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Abstract—A model of material of complex crystalline structure consisting of two lattices coupled
by nonlinear interaction forces that ensure several stable equilibrium configurations is considered.
The continuum model is compared with the discrete model whose analysis reveals the effect, which
has been observed in high-speed deformation experiments, of decrease in the initial pulse under
nonstationary actions.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

In numerous studies of shock wave loading [1, 2], it was discovered that, in a certain velocity range,
a sufficiently significant part of the energy is consumed by structural transformations of the material.
At the microlevel, the loss of energy is manifested in a decrease in the maximum value of the velocity
on its time profile, which is the main characteristic of the dynamic response of the material to the
impulse action [3]. The goal of the present paper is to develop a model whose permits demonstrating
how the internal structure can affect the system dynamics. To this end, we consider a one-dimensional
two-component medium [4, 5] consisting of two crystal lattices close in their physical properties and
coupled by a nonlinear interaction force. It is natural to assume that the analytic expression for the
force of interaction between the components contains two terms the first of which is determined by the
nonlinearly elastic constraint between the components and the second is the dissipative component,

R = R1(u1 − u2) + R2(u̇1 − u̇2), (1.1)

where ui (i = 1, 2) is the displacement of each of the components. When choosing R1 and R2, it is
required to take into account the possibility of material transition between states. This means that the
nonlinearly elastic relation must have a nontrivial stable equilibrium. Moreover, the interaction force
must reflect the periodicity of the complex lattice whose structure does not vary in the case of mutual
displacements of the components by a value multiple of the period d. It follows that one of the simplest
versions of setting the force is the expression

R = K sin(λz) + νż, (1.2)

where the parameter K determines the maximum value of the interaction force and the coefficient ν
characterizes the dissipation. The role of the internal degree of freedom to which the energy can be
transferred in a certain range of actions is played by the relative displacement of the lattices z = u1 − u2,
while the measured microparameter is the displacement U = (ρ10u1 + ρ20u2)/(ρ10 + ρ20) of the center
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of mass [6]. We assume that the Hooke law sigmai = Ei∂ui/∂x (i = 1, 2), where σi is the stress and Ei

is the Young modulus, is satisfied for each of the components. Then, after introducing the dimensionless
variables

x̃ =
xω

c1
, t̃ = ωt, Ũ = Uλ, z̃ = zλ, σ̃ =

c1λσ

ω∗(E1 + E2)
, ν̃ =

νω∗

Kλ
,

where ω∗ = c1

√
(1 − χδ)Kλ/(1 − χδ)E1 and σ = σ1 + σ2, the equations of the medium become

∂2Ũ

∂x̃2
− 1

c2
u

∂2Ũ

∂t̃2
= α

∂2z̃

∂x̃2
,

∂2z̃

∂x̃2
− 1

c2
z

∂2z̃

∂t̃2
= sin z̃ + ν̃ ˙̃z + δ

∂2Ũ

∂t̃2
.

(1.3)

Here we have used the notation

A2
u =

(1 − χδ)
1 − δ

, A2
z =

1
1 − χδ

, α =
(1 − χ)χδ

1 − χδ
.

By c1 =
√

E1/ρ1 we denote the speed of sound in the first lattice, and by c2 =
√

E2/ρ2 we
denote the speed of sound in the second lattice. The coefficient χ = ρ1/(ρ1 + ρ2) is the mass fraction
of the first component, and the small parameter δ = 1 − c2

1/c
2
2 characterizes the weak distinction

between the physical properties of the lattices. For δ = 0, they coincide completely. In what follows,
we assume that χ = 1/2 and δ = 0.1. Equations (1.3) with zero initial conditions are considered
in the semi-infinite domain 0 ≤ x̃ < ∞, on whose boundary the stress is given as a rectangle
pulse σimp(t) = σ0[H(t) − H(t − t0)] of duration t0. Here H(t) is the Heaviside function. Under the
assumption that the stresses on the boundary are distributed proportionally to the component densities,
the boundary conditions for x = 0 have the form

∂Ũ

∂ξ

∣∣
∣∣
ξ=0

= σ̃imp(t̃)
[
1 +

χ(1 − χ)δ2

1 − δ

]
,

∂z̃

∂ξ

∣∣
∣∣
ξ=0

=
σ̃imp(t̃)δ
1 − δ

. (1.4)

At infinity, we pose the standard conditions Ũ
∣∣
ξ→∞ and z̃

∣∣
ξ→∞ = 0. Obviously, an analytic solution of

system (1.3) can hardly be constructed because of the nonlinear term. In this case, numerical procedures
are used as a rule, but their use is rather complicated, because it is required to determine the parameters
and the time at which the system comes to the desired state. In this connection, it is necessary to have
approximates analytic formulas to be able to predict, at least qualitatively, the dynamics of the model and
separate the physics of the process from the effects due to the numerical approximation.

2. DISCRETE MODEL
The structural reconfiguration dynamics can be described by the variable interval method [7]. In this

method, just as in the Galerkin method, the solution of the differential equation is sought as an expansion
in forms, but, in contrast to the classical solution, the length of the interval is an unknown function of
time. In the case of hyperbolic equations, the interval is usually the domain where the material is under
perturbations. This approach turns out to be fruitful for constructing approximate analytic solutions of
nonstationary problems. As a result, the continual problem reduces to solving dynamic equations for an
element of the continuum in discrete representation. In the case of one-component medium, such an
element is the spring pendulum, but in the case under study, it is a system of two coupled oscillators
(shown in Fig. 1) with nearly the same natural frequencies. If the masses m1 and m2 coincide, then their
behavior is described by the system of equations

ẍ + x =
δz

4
,

z̈ + nż + z + κ sin z = δx.
(2.1)

The quantities x = (x1 + x2)/2 and z = x1 − x2 were introduce by analogy with Eqs. (2.1). The
differentiation in (2.1) is carried out with respect to the dimensionless time τ =ω1t, where ω1 =

√
G1/m1
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Fig. 1.

is one of the partial frequencies. The small parameter δ = (ω2
2 − ω2

1)/ω
2
1 is their relative difference. The

coefficient κ of the nonlinear term is proportional to the ratio of the spring rigidity characterized by the
modulus E1 to the rigidity of the constraint between the components. In what follows, we assume that it
is equal to the minimum value (κ = 1), which ensures that the energy is nonconvex in the displacement.
To push the system away from the equilibrium, we assume that the initial velocity of the center of mass V0

is different from zero. For small velocities, there is no interaction between x and z, but starting from
some critical value of V0, the qualitative picture becomes different. The development of vibrations of x in
the time, which is obtained by numerical integration of system (2.1) for n = 0.022, is shown in Fig. 2
(for V0 = 10 and δ = 0.1) by the dashed line. For a sufficiently large value of V0, a typical characteristic
of the dynamic process is the existence of a time τ∗ separating the two vibration modes. At the first
stage, the element behaves as a linear oscillator with nearly the same frequencies. After the transient
process is finished, its dynamics is also slightly different from the dynamics of a linear system with the
frequency mismatch. This means that the nonlinear system is significant only on a narrow time interval.
We assume that the work of this force is done directly at the point τ∗. Then the nonlinear term becomes
κ0 sin zδ0(τ − τ∗), where δ0(τ) is the delta function. The parameter κ0 is chosen so as to change the
beating of the center of mass into vibrations with a single frequency. On the one hand, this approach
preserves the basic laws of the initial problem, and on the other hand, it allows one to obtain an analytic
expression for the displacement of the center of mass, which will be used to analyze the continual model.
This problem can be treated as a search for a control that permits changing the system response to the
pulse by a timely action. The parameters κ0 and τ∗ can be determined by using the Laplace transform

fL =
∞∫

0

f(τ)e−pτ dτ . Under the above assumptions with neglect of the viscous friction, the solution of

system (2.1) in the space of transforms has the form

xL(p) =
(p2 + 1)V0 − δ/4κ0 sin z(τ∗)e−pτ∗

(p2 + 1)2 − δ2/4
,

zL(p) =
V0δ − (p2 + 1)κ0 sin z(τ∗)e−pτ∗

(p2 + 1)2 − δ2/4
.

(2.2)

To switch the center of mass from beating to a harmonic process, it is necessary to preserve only one
natural frequency in the system. This can be done by assuming that one of the poles in the expression
for xL(p) is a root of the numerator. As a result, this condition implies the following expressions for the
desired parameters:

τ∗ =
πk

1 − ε/4
, (2.3)

κ0 sin z(τ∗) = (−1)k+12V0, (2.4)
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Fig. 2.

where k denotes an unknown positive integer, which can be determined from the energy balance. For
the chosen parameter values, one has k = 27. The analytic solution obtained by determining the inverse
Laplace transform from xL(p) is depicted in Fig. 2 by the solid line. One can see that it agrees well with
the results of numerical calculations.

3. CONTINUAL MODEL

After the process of energy transfer from the center of mass to the relative displacement was
illustrated by an example of oscillator, it is logical to expect that a similar effect also takes place in
the continual model. But there arise several additional questions as we pass to the continuum. First, it is
necessary to determine the distance at which the structural changes start. To estimate this parameter is
an important problem for both the experiment and the numerical simulation. To solve this problem, we
apply the variable interval method to Eqs. (1.3) and seek their solution in the form

Ũ =
N∑

n=1

Qn(t̃) cos
π(2n + 1)ξ

2l
H(l − ξ), z̃ =

N∑

n=1

qn(t̃) cos
π(2n + 1)ξ

2l
H(l − ξ).

Multiplying by the form and integrating from 0 to l = t, where t is the interval length, we obtain the
following system of equations for the functions Q(t) and q(t):

Q̈ + Ω2Q =
Ω2δq

4
− 2σimp(t̃)

lm2
,

q̈ + νq̇ + Ω2q + 2J1(q) = −δQ̈ − 2σimpδ

l
,

(3.1)

where Ω = π(2n + 1)/(2l) is the frequency corresponding to its own form. By J1(q) we denote the Bessel
function of the first kind. After eliminating the term Q̈ from the second equation and introducing a new
variable τ = Ωt, system (3.1) becomes

Q̈ + Q =
δq

4
− 2σimp(τ/Ω)

Ω2lm2
,

q̈ +
ν

Ω
q̇ + q +

2
Ω2

J1(q) = δQ.

(3.2)
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These equations do not practically differ from the equations of the discrete model, and hence all the
above arguments, which permit obtaining an analytic formula showing the decrease in the oscillation
amplitude of the center of mass due to the dynamics of internal displacements, can be applied to them.
By analogy with coupled oscillators, we can conclude that, for a weak pulse lower than the critical value
and associated with small relative displacements, there is no energy transfer from the center of mass to
another degree of freedom and the waves move in the material without noticing its internal structure. In
the discrete model, the time τ∗ of switching from the beating regime to vibrations with a single frequency
was determined after replacing the initial problem by the linear one, where the interaction force acts
not during a small time interval but directly at the point τ∗. In this case, we neglect the viscous friction
force and prescribe the initial velocity instead of the impulse action on the center of mass. Let us make
the same transformations with Eqs. (3.2). If we have the delta function δ0(t) instead of σimp(t) on the
right-hand side in the first equation, then, according to the formula δ0(ax) = δ0(x)/a for the change of
variables, they can be reduced to the form

Q̈ + Q =
δq

4
− 2σ0δ0(τ)

Ωlm2
,

q̈ + q +
2
Ω2

J1(q)δ0(τ − τ∗) = δQ.

(3.3)

The parameter τ∗ was determined in the discrete model from condition (2.3) saying that one of
the natural frequencies is damped. This condition is here preserved, while the analog of relation (2.4)
becomes

− 2σ0

l
=

(−1)kJ1(q∗z)
Ω

, k = 1, 2, . . . , (3.4)

where q∗z = qz(τ∗). In this relation, the role of the parameter κ0, which determines the pulse value required
to transfer the two-degree oscillator dynamics from one mode into another, is played by the distance l∗ at
which the motion of the center of mass starts to change due to the influence of the relative displacement.
To estimate this distance, we multiply the last relation by 1/t∗ under the assumption that the discrete
model has a parameter similar to τ∗. With regard to the new variable τ = Ωt and the interval l = t
for σ0 < τ∗, relation (3.4) implies

t∗ = τ∗

√

− (−1)k

sin( 1
4 δτ∗) cos τ∗

. (3.5)

By substituting the numerical values δ = 0.1 and k = 27 from the discrete model into (3.5), we
determine t∗ ≈ 137. This result is confirmed by numerical integration of system (1.3) by the finite
difference method for ν =0.022. Figure 3 (for σ0 =11 and t̃0 =3) shows the strain distribution ε=∂Ũ/∂x
over the length, which demonstrates the decrease in the amplitude of input signal due to the structural
transformations in the material, which, in this model, is associated with the transition of the relative
displacement to a new equilibrium (Fig. 4).

4. CONCLUSION

The main result in this paper is the development of a mechanical model describing the reconfiguration
of the material crystal structure due to dynamic actions. At the macrolevel, this process is manifested
as the energy transfer from the system center of mass to an internal degree of freedom whose role is
played by the relative displacement of the components. In the framework of this model, we considered
the nonstationary problem of a rectangular pulse propagation in a complex structure consisting of two
crystal lattices close in their physical properties and coupled by a nonlinear interaction force. It was
analyzed by comparing the equations of motion of the continuum with the dynamics of their discrete
analog, thus estimating the duration of structural transformations, which is very important for the
numerical calculation. The latter was carried out on the basis of the finite difference method, which
allowed revealing the transition of the system to a new equilibrium, which does not disappear after the
termination of the external action.
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Fig. 3.

Fig. 4.

REFERENCES
1. Yu. I. Meshcheryakov, N. I. Zhigacheva, A. K. Divakov, et al., “Transition of Shock-Loaded Metals to a

Structurally Unstable State,” Zh. Prikl. Mekh. Tekhn. Fiz. 51 (5), 132–146 (2010) [J. Appl. Mech. Tech.
Phys. (Engl. Transl.) 51 (5), 732–743 (2010)].

2. Yu. I. Meshcheryakov, N. I. Zhigacheva, A. K. Divakov, et al., “Dynamic Structures in Shock-Loaded Copper,”
Phys. Rev. B 78 (6), 64301–64316 (2008).

3. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in
Condensed Matter (Fizmatlit, Moscow, 2008) [in Russian].

4. D. A. Indeitzev, V. N. Naumov, and B. N. Semenov, “Dynamic Effects in Materials of Complex Structure,”
Vestnik Samara Gos. Univ., No. 4, 140–168 (2007).

5. E. N. Vilchevskaya, E. A. Ivanova, and H. Altenbach, “Description of Liquid–Gas Phase Transition in the
Frame of Continuum Mechanics,” Continuum Mech. Thermodyn. 26 (2), 221–245 (2014).

6. E. L. Aero and A. N. Bulygin, “Nonlinear Theory of Localized Waves in Complex Crystal Lattices Treated as
Discrete-Continual Systems,” Vych. Mekh. Sploshn. Sred 1 (1), 14–30 (2008).

7. L. I. Slepyan, Unsteady Elastic Waves (Sudostroenie, Leningrad, 1972) [in Russian].

MECHANICS OF SOLIDS Vol. 52 No. 4 2017


