accompanying
trihedron η on the direction of the radius vector r of the center of mass of the second body (one of these
projections is an arbitrarily given parameter) and are more complicated.
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We note that these more general quaternion regular equations of perturbed spatial two-body problem
were obtained by the author of this paper in [17], while in the previous paper [16], he obtained their
matrix analog in quaternion matrices. It should be also noted that another more general interpretation
of the regularizing KS-transformation was obtained in [15, 16] by considering the helical motion of the
above-introduced trihedron η and using the quaternion differential equations of motion of the two-body
problem in parameters of the helical motion of this trihedron. This approach allowed one to reveal the
relationship between the regularizing KS-transformation (1.2) and the E. Study formula relating the
rectangular coordinates of the origin of the introduced moving coordinate system η to the components
of the biquaternion of its helical finite displacement [20, p. 146]; this transformation is a particular case
of the E. Study formula.

Thus, the quaternion approach to regularization of equations of perturbed spatial two-body problem
proposed by the author of this paper, in contrast to the approach based on the KS-matrix apparatus, al-
lows one to obtain clear geometric and kinematic interpretations of the regularizing KS-transformation,
to reveal the geometric meaning of its ambiguity, and to give a direct visual derivation of regular
equations of spatial two-body problem one of whose particular cases is the regular Kustaanheimo–
Stiefel equations.

The author of the paper also proposed regular equations of perturbed spatial two-body problem in
quaternion osculating elements (i.e., in quaternion slowly varying variables), which were obtained from
the quaternion regular equations in KS-variables by the method of variation of arbitrary quaternion
constants and were published in [15]. These equations are a quaternion analog of equations of spatial
two-body problem in regular elements obtained in [7, p. 93]. We point out the following advantages of
these equations: first, they are regular (have no singularity at the origin), and second, their right-hand
sides are uniformly and slowly varying functions in the case of perturbed elliptic motion, and in the case of
unperturbed Kepler motion, the equations can be integrated without methodological errors. A drawback
of these equations is the fact that the region of their applicability is bounded by motions of elliptic type
(for the Kepler energy h < 0).

Later [18, 19, 21–24] (also see [14, 15]), the ideas of quaternion regularization of equations of the two-
body problem were used by the author of this paper to develop the theory of quaternion regularization of
the vector differential equation of perturbed central motion of material point:

drt

d =r
− 1

m

(
dΠ
dr

r
r

+
∂Π∗

∂r

)
+ p,

r = |r|, Π = Π(r), Π∗ = Π∗(t, r), p = p
(

t, r,
dr
dt

)
.

(1.12)

This equation describes the motion of material point with mass m in a central force field with
potential Π, which is an arbitrary differentiable function of the distance r from the point to the force field
center, under the action of a perturbing force equal to the geometric sum of the force with potential Π∗

and the force mp. Here r is the radius vector of material point drawn from the attraction center O, and
p is the perturbing acceleration due to the force mp. The equation of unperturbed central motion of
material point is obtained from equation (1.12) it we set Π∗ = 0 and p = 0 in it.

In [18, 19, 21–24] (also see [14, 15]), the general quaternion differential equations of perturbed central
motion of material point with regularizing functions were obtained; necessary and sufficient conditions
for their reducibility to the oscillatory form convenient for analytical and numerical studies (i.e., to the
form of equations of motion of a four-dimensional perturbed oscillator which harmonically oscillates with
the same frequency in the case of unperturbed central motion) were established; different (including new
regular) systems of quaternion differential equations of perturbed central motion of material point in
normal and oscillatory form, which differ in their structure, dimension, and the employed dependent and
independent variables, were obtained; the obtained systems were compared, and their properties and
regions of applicability were determined.

So, regular differential equations of perturbed central motion of material point of oscillatory form,
which are regular for the potential

Π(r) = −a1r
−1 − a2r

−2 − a3r
−3 − a4r

−4, ai = const,

i.e., a polynomial of negative fourth degree of the distance r to the attraction center, were obtained
in [18, 21, 24]. (Recall that the Kustaanheimo–Stiefel equations are regular only for a polynomial of
the first negative degree of the distance r.)

MECHANICS OF SOLIDS Vol. 52 No. 6 2017



618 CHELNOKOV

In [18, 22], new equations of satellite motion in the terrestrial gravitational field (neglecting the
tesseral and sectorial harmonics) were obtained in new variables, which have all advantages of the known
equations in KS-variables [7] but have a simple and symmetric structure and their order can be decreases
by two units.

E. Stiefel and G. Scheifele [7] wrote that Levi-Civita made a very good effort to find a generalization
of his method to regularize the differential equations of plane motion in the two-body problem to the
general spatial two-body problem, but without success. In [25], it is noted that because of fundamental
difficulties which were first explained by Hopf [26] and Hurwitz [27], it is impossible to generalize the
Levi-Civita transformation to the case of three-dimensional space. Nevertheless, the author of this
paper showed [28] that the Levi-Civita regularization can successfully be used to construct regular
equations of perturbed spatial two-body problem. This can be done [28] by using ideal rectangular Hasen
coordinates, regular Levi-Civita variables U0 and U3, the Kepler energy h as an additional variable,
and a new independent variable τ (new time) and using the the quaternion variable Λ describing the
orientation of an ideal (in the sense of A. Deprit [29]) coordinate system in which the differential equations
of perturbed spatial two-body problem must be written (or by using the Euler (Rodrigues–Hamilton)
parameters Λj describing the orientation of this coordinate system).

The new, proposed by the author of this paper, regular equations of perturbed spatial two-body
problem in scalar form become [28]

d2U0

dτ2
− h

2
U0 =

r

2
Q0,

d2U3

dτ2
− h

2
U3 =

r

2
Q3,

dh

dτ
= 2

(
Q0

dU0

dτ
+ Q3

dU3

dτ

)
,

2
dΛ0

dτ
= −r(Ω1Λ1 + Ω2Λ2), 2

dΛ1

dτ
= r(Ω1Λ0 − Ω2Λ3),

2
dΛ2

dτ
= r(Ω2Λ0 + Ω1Λ3), 2

dΛ3

dτ
= r(Ω2Λ1 − Ω1Λ2),

dt

dτ
= r, r = |r| = U2

0 + U2
3 ,

Ω1 = c−1(U2
0 − U2

3 )pξ3, Ω2 = −2c−1U0U3pξ3, c = 2
(

U3
dU0

dτ
− U0

dU3

dτ

)
,

Q0 = U0pξ1 − U3pξ2, Q3 = −U3pξ1 − U0pξ2,

where oξk (k = 1, 2, 3) are projections of the vector p of the perturbing acceleration of the center of mass
of the second body on the axes of the ideal coordinate system ξ.

These equations form a system of nonlinear nonstationary tenth-order differential equations in the
variables U0, U3, h, Λj (j = 0, 1, 2, 3) (all regular KS-equations have the same dimension) and have
all advantages of the Kustaanheimo–Stiefel equations. In contrast to the Newtonian equations, they are
regular at the center of attraction and linear in the case of unperturbed Kepler motions; permit developing
a unified approach to studying all three types of the Kepler motion; are close to linear equations for
perturbed Kepler motions; permit representing the right-hand sides of differential equations of motion of
celestial and cosmic bodies in polynomial form convenient for solving them by computers.

In contrast to the Kustaanheimo–Stiefel equations, the regular equations of elliptic Kepler motion,
proposed by the author of this paper, are equivalent to the equations of motion of not a four-dimensional
but a two-dimensional one-frequency harmonic oscillator whose square frequency is equal to half the
Kepler energy h with minus sign. The quaternion Λ of orientation of the ideal coordinate system
(constant for the Kepler motion), which is used in the proposed regular equations, is a slow (slightly
varying) variable in the perturbed two-body problem which makes the proposed regular equations
convenient for the application of methods of nonlinear mechanics.

We note that, in [9, pp. 63–66], V. A. Brumberg described how the Euler parameters can be used
to derive the equations of perturbed motion of spatial two-body problem in Hansen coordinations and
pointed out that further transformation of the obtained equations of perturbed motion is possible by using
the parabolic Levi-Civita coordinates.
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1.3. Works of Other Authors in the Field of KS and Quaternion Regularization of Differential
Equations of Two-Body Problem

The perturbed Kepler motion was studied by E. Stiefel and G. Scheifele [7] not only by using the
regular equations in oscillatory form and methods of the oscillation theory but also by using the regular
equations in canonical form, for which they developed the theory of canonical KS-transformation. Such a
canonical approach to the regularization problem, based on the use of KS-transformation, was developed
by M. D. Lidov [30–32]. The application of a generalized KS-matrix and related transformations in the
theory of regularization of canonical equations of the two-body problem was considered later in [33].

We also note the paper [34], where the differential equations of motion of an artificial satellite of the
Earth were obtained in the orbital coordinate system. The rotation quaternion, normalized by a factor
equal to the square root of the absolute value of the vector of satellite velocity moment, was used to
describe the motion of this coordinate system in the inertial space. These equations are linear for the
unperturbed motion of the satellite.

As for the works of foreign authors, it is worth to note the papers [35–37], where the applicability of
quaternions to regularization of equations of celestial mechanics was demonstrated later but apparently
independently of the author of the present paper. In the last years, Waldvogel’s papers [38, 39] were
written about the quaternion regularization of differential equations of perturbed spatial two-body
problem. (We note that Waldvogel has earlier works in the problem of regularization written together
with one of the authors of the KS-regularization, E. Stiefel [40].) In [39], it is said that “it is a true
way to use quaternions to regularize the celestial mechanics” and the quaternions “are an ideal tool for
describing and developing the theory of spatial regularization in celestial mechanics.”

In our opinion, the quaternion method for regularizing the differential equations of perturbed spatial
two-body problem described in [39] has no advantage over the quaternion regularization method
proposed by the author of this paper much earlier. Moreover, the forme is worth that the latter in
geometric and kinematic visualization and in the possibility of further generalization.

We note that the priority of the author of this paper in the field of quaternion regularization was
acknowledged in [39], where it was said that “This assertion1) was first disproved by Chelnokov
(1981) who used geometric representations in a rotating coordinate system and quaternion matrices
to represent the theory of regularization of spatial Kepler problem. An a series of papers (for example,
1992 and 1999), the same author extended the theory of quaternion regularization and gave practical
applications.”

Now we point out the basic specific features of the quaternion method of the Waldvogel regulariza-
tion [39]. For regularization, he proposed to use the “star conjugate” quaternion

u∗ = −kūk = u0 + iu1 + ju2 + ku3 (1.13)

(quaternion “star conjugate” to the quaternion u = u0 + iu1 + ju2 + ku3) and the mapping

u ∈ U → x = uu∗, (1.14)

which is based on the nontraditional representation of three-dimensional vector x by the quaternion
x = x0 + ix1 + jx2 whose kth component is zero (we note that Waldvogel does not use the special
symbol ◦ of quaternion produce). Such a quaternion x is a formal generalization (accretion) of the
complex variable x = x0 + ix1 used by Levi-Civita in the theory of regularization of equations of plane
motion.

The mapping (1.14) with regard to (1.13) becomes

x = uu∗ = −hkūk. (1.15)

In scalar form, (1.15) implies

x0 = u2
0 − u2

1 − u2
2 + u2

3, x1 = 2(u0u1 − u2u3), x2 = 2(u0u2 + u1u3), (1.16)

“which is precisely a KS-transformation in its classical form or – before the permutation of indices – a
Hopf transformation” (these are words of the author of [39]).

In the classical theory of quaternions, a three-dimensional vector x is associated with the quaternion
x = ix1 + jx2 + kx3 with zero scalar part. In the works of the author of this paper, the regularization

1)The author means the above-cited assertion by E. Stiefel and G. Scheifele that the use of quaternion matrices in the theory
of regularization has no perspectives.
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is based on the use of the quaternion variable u = u0 + iu1 + ju2 + ku3, which does not coincide (in
the meaning) with the Waldvogel quaternion variable, and the quaternion with zero scalar part. In these
works (and in the present paper), the mapping

x = ūiu

and the mapping

x = ūku

are used.
In scalar form, the first of these mapping is precisely the Kustaanheimo–Stiefel transformation (1.3)

which differs from (1.16) in form.
We note that no actually (not formally) new regular equations of the two-body problem were obtained

in [39]. Nevertheless, because of great importance of the regularization problem in celestial mechanics
and astrodynamics, the quaternion method of Waldvogel regularization of equations of perturbed two-
body problem is undoubtedly of great interest. The elegant quaternion representation of the Birkhoff
spatial mapping obtained by Waldvogel in [39], which is used in the theory of regularization of equations
of bounded three-body problem, is also undoubtedly of great interest. This representation is given by
Waldvogel in addition to his earlier results in the theory of regularization 40–42].

To conclude this section, we note the book [14] of the author of this paper published in 2011, where, in
particular, the quaternion method for regularizing the differential equations of perturbed spatial two-body
problem and perturbed central motion of material point is presented and the quaternion regular models of
celestial mechanics and astrodynamics and their applications to solving the problems of optimal control
of the spacecraft trajectory motion are given. We also note the surveys [15, 18] of the author of this paper
in the regularization of equations of celestial mechanics and astrodynamics.

1.4. Regularization of Differential Equations of the Three-Body Problem

In [25], Aarseth and Zare noted that the history of regularization of the three-body problem begins in
the famous works by Poicare [43] and Sundman [44]. In fact, Sundman solved the general problem in
principle by using two transformations of time and neglecting the case of triple collision. Unfortunately,
the solutions are represented by infinite series and do not reveal the true character of motions. The
authors of [25] believe, which is also doubtful, that the regularization of the three-body problem proposed
in [45] is also useful in the general case from the practical standpoint. They also note that the following
two requirements can be distinguished in the problem of regularization of the general three-body
problem: (1) regularization of all collisions of two bodies by using one “global” transformation; (2)
improved treatment of close triple collisions. Several examples of transformations satisfying the first
requirement in the plane bounded three-body problems are given in [45–48]. Waldvogel [49] presented a
global regularization the plane three-body problem with arbitrary masses. The equations obtained in this
case are symmetric with respect to some point masses and satisfy both the above requirements. In [50],
the Levi-Civita regularization is generalized to unperturbed plane bounded three-body problem by using
the complex Levi-Civita variables and the time transformation containing the product of raised-to-the-
third-power distances from the body of negligibly small mass to the two bodies of attraction which have
finite masses. We note that, for regularization in the three-body problem, one often uses another time
transformation which contains the product of distances from the body of negligibly small mass to the
two bodies of finite mass, and, as the author of [25] says, the equations obtained by using the time
transformation containing the cubed distances is not regular, because the new time tends to infinity as
the three body collide.

In [25], the canonical Hamilton formalism and two KS-transformations were used to regularize
the equations of the perturbed spatial unbounded three-body problem. This regularization allows
one particle to collide with the other two particles whose relative motion is described by singular
equations which still exhibit a good behavior when being solved numerically. This paper present the
eight-dimensional regularization of the general three-body problem which is based on the double KS-
regularization and has the following properties (by r0, r1, and r01 we denote the distances between the
bodies M0 and M2, M1 and M2, M0 and M1, respectively): (1) the equations of motion are regular in
collision of two bodies as r0 → 0 or as r1 → 0; (2) under the conditions that r01 ≥ r0 or r01 ≥ r1, the
equations of motion can be solved well in the nearly triple collisions.
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Aarseth and Zare believe that their new method for regularizing the three-body problem, which they
proposed in [25], cannot be used to study the three-body problem where one of the particles is massless,
i.e., to study the bounded three-body problem. At the same time, they say that this new method is closely
related to the standard KS-regularization which allows one of the particles to be weightless.

We note the widely cited book [51], where, in particular, the Levi-Civits and Kustaanheimo–
Stiefel regularizations of equations of the plane and spatial two-body problems and the Aarseth–Zare
regularization of spatial three-body problem are presented and many aspects of their use (the program,
algorithimc, and practical aspects of their use) are discussed.

In the book [10, pp. 34–45], it is proposed to use the double KS-transformation (with reference
to [25]) to construct canonical equations of the perturbed bounded three-body problem. The regu-
larized (transformed according to the Aarseth–Zare methodology) Hamiltonian of the problem and
the eighteenth-order equations in general standard Hamiltonian form are written. It is noted that the
system of these differential equations contains equations determining the time transformation and the
law of variation in the system energy. The right-hand sides of differential equations of the problem
studied in [10] are not written explicitly, i.e., not written in the form obtained after differentiation of
the Hamiltonian with respect to the problem variables (by the way, such equations are also not written
in [25]). This does not permit completely estimating the properties of the equations obtained by the
method proposed in [10].

At the same time, as was noted in [25], the removal of a singularity in the Hamiltonian need not
always eliminate the singular terms in the equations of motion. The authors of [25] believe that if the
Hamiltonian is regular but contains terms of the form rα

k , where α < 2, then the final equations of
motion are not regular. Moreover, the unbounded and bounded three-body problems are significantly
different, namely, the unperturbed unbounded three-body problem contains the energy integral, but such
an integral does not exists in the unperturbed bounded three-body problem. The variation in the energy of
the system, which is considered as an additional variable in the standard KS-regularization, is described
in the perturbed boundary three-body problem, as is shown below, by a differential equation which does
not have the property of global regularity in the transition to new independent variables in this equation,
which are traditionally used in this problem (this equation is not regular if the following two conditions
are satisfied simultaneously: r0 → 0 and r1 → 0). Therefore, it is doubtful that the equations of bounded
three-body problem, obtained by the method [10] based on the use of the system energy as an additional
variable, have the property of global regularity.

We believe that a way out of this situation in the perturbed spatial bounded circular three-body
problem is not to use the energy as an additional variable, as is usually done, but to use a variable which
is the Jacobi integral in the unperturbed spatial bounded circular three-body problem (more precisely,
this is the Jacobi constant of motion in this problem). In this paper, we use precisely this approach to
construct the quaternion regular equations of perturbed spatial bounded circular three-body problem.

In this paper, we develop a quaternion method for regularizing the differential equations of per-
turbed spatial bounded three-body problem based on the use of Kustaanheimo–Stiefel variables and
methodologically closely related to the quaternion method for regularizing the differential equations of
perturbed spatial two-body problem proposed by the author of this paper in [16, 17] (also see [13–15]).
In the first part of this paper, we consider the initial Newtonian equations of perturbed spatial bounded
three-body problem and formulate the problem of regularization of these equations. We present the
energy relations and differential equations describing the variations in the system energy in the perturbed
spatial bounded three-body problem and the first integrals of differential equations of unperturbed spatial
bounded circular three-body problem (the Jacobi integrals). We consider the equations of perturbed
spatial bounded three-body problem written in rotating coordinates and using the rotation quaternions
(Euler (Rodrigues–Hamilton ) parameter) to describe the angular motion of these coordinates systems.
We also present the differential equations for the angular momenta in the three-body problem under
study.

In the same part of the paper, we obtain local regular quaternion differential equations of perturbed
spatial bounded circular three-body problem, where, as an additional variable, we use the Kepler energy
or the total energy of the system. We also obtain local regular quaternion differential equations of
perturbed spatial bounded circular circular three-body problem, where, as an additional variable, we use
a quantity which is the Jacobi constant of motion in the unperturbed spatial bounded circular three-body
problem.

MECHANICS OF SOLIDS Vol. 52 No. 6 2017



622 CHELNOKOV

The obtained equations are systems of nonlinear nonstationary eleventh-order differential equations
with respect to the Kustaanheimo–Stiefel variables, their first derivatives, Kepler or total energy or a
variable which is the Jacobi constant of integration in the case of unperturbed spatial bounded circular
three-body problem, and also with respect to time and an auxiliary time variable. In these equations, as
new independent variables, we use the variables related to the time by the differential relations, namely,
the derivative with respect to time of the new (first or second) variable is equal to the distance from the
body of negligibly small mass to the first or second body of finite mass.

The constructed sets of differential equations of perturbed spatial bounded three-body problem allow
us to develop regular analytical and numerical methods for studying the motions of the body of negligibly
small mass near the other two bodies of finite mass and also permit developing regular algorithms
for integrating these equations, where one of the constructed systems of eleventh-order differential
equations is used to study the motion of the body M2 of negligibly small mass near the body M0 (when
the distances r0, r1 between the bodies M2 and M0, M2 and M1 satisfy the inequality m1r

2
0 ≤ m0r

2
1) and

the other system of differential equations of the same order is used to study the motions of the body M2

near the body M1 (when the distances r1 and r0 satisfy the inequality m0r
2
1 <m1r

2
0) (in these inequalities,

m0 and m1 are the masses of the bodies M0 and M1).
In the second part of the paper, we study the problem of constructing not only local but also global

regular quaternion differential equations of the perturbed spatial bounded three-body problem, i.e.,
equations are regular if the conditions r0 = 1, r1 = 0 or the conditions r0 → 0, r1 → 0 are satisfied
simultaneously. The construction of systems of differential equations used to solve this problem is based
on the equations and relations presented in the first part of the paper.

2. INITIAL DIFFERENTIAL EQUATIONS OF PERTURBED SPATIAL BOUNDED
THREE-BODY PROBLEM

We consider three material points M0, M1, and M2 of masses m0, m1, and m2, which mutually
attract each other according to the law of universal gravitation. The unbounded three-body problem
consists [52] of determining and studying all possible motions of material points M0, M1, and M2. The
bounded three-body problem is the problem [52] about the motion of material point M2 =M of zero mass
m2 = 0 (more precisely, of mass m2 negligibly small as compared to the masses m0 and m1) attracted
according to the Newton law by the other two material points M0 and M1 of nonzero masses m0 and m1.

The bounded three-body problem is [52] the limit version of the unbounded three-body problem. It
is widely used in both the classical celestial mechanics (for example, the theory of motion of the Moon)
and the mechanics of cosmic flight (the problem of attaining the Moon). The differential equations of
the bounded three-body problem are obtained from the equations of the unbounded three-body problem
(5.1.04) in [52] if we set m2 = 0 in them. They have the form

d2ξ0

dt2
=

fm1(ξ1 − ξ0)
Δ3

01

,
d2η0

dt2
=

fm1(η1 − η0)
Δ3

01

,
d2ζ0

dt2
=

fm1(ζ1 − ζ0)
Δ3

01

,

d2ξ1

dt2
=

fm0(ξ0 − ξ1)
Δ3

01

,
d2η1

dt2
=

fm0(η0 − η1)
Δ3

01

,
d2ζ1

dt2
=

fm0(ζ0 − ζ1)
Δ3

01

,

d2ξ2

dt2
=

fm0(ξ0 − ξ2)
Δ3

02

+
fm1(ξ1 − ξ2)

Δ3
12

+ pξ,

d2η2

dt2
=

fm0(η0 − η2)
Δ3

02

+
fm1(η1 − η2)

Δ3
12

+ pη,

d2ζ2

dt2
=

fm0(ζ0 − ζ2)
Δ3

02

+
fm1(ζ1 − ζ2)

Δ3
12

+ pζ ,

(2.1)

Δ2
01 = (ξ0 − ξ1)2 + (η0 − η1)2 + (ζ0 − ζ1)2,

Δ2
02 = (ξ0 − ξ2)2 + (η0 − η2)2 + (ζ0 − ζ2)2,

Δ2
12 = (ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2.

(2.2)

Here ξ0, η0, ζ0; ξ1, η1, ζ1, and ξ2, η2, ζ2 are the Cartesian coordinates of material points M0, M1, and
M2 = M in the inertial coordinate system Oξηζ; Δ01, Δ02, and Δ12 are the respective mutual distances
between points M0 and M1, M0 and M2, M1 and M2, and f is the gravitation constant.
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We note that, in contrast to equations (5.1.04) in [52], equations (2.1), (2.2) additionally contain
projections pξ, pη, pζ on the axes of the inertial coordinate system Oξηζ of the perturbing acceleration p
of material point M2 = M due to the forces acting on point M2 other than the forces of gravitational
attraction on the side of points M0 and M1.

We introduce the vectors r0 =(M0,M), r1 =(M1,M), r01 =(M0,M1), and r10 = (M1,M0) = −r01.
The projections of the vectors r0 and r1 on the axes of the inertial coordinate system Oξηζ are
respectively equal to ξ2 − ξ0, η2 − η0, ζ2 − ζ0 and ξ2 − ξ1, η2 − η1, ζ2 − ζ1.

Using the above-introduced vectors r0 and r1 as new vector variables, from differential equa-
tions (2.1) we derive the following vector form of differential equations of the perturbed spatial bounded
three-body problem:

d2r0

dt2
= − fm0

r3
0

r0 −
fm1

r3
1

r1 −
fm1

r3
01

r01 + p, (2.3)

d2r1

dt2
= − fm0

r3
0

r0 −
fm1

r3
1

r1 −
fm0

r3
01

r10 + p, (2.4)

r01 = r0 − r1, r10 = r1 − r0 = −r01,

r0 = |r0| = Δ02, r1 = |r1| = Δ12, r01 = |r01| = |r10| = Δ01.

Differential equation (2.3) describes the motion of point M2 =M in the coordinate system M0X0Y0Z0

with origin at point M0 and with coordinates axes M0X0, M0Y0, M0Z0 parallel to the corresponding axes
of the inertial coordinate system Oξηζ, and differential equation (2.4) describes the motion of the same
point in the coordinate system M1X1Y1Z1 with origin at point M1 and with coordinate axes M1X1,
M1Y1, M1Z1 also parallel to the corresponding inertial axes Oξ, Oη, Oζ .

Differential equation (2.3) can be considered independently of differential equation (2.4) if we set
r1 = r0 − r01 in it and taken into account that the vector r01 satisfies the differential equation

d2r01

dt2
= − f(m0 + m1)

r3
01

r01 (2.5)

of the unperturbed spatial two-body problem (M0 and M1) which, as is known, can be integrated. There-
fore, we assume that the vector r01 contained in equation (2.3) is a known function of time: r01 = r01(t).
Similarly, differential equation (2.4) can be considered independently of differential equation (2.3) if we
use the relation r0 = r1 − r10 in it and taken into account that the vector r10 = −r01 is a known function
of time.

Equations (2.3) and (2.4) can also be treated as a system of two differential equations with unknown
vector variables r0 and r1.

We note that the coordinate representation of equation (2.3) coincides (for p = 0) with the equations
of the bounded three-body problem (6.1) in [53].

Vector equations (2.3) and (2.4) of the perturbed spatial bounded three-body problem have singular
points r0 = 0 and r1 = 0 at which these equations are degenerate. The problem of removing these
singularities (the separate removal of one of the singularities and the simultaneous removal of both
singularities) is precisely the subject of regularization of differential equations of perturbed bounded
three-body problem. We note that the conditions r0 = 0 and r1 = 0 cannot be simultaneously satisfied
in the majority of problem in celestial mechanics and astrodynamics. Nevertheless, it is interesting from
theoretical and practical standpoints (from the standpoint of construction of effective high-precision
algorithms for numerical integration of differential equations of the three-body problem, which are
necessary for the high-precision prediction of motion of celestial and cosmic bodies) to obtain regular
equations which do not degenerate when both of these conditions are satisfied simultaneously.

3. ENERGY RELATIONS AND EQUATIONS
IN THE SPATIAL BOUNDED THREE-BODY PROBLEM

The energy characteristics of motion of bodes and differential equations for these characteristics are
used to construct regular equations of celestial mechanics and astrodynamics.
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Let us consider the energy h0 of motion of point M2 = M in the coordinate system M0X0Y0Z0 and
the energy h1 of motion in the coordinate system M1X1Y1Z1:

h0 =
1
2

v2
0 − fm0

r0
− fm1

r1
, h1 =

1
2

v2
1 − fm0

r0
− fm1

r1
,

v0 = |v0|, v0 =
dr0

dt
, v1 = |v1|, v1 =

dr1

dt
,

(3.1)

where v0 and v1 are the respective velocity vectors of motion of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1.

Differentiating relations (3.1) with respect to time and taking equations (2.3) and (2.4) into account,
we obtain different forms of differential equations for the energies h0 and h1:

dh0

dt
= −fm1

(
v0 · r01

r3
01

+
v01 · r1

r3
1

)
+v0 · p = fm1

r01ṙ01−v01 · r0

r3
1

− fm1
v0 · r01

r3
01

+v0 · p, (3.2)

dh1

dt
= −fm0

(
v1 · r10

r3
01

+
v10 · r0

r3
0

)
+v1 · p = fm0

(
v1 · r01

r3
10

+
v01 · r0

r3
0

)
+v1 · p =

= fm0
r01ṙ01 + v01 · r1

r3
0

+ fm0
v1 · r01

r3
01

+ v1 · p, (3.3)

v0 =
dr0

dt
, v01 =

dr01

dt
, v1 =

dr1

dt
, v10 =

dr10

dt
.

Here the central dot is the symbol of scalar product of vectors.
We note that the energy equations (3.2) and (3.3) hold for the general perturbed bounded three-body

problem and the singularities of these equation arise due to the nonzero velocity v01 of motion of body M1

with respect to body M0.
It is well known that, for the equations of unperturbed bounded circular three-body problem (when

p = 0), there exist a first integral called the Jacobi integral [52, 53]. To obtain the Jacobi integral by the
method proposed in [53], we write equation (2.3) as

d2r0

dt2
= − fm0

r3
0

r0 + fm1

[
1
r3
1

(r01 − r0) −
1

r3
01

r01

]
+ p. (3.4)

By x0, y0, z0 we denote the Cartesian coordinates of point M in the coordinate system M0X0Y0Z0

(the projections of the vector r0 on the axes of this coordinate system), and by x01, y01, z01, the projec-
tions of the vector r01 on the axes of this coordinate system (the coordinates of point M1 in the coordinate
system M0X0Y0Z0). We project equation (3.4) on the axes of the coordinate system M0X0Y0Z0 to obtain
the scalar equations of the perturbed bounded three-body problem in the form

dx0t

d =x0
− fm0

r3
0

x0 + fm1

[
1
r3
1

(x01 − x0) −
1

r3
01

x01

]
+ px,

dy0t

d =y0
− fm0

r3
0

y0 + fm1

[
1
r3
1

(y01 − y0) −
1

r3
01

y01

]
+ py,

dz0t

d =z0
− fm0

r3
0

z0 + fm1

[
1
r3
1

(z01 − z0) −
1

r3
01

z01

]
+ pz,

(3.5)

r2
0 = x2

0 + y2
0 + z2

0 , r2
01 = x2

01 + y2
01 + z2

01,

r2
1 = (x01 − x0)2 + (y01 − y0)2 + (z01 − z0)2 = x2

1 + y2
1 + z2

1 .
(3.6)

Here x1, y1, z1 and px = pξ, py = pη, pz = pζ are the projections of the vectors r1 and p on the axes of
the coordinate system M0X0Y0Z0 (they are equal to the corresponding projections of these vectors on
the axe of the coordinate system M1X1Y1Z1).

Equations (3.5), (3.6) with px = 0, py = 0, and pz = 0 coincide with equations (6.1), (6.2) in [53].
We consider a special case of the bounded three-body problem, i.e., the circular bounded three-body

problem. We assume that the material point M0 is the Earth about with the material point M1, i.e., the
Moon, moves in a circular orbit according to the Kepler laws. We also assume that the plane of the Moon
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circular orbit coincides with the coordinate plane M0X0Y0. Then for the Moon coordinates x01, y01, z01,
we have the following expressions [53]:

x01 = a cos(nt), y01 = a sin(nt), z01 = 0. (3.7)

In this case, we assume that the axis M0X0 passes through the point of the Moon location (this time
moment is taken as the initial epoch of time reading).

The radius of the Moon circular orbit a = |r01| and the angular velocity n of motion in its circular
orbit are related by the well-known expression

n2 =
f(m0 + m1)

a3
, a = |r01|. (3.8)

We obtain the projections of the Moon velocity in the coordinate system M0X0Y0Z0 differentiating
relations (3.7) with respect to time:

ẋ01 = −an sin(nt) = −ny01, ẏ01 = an cos(nt) = nx01, ż01 = 0. (3.9)

Relations (3.7)–(3.9) can be obtained by integrating equation (2.5) with regard to the above assump-
tions about the motion of body M1 (the Moon) and the choice of the coordinate system M0X0Y0Z0.

First, we respectively multiply equations (3.5) by 2dx0/dt, 2dy0/dt, 2dz0/dt and sum the obtained
relations. Then we respectively multiply equations (3.5) by 2ny0, −2nx0, 0 and again sum the obtained
equations. We obtain the two equations

2ẋ0ẍ0 + 2ẏ0ÿ0 + 2ż0z̈0 = 2(ẋ0X + ẏ0Y + ż0Z),
2n(y0ẍ0 − x0ÿ0) = 2n(y0X − x0Y ).

(3.10)

Here X, Y , Z are the right-hand sides of equations (3.5), one dot and two dots over a symbol denote the
first and second derivatives with respect to time t, respectively.

We sum the left- and right-hand sides of the obtained relations (3.10) with regard to the expressions
for the right-hand sides X, Y , Z of equations (3.5). After several transformations, we obtain the following
differential equation for the energy h0 of motion of point M in the coordinate system M0X0Y0Z0 in the
case of perturbed bounded circular three-body problem:

dh0

dt
= − fm1

r3
01

d

dt
(r0 · r01) − n

d

dt
(y0ẋ0 − x0ẏ0) +

dr0

dt
· p + n(y0px − x0py) (3.11)

with the scalar product

r0 · r01 = x0x01 + y0y01 = a[cos(nt)x0 + sin(nt)y0].

Similarly, using the scalar form of the vector equation (2.4)

d2x1

dt2
= − fm1

r3
1

x1 + fm0

[
1
r3
0

(x10 − x1) −
1

r3
10

x10

]
+ px,

d2y1

dt2
= − fm1

r3
1

y1 + fm0

[
1
r3
0

(y10 − y1) −
1

r3
10

y10

]
+ py,

d2z1

dt2
= − fm1

r3
1

z1 + fm0

[
1
r3
0

(z10 − z1) −
1

r3
10

z10

]
+ pz,

r2
1 = x2

1 + y2
1 + z2

1 , r2
10 = x2

10 + y2
10 + z2

10,

r2
0 = (x10 − x1)2 + (y10 − y1)2 + (z10 − z1)2 = x2

0 + y2
0 + z2

0 ,

we obtain the following differential equation for the energy h1 of motion of point M in the coordinate
system M1X1Y1Z1 in the case of perturbed bounded circular three-body problem:

dh1

dt
= − fm0

r3
01

d

dt
(r1 · r10) − n

d

dt
(y1ẋ1 − x1ẏ1) +

dr1

dt
· p + n(y1px − x1py) (3.12)

with the scalar product

r1 · r10 = x1x10 + y1y10 = −a[cos(nt)x1 + sin(nt)y1],
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where x1, y1, z1 are Cartesian coordinates of point M in the coordinate system M1X1Y1Z1 (projections
of the vector r1 on the axes of this coordinate system equal to the projections of this vector on the axes of
the coordinate system M0X0Y0Z0) and x10 = −x01, y10 = −y01, z10 = 0 are the projections of the vector
r10 = −r01 on the axes of the coordinate system M1X1Y1Z1 (coordinates of point M0 in the coordinate
system M1X1Y1Z1).

Equations (3.11) and (3.12) can be written as

dH0

dt
=

dr0

dt
· p + n(y0px − x0py), (3.13)

dH1

dt
=

dr1

dt
· p + n(y1px − x1py), (3.14)

H0 = h0 +
fm1

r3
01

(r0 · r01) + n(y0ẋ0 − x0ẏ0)

=
1
2

(ẋ2
0 + ẏ2

0 + ż2
0) − fm0

r0
− fm1

r1
+

fm1

r3
01

(x0x01 + y0y01) + n(y0ẋ0 − x0ẏ0), (3.15)

H1 = h1 +
fm0

r3
01

(r1 · r10) + n(y1ẋ1 − x1ẏ1)

=
1
2

(ẋ2
1 + ẏ2

1 + ż2
1) − fm0

r0
− fm1

r1
+

fm0

r3
01

(x1x10 + y1y10) + n(y1ẋ1 − x1ẏ1). (3.16)

One can show that the quantities (functions of time) H0 and H1 differ by a constant:

H1 = H0 +
1
2

f(m0 − m1)
a

, a = |r01| = const.

We note that the quantities c31 = x0ẏ0 − y0ẋ0 and c1z = x1ẏ1 − y1ẋ1 contained in (3.15) and (3.16)
with opposite signs are moments of the velocity vectors v0 and v1 of point M with respect to the coor-
dinate axes M0Z0 and M1Z1, respectively, and the quantities x0py − y0px and x1py − y1px contained in
equations (3.13) and (3.14) also with opposite signs are moments of the perturbed acceleration vector p
with respect to these axes.

The equations of perturbed bounded circular three-body problem are obtained from equations (2.3)
and (2.4) with the projections of the vector r01 in the coordinate system M0X0Y0Z0 prescribed by
relations (3.7) and the projections of the vector r10 in the coordinate system M1X1Y1Z1 prescribed by the
relations x10 = −a cos(nt), y10 = −a sin(nt), and z01 = 0, respectively. It follows from equations (3.13)
and (3.14) that the equations of the unperturbed bounded circular three-body problem have first integral
with the perturbing acceleration is equal to p = 0:

H0 =
1
2

(ẋ2
0+ẏ2

0+ż2
0)−

fm0

r0
− fm1

r1
+

fm1

r3
01

(x0x01+y0y01)+n(y0ẋ0−x0ẏ0)=H0(t0)=const, (3.17)

H1 =
1
2

(ẋ2
1+ẏ2

1+ż2
1)−

fm0

r0
− fm1

r1
+

fm0

r3
01

(x1x10+y1y10)+n(y1ẋ1−x1ẏ1)=H1(t0)=const. (3.18)

We note that the integral (3.17) coincides with the integral (6.9) in [53] of the unperturbed bounded
circular three-body problem (Jacobi integral).

4. DIFFERENTIAL EQUATIONS OF PERTURBED SPATIAL BOUNDED
THREE-BODY PROBLEM WRITTEN IN ROTATING COORDINATE SYSTEMS.
ROTATION QUATERNIONS INTRODUCED IN THE EQUATIONS OF MOTION

We introduce two rotating coordinate systems M0X
′
0Y

′
0Z ′

0 and M1X
′
1Y

′
1Z ′

1 whose axes M0X
′
0 and

M1X
′
1 are directed along the radius vectors r0 and r1, respectively. By ω0 and ω1 we denote the vectors

of absolute angular velocities of rotation of the coordinate systems M0X
′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1, and

by ω0i and ω1i, the projections of these vectors on the axes of the coordinate systems M0X
′
0Y

′
0Z

′
0

and M1X
′
1Y

′
1Z

′
1, respectively.

To describe the orientations (angular position) of the coordinate system M0X
′
0Y

′
0Z

′
0 in the coordinate

system M0X0Y0Z0 (and hence in the inertial coordinate system Oξηζ), we use the normalized rotation
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quaternion λ0, and to describe the orientation of the coordinate system M1X
′
1Y

′
1Z

′
1 in the coordinate

system M1X1Y1Z1 (and hence in the inertial coordinate system Oξηζ), we use the normalized rotation
quaternion λ1:

λi = λi0 + λi1i + λi2j + λi3k, ‖λi‖ = λ2
i0 + λ2

i1 + λ2
i2 + λ2

i3 = 1, i = 0, 1,

where i, j, k are the Hamilton vector imaginary units, λij (i, j = 0, 1, 2, 3) are components of the
orientation quaternion (the (Euler) Rodrigues–Hamilton parameters) characterizing the orientation of
the coordinate system MiX

′
iY

′
i Z

′
i in the inertial coordinate system.

Let us write the vector differential equation (2.3) in the rotating coordinate system M0X
′
0Y

′
0Z

′
0, and

the vector differential equation (2.4), in the rotating coordinate system M1X
′
1Y

′
1Z ′

1. Passing to the scalar
problem, we obtain equations (4.1)–(4.3) and (4.4)–(4.6):

r̈0 − r0(ω2
02 + ω2

03) +
fm0

r2
0

= − fm1r0

r3
01

+ fm1

(
1

r3
01

− 1
r3
1

)
x′

1 + p′1

= − fm1r0

r3
1

+ fm1

(
1
r3
1

− 1
r3
01

)
x′

01 + p′1, (4.1)

2ω03ṙ0 + r0ω̇03 + r0ω01ω02 = fm1

(
1

r3
01

− 1
r3
1

)
y′1 + p′2 = fm1

(
1
r3
1

− 1
r3
01

)
y′01 + p′2,

2ω02ṙ0 + r0ω̇02 − r0ω01ω03 = −fm1

(
1

r3
01

− 1
r3
1

)
z′1 − p′3 = −fm1

(
1
r3
1

− 1
r3
01

)
z′01 − p′3,

(4.2)

2λ̇00 = −ω01λ01 − ω02λ02 − ω03λ03, 2λ̇01 = ω01λ00 + ω03λ02 − ω02λ03,

2λ̇02 = ω02λ00 − ω03λ01 + ω01λ03, 2λ̇03 = ω03λ00 + ω02λ01 − ω01λ02,
(4.3)

r̈1 − r1(ω2
12 + ω2

13) +
fm1

r2
1

= − fm0r1

r3
01

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

0 + p′′1

= − fm0r1

r3
0

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

01 + p′′1, (4.4)

2ω13ṙ1 + r1ω̇13 + r1ω11ω12 = fm0

(
1

r3
01

− 1
r3
0

)
y′′0 + p′′2 = fm0

(
1

r3
01

− 1
r3
0

)
y′′01 + p′′2,

2ω12ṙ1 + r1ω̇12 − r1ω11ω13 = −fm0

(
1

r3
01

− 1
r3
0

)
z′′0 − p′′3 = −fm0

(
1

r3
01

− 1
r3
0

)
z′′01 − p′′3 ,

(4.5)

2λ̇10 = −ω11λ11 − ω12λ12 − ω13λ13, 2λ̇11 = ω11λ10 + ω13λ12 − ω12λ13,

2λ̇12 = ω12λ10 − ω13λ11 + ω11λ13, 2λ̇13 = ω13λ10 + ω12λ11 − ω11λ12,
(4.6)

As variables in the equations of bounded three-body problem (4.1)–(4.3) and (4.4)–(4.6), we have
the distances r0 and r1 from point M to points M0 and M1, their derivatives ṙ0 and ṙ1 (the respective
projections of the velocity vectors v0 and v1 of point M in the coordinates systems M0X0Y0Z0

and M1X1Y1Z1 on the directions of radius vectors r0 and r1), the projections ω02, ω03 and ω12, ω13

of the vectors of absolute angular velocities ω0 and ω1 of rotation of the coordinate systems M0X
′
0Y

′
0Z

′
0

and M1X
′
1Y

′
1Z

′
1 on the axes of the same coordinate systems M0X

′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z ′

1, respectively,
and the Rodrigues–Hamiltonian parameters λ0j and λ1j characterizing the orientation of the coordinate
systems M0X

′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z ′

1 in the inertial coordinate system Oξηζ. In the equations, the
respective projections ω01 and ω11 of the vectors of angular velocities ω0 and ω1 on the directions of
radius vectors r0 and r1 are arbitrarily determined parameters. The quantities x′

1, y′1, z′1; x′
01, y′01, z′01;

and p′1, p′2, p′3 in these equations are projections of the radius vectors r1, r01 and the vector of perturbing
acceleration p on the axes of rotating coordinate system M0X

′
0Y

′
0Z

′
0, and the quantities x′′

0, y′′0 , z′′0 ; x′′
01,

y′′01, z′′01; and p′′1, p′′2 , p′′3 are projections of the radius vectors r0, r01, and the acceleration vector p on the
axes of the rotating coordinate system M1X

′
1Y

′
1Z ′

1.
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The Cartesian coordinates x0, y0, z0 and x1, y1, z1 of point M in the coordinate systems M0X0Y0Z0

and M1X1Y1Z1 are determined in terms of the above-listed variables by the formulas

xi = ri(λ2
i0 + λ2

i1 − λ2
i2 − λ2

i3),
yi = 2ri(λi1λi2 + λi0λi3) = 2ri(λi1λi3 − λi0λi2), i = 0, 1,

(4.7)

and the projections v′0k and v′1k of the velocity vectors v0 and v1 of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1 on the axes of the coordinate systems M ′

0X
′
0Y

′
0Z

′
0 and M ′

1X
′
1Y

′
1Z ′

1 are
determined by the formulas

v′i1 = ṙi, v′i2 = riωi3, v′i3 = −riωi2, i = 0, 1. (4.8)

The projections p1 = px, p2 = py, p3 = pz of the vector p on the axes of the coordinate system
M0X0Y0Z0 are related to the projections p′k on the axes of the coordinate system M0X

′
0Y

′
0Z

′
0 by the

reprojection relations

p1 = (λ2
00 + λ2

01 − λ2
02 − λ2

03)p
′
1 + 2(λ01λ02 − λ00λ03)p′2 + 2(λ01λ03 + λ00λ02)p′3,

p2 = 2(λ01λ02 + λ00λ03)p′1 + (λ2
00 − λ2

01 + λ2
02 − λ2

03)p
′
2 + 2(λ02λ03 − λ00λ01)p′3,

p3 = 2(λ01λ03 − λ00λ02)p′1 + 2(λ02λ03 + λ00λ01)p′2 + (λ2
00 − λ2

01 − λ2
02 + λ2

03)p
′
3,

p′1 = (λ2
00 + λ2

01 − λ2
02 − λ2

03)p1 + 2(λ01λ02 + λ00λ03)p2 + 2(λ01λ03 − λ00λ02)p3,

p′2 = 2(λ01λ02 − λ00λ03)p1 + (λ2
00 − λ2

01 + λ2
02 − λ2

03)p2 + 2(λ02λ03 + λ00λ01)p3,

p′3 = 2(λ01λ03 + λ00λ02)p1 + 2(λ02λ03 − λ00λ01)p2 + (λ2
00 − λ2

01 − λ2
02 + λ2

03)p3.

(4.9)

Similar relations exist between the projections pk of the vector p on the axes of the coordinate system
M0X0Y0Z0 and the its projections p′′k on the axes of the coordinate system M1X

′
1Y

′
1Z ′

1 (in (4.9), instead
of p′k, it is necessary to take p′′k, and instead of λ0j , to take λ1j).

Differential equations (4.3), (4.6) and relations (4.7), (4.9) in quaternion form become

2
dλi

dt
= λi ◦Ωi, i = 0, 1,

λi = λi0 + λi1i + λi2j + λi3k, Ω = ωi1i + ωi2j + ωi3k,
(4.10)

Ri = xii + yij + zik = riλi ◦ i ◦ λ̄i, i = 0, 1, (4.11)

P = p1i + p2j + p3k = λ0 ◦P′ ◦ λ̄0 = λ1 ◦ P′′ ◦ λ̄1,

P′ = p′1i + p′2j + p′3k = λ̄0 ◦P ◦ λ0, P′′ = p′′1i + p′′2j + p′′3k = λ̄1 ◦ P ◦ λ1.
(4.12)

Here and below, the symbol ◦ (central circle) denotes the quaternion multiplication, the upper
bar denotes the conjugate quaternion, for example, λ̄0 = λ00 − λ01i − λ02j − λ03k; the quaternion
is differentiated under the assumption that the unit vectors i, j, and k remain unchanged; and the
quaternion P′′, which is used below, is additionally introduced.

The projections x′
1, y′1, z′1; x′′

0, y′′0 , z′′0 ; and x′
01, y′01, z′01; x′′

01, y′′01, z′′01 of the radius vectors r1, r0,
and r01 contained in equations (4.1), (4.2) and (4.4), (4.5) are determined in terms of new variables by
the quaternion relations

R′
1 = x′

1i + y′1j + z′1k = λ̄0 ◦ R1 ◦ λ0 = r1μ ◦ i ◦ μ̄, μ = λ̄0 ◦ λ1, (4.13)

R′′
0 = x′′

0i + y′′0 j + z′′0k = λ̄1 ◦R0 ◦ λ1 = r0μ ◦ i ◦ μ̄, μ = λ̄0 ◦ λ1, (4.14)

R′
01 = x′

01i + y′01j + z′01k = λ̄0 ◦R01 ◦ λ0, R01 = x01i + y01j + z01k,

R′′
01 = x′′

01i + y′′01j + z′′01k = λ̄1 ◦R01 ◦ λ1.
(4.15)

It follows from relations (4.13) and (4.14) that

μ̄ ◦R′
1 ◦ μ = r1i, μ ◦ R′′

0 ◦ μ̄ = r0i.

The projections v0k and v1k of the velocity vectors v0 and v1 of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1 on the axes of the coordinate systems M0X0Y0Z0 and M1X1Y1Z1, which
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coincide with their projections on the axes of the inertial coordinate system, are determined by the
quaternion formulas

Vi = vi1i + vi2j + vi3k = λ ◦ V′
i ◦ λ̄, i = 0, 1, (4.16)

V′
i = v′i1i + v′i2j + v′i3k = ṙii + riωi3j − riωi2k, i = 0, 1. (4.17)

5. DIFFERENTIAL EQUATIONS OF PERTURBED SPATIAL BOUNDED THREE-BODY
PROBLEM WRITTEN IN NONHOLONOMIC (AZIMUTHALLY FREE)

ACCOMPANYING COORDINATE TRIHEDRONS
We introduce the vectors c0 and c1 of moments of the velocities v0 and v1 of point M in the coordinate

systems M0X0Y0Z0 and M1X1Y1Z1 with respect to points M0 and M1, respectively:

ci = ri × ṙi = ri × vi, i = 0, 1.

The projections cik (k = 1, 2, 3) of the vector ci on the axes of the rotating coordinate system MiX
′
iY

′
i Z

′
i

are determine by the relations

ci1 = 0, ci2 = r2
i ωi2, ci3 = r2

i ωi3, i = 0, 1. (5.1)

We complete the definition of motion of the coordinate system MiX
′
iY

′
i Z

′
i by the assumption that the

arbitrarily determined projection ωi1 of the vector of its absolute angular velocity ωi on the direction of
the radius vector ri (axis MiX

′
i) is equal to zero:

ωi1 = 2(−λi1λ̇i0 + λi0λ̇i1 + λi3λ̇i2 − λi2λ̇i3) = 0, i = 0, 1. (5.2)

In this case, as it follows from (5.1) and (5.2), the coordinate system MiX
′
iY

′
i Z

′
i rotates with absolute

angular velocity ωi collinear to the vector of the velocity moment ci:

ωi = r−2
i ci, i = 0, 1. (5.3)

Such a coordinate system is nonholonomic (azimuthally free) accompanying coordinate trihedron.
Differential equations of bounded three-body problem (4.1)–(4.6) with regard to (5.2) become

r̈0 − r0(ω2
02 + ω2

03) +
fm0

r2
0

= − fm1r0

r3
01

+ fm1

(
1

r3
01

− 1
r3
1

)
x′

1 + p′1,

= − fm1r0

r3
1

+ fm1

(
1
r3
1

− 1
r3
01

)
x′

01 + p′1,

2ω03ṙ0 + r0ω̇03 = fm1

(
1

r3
01

− 1
r3
1

)
y′1 + p′2 = fm1

(
1
r3
1

− 1
r3
01

)
y′01 + p′2,

2ω02ṙ0 + r0ω̇02 = −fm1

(
1

r3
01

− 1
r3
1

)
z′1 − p′3 = −fm1

(
1
r3
1

− 1
r3
01

)
z′01 − p′3,

2λ̇00 = −ω02λ02 − ω03λ03, 2λ̇01 = ω03λ02 − ω02λ03,

2λ̇02 = ω02λ00 − ω03λ01, 2λ̇03 = ω03λ00 + ω02λ01,

r̈1 − r1(ω2
12 + ω2

13) +
fm1

r2
1

= − fm0r1

r3
01

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

0 + p′′1

= − fm0r1

r3
0

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

01 + p′′1,

2ω13ṙ1 + r1ω̇13 = fm0

(
1

r3
01

− 1
r3
0

)
y′′0 + p′′2 = fm0

(
1

r3
01

− 1
r3
0

)
y′′01 + p′′2,

2ω12ṙ1 + r1ω̇12 = −fm0

(
1

r3
01

− 1
r3
0

)
z′′0 − p′′3 = −fm0

(
1

r3
01

− 1
r3
0

)
z′′01 − p′′3,

2λ̇10 = −ω12λ12 − ω13λ13, 2λ̇11 = ω13λ12 − ω12λ13,

2λ̇12 = ω12λ10 − ω13λ11, 2λ̇13 = ω13λ10 + ω12λ11.
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These equations with regard to (5.1) take the form

r̈0 −
1
r3
0

(c2
02 + c2

03) +
fm0

r2
0

= − fm1r0

r3
01

+ fm1

(
1

r3
01

− 1
r3
1

)
x′

1 + p′1,

= − fm1r0

r3
1

+ fm1

(
1
r3
1

− 1
r3
01

)
x′

01 + p′1, (5.4)

c01 = 0, ċ02 = −fm1

(
1

r3
01

− 1
r3
1

)
r0z

′
1 − r0p

′
3 = −fm1

(
1
r3
1

− 1
r3
01

)
r0z

′
01 − r0p

′
3,

ċ03 = fm1

(
1

r3
01

− 1
r3
1

)
r0y

′
1 + r0p

′
2 = fm1

(
1
r3
1

− 1
r3
01

)
r0y

′
01 + r0p

′
2,

(5.5)

2λ̇00 = − 1
r2
0

(c02λ02 − c03λ03), 2λ̇01 =
1
r2
0

(c03λ02 − c02λ03),

2λ̇02 =
1
r2
0

(c02λ00 − c03λ01), 2λ̇03 =
1
r2
0

(c03λ00 + c02λ01),
(5.6)

r̈1 −
1
r3
1

(c2
12 + c2

13) +
fm1

r2
1

= − fm0r1

r3
01

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

0 + p′′1

= − fm0r1

r3
0

+ fm0

(
1

r3
01

− 1
r3
0

)
x′′

01 + p′′1 , (5.7)

c11 = 0, ċ12 = −fm0

(
1

r3
01

− 1
r3
0

)
r1z

′′
0 − r1p

′′
3 = −fm0

(
1

r3
01

− 1
r3
0

)
r1z

′′
01 − r1p

′′
3,

ċ13 = fm0

(
1

r3
01

− 1
r3
0

)
r1y

′′
0 + r1p

′′
2 = fm0

(
1

r3
01

− 1
r3
0

)
r1y

′′
01 + r1p

′′
2,

(5.8)

2λ̇10 = − 1
r2
1

(c12λ12 − c13λ13), 2λ̇11 =
1
r2
1

(c13λ12 − c12λ13),

2λ̇12 =
1
r2
1

(c12λ10 − c13λ11), 2λ̇13 =
1
r2
1

(c13λ10 + c12λ11).
(5.9)

Let us write subsystems (5.6) and (5.9) in quaternion form

2λ̇i = r−2
i λi ◦ Ci, i = 0, 1,

λi = λi0 + λi1i + λi2j + λi3k, Ci = ci2j + ci3k.
(5.10)

These equations also follow from quaternion equations (4.10) with regard to (5.1) and (5.2).
We also write equations (5.5) and (5.8) in quaternion form:

Ċ0 = fm1

(
1

r3
01

− 1
r3
1

)
r0(−z′1j + y′1k) + r0(−p′3j + p′2k), (5.11)

Ċ1 = fm0

(
1

r3
01

− 1
r3
0

)
r0(−z′0j + y′0k) + r1(−p′3j + p′2k), (5.12)

or in another quaternion form,

Ċ0 = fm1

(
1
r3
1

− 1
r3
01

)
r0(−z′′01j + y′′01k) + r0(−p′′3j + p′′2k), (5.13)

Ċ1 = fm0

(
1

r3
01

− 1
r3
0

)
r0(−z′′01j + y′′01k) + r1(−p′′3j + p′′2k). (5.14)

As variables in the equations of bounded three-body problem (5.4)–(5.6) and (5.7)–(5.9) written in
nonholonomic coordinate trihedrons, we have the distances r0 and r1 from point M to points M0 and M1,
their derivatives ṙ0 and ṙ1 (the projections of velocity vectors v0 and v1 of point M in the coordinate
systems M0X0Y0Z0 and M1X1Y1Z1, respectively, on the directions of radius vectors r0 and r1), the
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projections c02, c03, and c12, c13 of the vectors c0 and c1 of moments of the velocities v0 and v1 of
point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1 with respect to points M0 and M1 on the
axes of the rotating coordinate systems M0X

′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1, respectively, and the Rodrigues–

Hamilton parameters λ0j and λ1j characterizing the orientation of the coordinate systems M0X
′
0Y

′
0Z

′
0

and M1X
′
1Y

′
1Z

′
1 in the inertial coordinate system Oξηζ.

As variables in quaternion equations (5.10)–(5.12) and (5.10), (5.13), (5.14) of the bounded three-
body problem, we have the quaternions C0 and C1 of velocities moments and the quaternions λ0

and λ1 characterizing the orientation of rotating coordinate systems M0X
′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1 in the

inertial coordinate system Oξηζ. It is necessary to supplement these quaternion equations with scalar
equations (5.4) and (5.7) for the distance r0 and r1.

The Cartesian coordinates x0, y0, z0 and x1, y1, z1 of point M in the coordinate systems M0X0Y0Z0

and M1X1Y1Z1 are determined in terms of the above-listed variables by formulas (4.7) and the projec-
tions v′0k and v′1k of the velocity vectors v0 and v1 of point M in the coordinates systems M0X0Y0Z0

and M1X1Y1Z1 on the axes of the coordinate systems M0X
′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1, respectively, are

determined according to (4.8) and (5.1) by the formulas

v′i1 = ṙi, v′i2 =
1
ri

ci3, v′i3 = − 1
ri

ci2, i = 0, 1,

which, in quaternion representation, have the form of relations (4.11) and the relations

V′
i = v′i1i + v′i2j + v′i3k = ṙii +

1
ri

ci3j −
1
ri

ci2k, i = 0, 1. (5.15)

The projections v0k and v1k of the velocity vectors v0 and v1 of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1 on the axes of the coordinate systems M0X0Y0Z0 and M1X1Y1Z1, respec-
tively, which coincide with their projections on the axes of the coordinate system, are determined by
quaternion formulas (4.16) and (5.15).

6. DIFFERENTIAL EQUATIONS FOR THE ANGULAR MOMENTA
IN THE BOUNDED THREE-BODY PROBLEM

We use the vector relations r01 = r0 − r1, r10 = r1 − r0 and v0dr0/dt, v1 = dr1/dt to write the
differential equations of the perturbed bounded three-body problem (2.3), (2.4) in the form

dv0

dt
= −

(
fm0

r3
0

+
fm1

r3
01

)
r0 + fm1

(
1

r3
01

− 1
r3
0

)
r1 + p, (6.1)

dv1

dt
= fm0

(
1

r3
01

− 1
r3
0

)
r0 −

(
fm1

r3
1

+
fm0

r3
01

)
r1 + p. (6.2)

Taking the vector product from of equation (6.1) from the left by r0 and the vector product of equa-
tion (6.2) from the left by r1, we obtain differential equations for the vectors c0 =r0 ×v0 and c1 = r1 × v1

of moments of the velocities v0 and v1 of point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1

with respect to points M0 and M1, which, respectively, have the form

dc0

dt
= fm1

(
1

r01
− 1

r1

)
r0 × r1 + r0 × p, (6.3)

dc1

dt
= fm0

(
1

r01
− 1

r1

)
r1 × r0 + r1 × p. (6.4)

From these equations, we derive the differential equations

d(m0c0 + m1c1)
dt

= fm0m1

(
1
r3
0

− 1
r3
1

)
r0 × r1 + (m0r0 + m1r1) × p,

whose right-hand side does not contain a term with multiplier r−3
01 .
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We use the vector relations r01 = r0 − r1 = −r10 and v0 = dr0/dt, v1 = dr1/dt to write equations
(2.3) and (2.4) in different form

dv0

dt
= −

(
fm0

r3
0

+
fm1

r3
1

)
r0 + fm1

(
1
r3
1

− 1
r3
01

)
r01 + p, (6.5)

dv1

dt
= −

(
fm0

r3
1

+
fm1

r3
0

)
r1 + fm0

(
1

r3
01

− 1
r3
0

)
r01 + p. (6.6)

Taking the vector product from of equation (6.5) from the left by r0 and the vector product of equation
(6.6) from the left by r1, we obtain different differential equations for the vectors c0 and c1 of moments of
the velocities v0 and v1 of point M which have the form

dc0

dt
= fm1

(
1
r3
1

− 1
r3
01

)
r0 × r01 + r0 × p, (6.7)

dc1

dt
= fm0

(
1

r3
01

− 1
r3
0

)
r1 × r01 + r1 × p. (6.8)

We write the vector differential equations (6.3) and (6.7) in the rotating coordinates system
M0X

′
0Y

′
0Z

′
0 and the vector differential equations (6.4) and (6.8) in the rotating coordinate sys-

tem M1X
′
1Y

′
1Z ′

1 passing in these equations from absolute to local (relative) derivatives. According
to (5.3), the coordinate system MiX

′
iY

′
i Z

′
i rotates with the absolute angular velocity ωi collinear to

the vector of velocity moment ci: ωi = r−2
i ci, i = 0, 1. Therefore, the absolute and local derivatives of

the vector ci (the derivatives in the inertial and rotating coordinate systems MiX
′
iY

′
i Z

′
i) coincide and

the above-listed differential equations in the rotating coordinate systems M0X
′
0Y

′
0Z

′
0 and M1X

′
1Y

′
1Z

′
1

become

ċ01x′
0+ċ02y′

0+ċ01z′0 =fm1

(
1

r3
01

− 1
r3
1

)
r0x′

0×(x′
1x

′
0 + y′1y

′
0 + z′1z

′
0) + r0x′

0 × (p′1x
′
0 + p′2y

′
0 + p′3z

′
0)

= fm1

(
1
r3
1

− 1
r3
01

)
r0x′

0 × (x′
01x

′
0 + y′01y

′
0 + z′01z

′
0) + r0x′

0 × (p′1x
′
0 + p′2y

′
0 + p′3z

′
0),

ċ11x′
0+ċ12y′

0+ċ11z′0 =fm0

(
1

r3
01

− 1
r3
0

)
r1x′

1×(x′′
0x

′
1 + y′′0y

′
1 + z′′0z

′
1) + r1x′

1 × (p′′1x
′
1 + p′′2y

′
1 + p′′3z

′
1)

= fm0

(
1

r3
01

− 1
r3
0

)
r1x′

1 × (x′′
01x

′
1 + y′′01y

′
1 + z′′01z

′
1) + r1x′

1 × (p′′1x
′
1 + p′′2y

′
1 + p′′3z

′
1),

where x′
0, y′

0, z′0 and x′
1, y′

1, z′1 are unit vectors of the coordinates axes M0X
′
0, M0Y

′
0 , M0Z

′
0 and M1X

′
1,

M1Y
′
1 , M1Z

′
1, respectively.

Passing to the scalar form, from these equations we obtain differential equations (5.5) and (5.8) for the
components cik of the vector ci (i=0, 1) of velocity moment in the rotating coordinate system MiX

′
iY

′
i Z

′
i

which, in quaternion representation, have the form of equations (5.11), (5.12) or (5.13), (5.14).

7. QUATERNION REGULARIZATION OF DIFFERENTIAL EQUATIONS
OF PERTURBED BOUNDED THREE-BODY PROBLEM

In quaternion equations (5.10), we pass from the Rodrigues–Hamiltonian parameters λij (i = 0, 1,
j = 0, 1, 2, 3) to the Kustaanheimo–Stiefel variables uij [7] by the formulas [16, 17]

λi0 = r
−1/2
i ui0, λik = −r

−1/2
i uik, i = 0, 1, k = 1, 2, 3. (7.1)

In quaternion representation, formulas (7.1) become

λ̄i = r
−1/2
i ui, i = 0, 1; λ̄i = λi0 − λi1i− λi2j − λi3k, ui = ui0 − ui1i− ui2j − ui3k. (7.2)

Substituting relations (7.2) into equations (5.10), we obtain

2u̇i = r−1
i (ṙi − r−1

i Ci) ◦ ui, i = 0, 1. (7.3)
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Differentiating the left- and right-hand sides of equations (7.3) with respect to time t, after transfor-
mations based on the initial equations (7.3), we obtain

2üi + 2r−1
i ṙiu̇i − r−1

i

(
r̈i + 1

2 r−1
i ṙ2

i − 1
2 r−3

i c2
i

)
ui = −r2

i Ċi ◦ ui,

c2
i = c2

i2 + c2
i3, i = 0, 1.

(7.4)

In the first two terms in the left-hand side of equations (7.4), we pas from the independent variable t
to a new variable τi by the formulas

dt = ti dτi,
d2

dt2
= r−2

i

d2

dτ2
i

− r−3
i

dri

dτi

d

dτi
. (7.5)

We obtain

2
d2ui

dτ2
i

− ri

(
r̈i + 1

2 r−1
i ṙ2

i − 1
2 r−3

i c2
i

)
ui = −Ċi ◦ ui, i = 0, 1. (7.6)

One can see that, the terms containing the first derivatives of the quaternion variable ui with respect
to the independent variable τi are eliminated in this transition.

We substitute the expressions for the derivatives r̈i and Ċi, which follow from equations (5.4), (5.7)
and (5.13), (5.14), into equations (7.6) and obtain the equations

2
d2u0

dτ2
0

−
(

1
2 ṙ2

0 + 1
2 r−2

0 c2
0 − fm0r

−1
0

)
u0

= r0[−fm1r0r
−3
1 + fm1(r−3

1 − r−3
01 )(x′

01 + z′01j − y′01k) + (p′1 + p′3j − p′2k)] ◦ u0, (7.7)

2
d2u1

dτ2
1

−
(

1
2 ṙ2

1 + 1
2 r−2

1 c2
1 − fm1r

−1
1

)
u1

= r1[−fm0r1r
−3
0 + fm0(r−3

01 − r−3
0 )(x′′

01 + z′′01j − y′′01k) + (p′′1 + p′′3j − p′′2k)] ◦ u1. (7.8)

We introduce the notation (Kepler energies)

h∗
i = 1

2 ṙ2
i + 1

2 r−2
i c−2

i − fmir
−1
i = 1

2 v2
i − fmir

−1
i , i = 0, 1. (7.9)

Moreover, we take into account the fact that, according to (4.15) and (4.12),

x′
01 + z′01j − y′01k = −i ◦ (x′

01i + y′01j + z′01k) = −i ◦ R′
01, R′

01 ◦ u0 = u0 ◦ R01,

x′′
01 + z′′01j − y′′01k = −i ◦ (x′′

01i + y′′01j + z′′01k) = −i ◦ R′′
01, R′′

01 ◦ u1 = u1 ◦ R01,

p′1 + p′3j − p′2k = −i ◦ (p′1i + p′2j + p′3k) = −i ◦P′, P′ ◦ u0 = u0 ◦ P,

p′′1 + p′′3j − p′′2k = −i ◦ (p′′1i + p′′2j + p′′3k) = −i ◦ P′′, P′′ ◦ u1 = u1 ◦P.

The equations (7.7) and (7.8) become

d2u0

dτ2
0

− 1
2

h∗
0u0 = − 1

2
r0{fm1r0r

−3
1 u0 + i ◦ u0 ◦ [fm1(r−3

1 − r−3
01 )R01 + P]}, (7.10)

d2u1

dτ2
1

− 1
2

h∗
1u1 = − 1

2
r1{fm0r1r

−3
0 u1 + i ◦ u1 ◦ [fm0(r−3

01 − r−3
0 )R01 + P]}, (7.11)

where the quaternions R01 and P are respectively defined by the second relation in (4.15) and the first
relation in (4.12):

R01 = x01i + y01j + z01k, P = p1i + p2j + p3k = pxi + pyj + pzk. (7.12)

The quantities h∗
0 and h∗

1 (Kepler energies) defined by (7.9) and contained in equations (7.10)
and (7.11) are related to total energies h0 and h1 of the motion of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1 according to (3.1) by the relations

h∗
0 = h0 +

fm1

r1
, h∗

1 = h1 +
fm0

r0
. (7.13)
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We consider the quantities h∗
0 and h∗

1 as additional variables. We use relations (7.13) and differentiable
equations (3.2) and (3.3) to show that these variables satisfy the differential equations

dh∗
0

dt
= −fm1r

−3
1 (v0 · r0) + fm1(r−3

1 − r−3
01 )(v0 · r01) + v0 · p, (7.14)

dh∗
1

dt
= −fm0r

−3
0 (v1 · r1) + fm0(r−3

01 − r−3
0 )(v1 · r01) + v1 · p, (7.15)

where v0 = dr0/dt and v1 = dr1/dt are velocity vectors of motion of point M in the coordinate systems
M0X0Y0Z0 and M1X1Y1Z1, respectively.

We note that equations (7.14) and (7.15) contain the scalar products vi · ri = riṙi (i = 0, 1).
Passing in equations (7.14) and (7.15) to new independent variables τ0 and τ1 according to (7.5), we

obtain the equations

dh∗
0

dτ0
= −fm1r

−3
1 r0

dr0

dτ0
+ fm1(r−3

1 − r−3
01 )

(
dr0

dτ0
· r01

)
+

dr0

dτ0
· p, (7.16)

dh∗
1

dτ1
= −fm0r

−3
0 r1

dr1

dτ1
+ fm0(r−3

01 − r−3
0 )

(
dr1

dτ1
· r01

)
+

dr1

dτ1
· p. (7.17)

In equations (7.10), (7.11) and (7.16), (7.17), we have

ri = u2
i0 + u2

i1 + u2
i2 + u2

i3, r2
01 = x2

01 + y2
01 + z2

01,

dri

dτi
= 2

(
ui0

dui0

dτi
+ ui1

dui1

dτi
+ ui2

dui2

dτi
+ ui3

dui3

dτi

)
,

dri

dτi
· r01 = 2x01

(
ui0

dui0

dτi
+ ui1

dui1

dτi
− ui2

dui2

dτi
− ui3

dui3

dτi

)

+ 2y01

(
ui2

dui1

dτi
+ ui1

dui2

dτi
− ui3

dui0

dτi
− ui0

dui3

dτi

)

+ 2z01

(
ui3

dui1

dτi
+ ui1

dui3

dτi
+ ui2

dui0

dτi
+ ui0

dui2

dτi

)
, i = 0, 1.

(7.18)

The scalar product (dri/dτi) · p has the form of the third relation in (7.18), where, instead of x01, y01,
and z01, one can take p1, p2, and p3, respectively.

Differential equations (7.10), (7.16) supplemented with the differential equations

dt

dτ0
= r0,

dτ1

dτ0
= r0r

−1
1 (7.19)

and the relations
r0 = u2

00 + u2
01 + u2

02 + u2
03, r2

1 = (x01 − x0)2 + (y01 − y0)2 + (z01 − z0)2, (7.20)

x0 = u2
00 + u2

01 − u2
02 − u2

03, y0 = 2(u01u02 − u00u03), z0 = 2(u01u03 + u00u02) (7.21)

form the system of differential equations of motion of point M which are regular near point M0. They are
a system of nonlinear nonstationary eleventh-order differential equations for the Kustaanheimo–Stiefel
variables u0j (j = 0, 1, 2, 3), their first derivatives du0j/dτ0, the energy variable h∗

0, the time t, and the
variable τ1.

For m1 = 0, equations (7.10) and (7.16) and the first equation in (7.19) imply the quaternion regular
equations of perturbed spatial problem of two bodies M and M0, one of which (M ) has a negligibly small
mass. These equations coincide with the well-known quaternion regular equations (1.9) of perturbed
spatial two-body problem.

Differential equations (7.11), (7.16) supplemented with the differential equations

dt

dτ1
= r1,

dτ0

dτ1
= r1r

−1
0 (7.22)

and the relations
r1 = u2

10 + u2
11 + u2

12 + u2
13, r2

0 = (x01 − x1)2 + (y01 − y1)2 + (z01 − z1)2, (7.23)
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x1 = u2
10 + u2

11 − u2
12 − u2

13, y1 = 2(u11u12 − u10u13), z1 = 2(u11u13 + u10u12) (7.24)

form the system of differential equations of motion of point M which are regular near point M1. They are
a system of nonlinear nonstationary eleventh-order differential equations for the Kustaanheimo–Stiefel
variables u1j (j = 0, 1, 2, 3), their first derivatives du1j/dτ1, the energy variable h∗

1, the time t, and the
variable τ0.

For m0 = 0, equations (7.11) and (7.17) and the first equation in (7.22) imply the quaternion
regular equations of perturbed spatial problem of two bodies M and M0, one of which (M ) has a
negligibly small mass. These equations coincide with the well-known quaternion regular equations (1.9)
of perturbed spatial two-body problem. These equations coincide with the well-known quaternion
regular equations (1.9) of perturbed spatial two-body problem.

The obtained systems of differential equations of perturbed spatial bounded three-body problem
permit developing regular analytical and numerical methods for studying the motion of a body of
negligibly small mass near two other bodies of finite masses and also permit constructing a regular
algorithm for integrating these equations, were equations (7.10), (7.16), (7.19)–(7.21) of this problem
supplemented with relations (7.18) (for i = 0) are used to study the motion of point M near point M0

(when the distances r0 and r1 satisfy the inequality m1r
2
0 ≤ m0r

2
1) and equations (7.11), (7.17),

(7.22)–(7.24) of this problem supplemented with relations (7.18) (for i = 0) are used to study the motion
of point M near point M1 (the distances r1 and r0 satisfy the inequality m0r

2
1 < m1r

2
0).

Remark 1. The above-described algorithm for integration of the constructed regular equations of
bounded three-body problem is based on the assumption that the projections x01, y01, z01 of the
vector r01 on the axis of the inertial coordinate system (coordinates of point M1 in the coordinate sys-
tem M0X0Y0Z0) contained in this algorithm are true functions of the time t. This, in particular, holds for
the bounded circular three-body problem. In the general case, to determine the projections x01, y01, z01,
it is necessary to supplement the systems of differential equations (7.10), (7.16) and (7.11), (7.17) with
the vector differential equation (2.5) where we first pass to the new independent variable τ0 or τ1 by
formulas (7.5).

To use the above-constructed regular differential equations of perturbed spatial bounded three-
body problem, it is necessary to determine their initial conditions of integration, i.e., it is necessary
to determine the initial values of Kustaanheimo–Stiefel variables uij (j = 0, 1, 2, 3) and their first
derivative duij/dτ in terms of the given initial values of Cartesian coordinates xi, yi, zi of point M
in the coordinate system MiXiYiZi and the initial value of the projections ẋi, ẏi, żi of the velocity
vector vi of motion of point M in the coordinate system MiXiYiZi on the axes of this coordinate system.
The nonunique algorithms for solving this problem (problem with initial conditions) were proposed
in [7, 16]. Let us consider a unique algorithm for solving the problem with initial conditions which is
proposed by the author of this paper in [22] (also see [13–15]). This algorithm is formed by the relations
(where i = 0, 1)

cix = yiżi − ziẏi, ciy = ziẋi − xiżi, ciz = xiẏi − yiẋi, (7.25)

ri = (x2
i + y2

i + z2
i )1/2, ci = (c2

ix + c2
iy + c2

iz)
1/2, (7.26)

ϑ = ϑi1i + ϑi2j + ϑi3k = (ricix − cizi)−1[cixi + ciyj + (ciz − ci)k][(xi − ri)i + yij + zik], (7.27)

λi0 = (1 + ϑ2
i )

−1/2, λik = λi0ϑik, k = 1, 2, 3, ϑ2
i = ϑ2

i1 + ϑ2
i2 + ϑ2

i3, (7.28)

ui0 = r
1/2
i λi0, uik = −r

1/2
i λik, k = 1, 2, 3, (7.29)

dui

dτi
= − 1

2
i ◦ ui ◦ (ϑi1i + ϑi2j + ϑi3k). (7.30)

Relations (7.25) are used to determine the projections cix, ciy, ciz of vector of velocity moment ci

of point M on the axes of the coordinate system MiXiYiZi, relations (7.26) are used to determine
the moduli of the radius vector ri of point M and the vector of velocity moment ci of this point,
relations (7.27) are used to determine the vector of finite rotation ϑi of the coordinate system MiX

′
iY

′
i Z

′
i

with respect to the coordinate system MiXiYiZi (in this case, the condition ricix − cizi �= 0 must be
satisfied), relations (7.28) are used to determine the Rodrigues–Hamilton parameters λij characterizing
the orientation of the coordinate system MiX

′
iY

′
i Z ′

i in the coordinate system MiXiYiZi, and finally,
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relations (7.29) and (7.30) are used to determine the sought variables: the Kustaanheimo–Stiefel
variables uij (j = 0, 1, 2, 3) and their first derivatives duij/dτi.

The radius vector ri characterizing the position of point M in the coordinate system MiXiYiZi, its
modulus, and the velocity vector vi of motion of point M in this coordinate system are determined in
terms of the variables ui and dui/dτi according to the quaternion formulas [17] (also see [13–15]):

Ri = xii + yij + zik = ūi ◦ i ◦ ui, ri = ui ◦ ūi = u2
i0 + u2

i1 + u2
i2 + u2

i3, i = 0, 1, (7.31)

Vi = vi1i + vi2j + vi3k =
dRi

dt
= 2ūi ◦ i ◦ dui

dt
= 2r−1

i ūi ◦ i ◦ dui

dτi
, i = 0, 1. (7.32)

In scalar form, (7.31) and (7.32) become

xi = u2
i0 + u2

i1 − u2
i2 − u2

i3, yi = 2(ui1ui2 − ui0ui3), zi = 2(ui1ui3 + ui0ui2), i = 0, 1,

vi1 = ẋi = 2(ui0u̇i0 + ui1u̇i1 − ui2u̇i2 − ui3u̇i3) = 2r−1
i

[
ui0

dui0

dτi
+ ui1

dui1

dτi
− ui2

dui2

dτi
− ui3

dui3

dτi

]
,

vi2 = ẏi = 2(ui2u̇i1 + ui1u̇i2 − ui3u̇i0 − ui0u̇i3) = 2r−1
i

[
ui2

dui1

dτi
+ ui1

dui2

dτi
− ui3

dui0

dτi
− ui0

dui3

dτi

]
,

vi3 = żi = 2(ui3u̇i1 + ui1u̇i3 + ui2u̇i0 + ui0u̇i2) = 2r−1
i

[
ui3

dui1

dτi
+ ui1

dui3

dτi
+ ui2

dui0

dτi
+ ui0

dui2

dτi

]
.

These formulas permit determining the Cartesian coordinates xi, yi, zi of point M in the coordinate
system MiXiYiZi and the projections of the velocity of point M in the coordinate system MiXiYiZi on
the axes of this coordinate system in terms of the variables uij and their derivatives u̇ij or duij/dτi.

8. DIFFERENTIAL QUATERNION REGULAR EQUATIONS OF PERTURBED
SPATIAL BOUNDED THREE-BODY PROBLEM WITH THE TOTAL ENERGY

OR JACOBI VARIABLE USED AS AN ADDITIONAL VARIABLE
As additional variables, we introduce the total energies h0 and h1 of motion of point M in the

respective coordinate systems M0X0Y0Z0 and M1X1Y1Z1 into the equations of bounded three-body
problem. For this, we substitute expressions (7.13) into equations (7.10) and (7.11) and supplement the
obtained equations with differential equations (3.2) and (3.3) for the energies h0 and h1 (after passing
in these equations to new independent variables τ0 and τ1 by formulas (7.5)). We obtain the following
differential equations of perturbed spatial bounded three-body problem:

d2u0

dτ2
0

− 1
2

h0u0 =
1
2

fm1r
−1
1 (1 − r2

0r
−2
1 )u0 −

1
2

r0i ◦ u0 ◦ [fm1(r−3
1 − r−3

01 )R01 + P], (8.1)

dh0

dτ0
= fm1r

−3
1

(
r01

dr01

dτ0
− dr01

dτ0
· r0

)
− fm1r

−3
01

(
dr0

dτ0
· r01

)
+

dr0

dτ0
· p,

dh0

dτ0
= fm1r0r

−3
1

(
r01

dr01

dt
− dr01

dt
· r0

)
− fm1r

−3
01

(
dr0

dτ0
· r01

)
+

dr0

dτ0
· p,

(8.2)

d2u1

dτ2
1

− 1
2

h1u1 =
1
2

fm0r
−1
0 (1 − r2

1r
−2
0 )u1 −

1
2

r1i ◦ u1 ◦ [fm0(r−3
01 − r−3

0 )R01 + P], (8.3)

dh1

dτ1
= fm0r

−3
0

(
r01

dr01

dτ1
+

dr01

dτ1
· r1

)
+ fm0r

−3
01

(
dr1

dτ1
· r01

)
+

dr1

dτ1
· p,

dh1

dτ1
= fm0r1r

−3
0

(
r01

dr01

dt
+

dr01

dt
· r1

)
+ fm0r

−3
01

(
dr1

dτ1
· r01

)
+

dr1

dτ1
· p.

(8.4)

Equations (8.1), (8.2) (the first or the second equation) supplemented with equations (7.19)–(7.21)
and equations (8.3), (8.4) (the first or the second equation) supplemented with equations (7.22)–(7.24)
are a different form of regular equations of perturbed spatial bounded three-body problem, where the
total energies h0 and h1 are used as additional variables. These equations can be used to study the
motion of point M near point M0 or near point M1 by the same methodology as equations (7.10), (7.16),
(7.19)–(7.21) or (7.11), (7.17), (7.22)–(7.24) containing the energies h∗

0 and h∗
1.
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By setting m1 = 0 in equations (8.1), (8.2) (the first or the the second equation) and m0 = 0 in
equations (8.3), (8.4) (the first or the second equation), from these equations we obtain the quaternion
regular equations of perturbed spatial two-body problem (bodies M and M0 or M and M1) one of
which (M ) has a negligibly small mass. These equations coincide with the known quaternion regular
equations (1.9) of perturbed spatial two-body problem, because the energies h0 and h1 coincide in this
case with the Kepler energies h∗

0 and h∗
1.

Remark 2. The use of the above-described regular equations of bounded three-body problem is based
on the assumption that the projections x01, y01, z01 of the vector r01 on the axes of inertial coordinate
system (coordinates of point M1 in the coordinate system M0X0Y0Z0) and their first derivatives
ẋ01, ẏ01, ż01 with respect to time t, contained in these equations, are known functions of time t. In
particular, this holds for the bounded circular three-body problem. In the general case, to determine the
projections x01, y01, z01 and their first derivatives with respect to the independent variable τ0 or τ1, it is
necessary additionally to supplement systems of differential equations (8.1), (8.2) and (8.3), (8.4) with
the vector differential equation (2.5) after passing in it to the new independent variables τ0 and τ1 by
formulas (7.5).

In the case of perturbed spatial circular bounded three-body problem, it is expedient to replace the
energies h0 and h1 of motion of point M in the coordinate systems M0X0Y0Z0 and M1X1Y1Z1, which
are used in regular equations of motion as additional variables, by the variables H0 and H1 determined
by relations (3.15) and (3.16). These variables satisfy differential equations (3.13), (3.14) and are the
Jacobi constants of motion of the unperturbed spatial bounded circular three-body problem. Then
equations (8.1), (8.2) and (8.3), (8.4) become

d2u0

dτ2
0

− 1
2

[H0 − fm1r
−1
01 (r0 · r01) − n(y0ẋ0 − x0ẏ0)]u0

=
1
2

fm1r
−1
1 (1 − r2

0r
−2
1 )u0 −

1
2

r0i ◦ u0 ◦ [fm1(r−3
1 − r−3

01 )R01 + P], (8.5)

dH0

dτ0
=

dr0

dτ0
· p + nr0(y0px − x0py), (8.6)

d2u1

dτ2
0

− 1
2

[H1 − fm0r
−1
01 (r1 · r10) − n(y1ẋ1 − x1ẏ1)]u1

=
1
2

fm0r
−1
0 (1 − r2

1r
−2
0 )u1 −

1
2

r1i ◦ u1 ◦ [fm0(r−3
01 − r−3

0 )R01 + P], (8.7)

dH1

dτ1
=

dr1

dτ1
· p + nr1(y1px − x1py), (8.8)

r0 · r01 = a[cos(nt)x0 + sin(nt)y0], r1 · r10 = −a[cos(nt)x1 + sin(nt)y1],

xi = u2
i0 + u2

i1 − u2
i2 − u2

i3, yi = 2(ui1ui2 − ui0ui3), i = 0, 1,

− (yiẋi − xiẏi) = ciz = 2
(

ui3
dui0

dτi
− ui2

dui1

dτi
+ ui1

dui2

dτi
− ui0

dui3

dτi

)
,

(8.9)

the quaternions R01 and P are determined by relations (7.12), and the distance is r01 = r10 = a = const.
This, in the case where the distances r0 and r1 satisfy the inequality m1r

2
0 ≤ m0r

2
1, the regu-

lar equations of perturbed spatial bounded circular three-body problem have the form of equations
(8.5), (8.6), (7.19) supplemented with relations (7.20), (7.21), (8.9) (for i = 0), and in the case where the
distances r1 and r0 satisfy the inequality m0r

2
1 <m1r

2
0, they have the form of equations (8.7), (8.8), (7.22)

supplemented with relations (7.23), (7.24), (8.9) (for i = 1).
For the unperturbed spatial bounded circular three-body problem, when the perturbing acceleration

p = 0 and the quaternion P = 0, these equations become significantly simpler. Equations (8.6), (8.8)
imply the Jacobi integrals Hi = Hi0 = const, i = 0, 1, and hence these equations are eliminated
from the set of systems of regular equations, Moreover, in equations (8.5) and (8.7), it is necessary
to set H0 = H00 = const and H1 = H10 = const, respectively.
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47. C. Burrau, “Über Einige in Aussicht Genommene Berechnung, Betreffend einen Spezialfall des

Dreikörperproblems,” Vierteiljahrschrift Astron. Ges. 41, 261 (1906).
48. G. D. Birkhoff, “The Restricted Problem of Three Bodies,” Rend. Circ. Mat. Palermo 39 (1), 265–334 (1915).
49. J. Waldvogel, “A New Regularization of the Planar Problem of Three Bodies,” Cel. Mech. 6, 221–231 (1972).
50. R. Roman and I. Szucs-Csillik, “Generalization of Levi-Civita Regularization in the Restricted Three-Body

Problem,” Astrophys. Space Sci. 349, 117–123 (2014).
51. S. J. Aarseth, Gravitational N-Body Simulations (Cambridge Univ. Press, New York, 2003).
52. V. K. Abalakin, E. P. Aksenov, E. A. Grebenikov, et al., Reference Manual in Celestial Mechanics and

Astrodynamics (Nauka, Moscow, 1976) [in Russian].
53. G. N. Duboshin, Celestial Mechanics: Methods of the Theory of Motion of Artificial Celestial Bodies

(Nauka, Moscow, 1983) [in Russian].
54. V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Attitude Control of a

Rigid Body (Nauka, Moscow, 1973) [in Russian].
55. V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Fizmatlit, Moscow, 2008) [in Russian].

MECHANICS OF SOLIDS Vol. 52 No. 6 2017


