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Abstract—The homogenization of static elasticity equations describing the stress strain state of
fluid-saturated porous medium is considered. In this paper, the homogenization method is used to
determine the pore pressure transfer tensor, which (a coefficient in the isotropic case) is an important
parameter influencing the stress-strain state of fluid-saturated rocks. It shows what a part of the
pressure in the fluid is “active” in the formation of macroscopic strains.
The pore pressure transfer tensor is calculated for model and real geological specimens. The
dependence of this tensor on the porosity, pore shape, and Poisson ratio is investigated. The use of the
computational technique for determining the effective properties of rocks shows that it is practically
important in the engineering geology.
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1. INTRODUCTION
The effective moduli of elasticity of soils and rocks are determined by nature experiments or experi-

ments with core specimens and by geographic methods. It is also expedient to use the computational
experiments based on solving local problems in the representative volume elements [1, 2]. Such a
technique can be used to estimate the effective properties of rocks if the structure of the pore space and
the elastic properties of the matrix components are known. As a rule, thin sections are used to study the
mineral composition of rocks and the pore space structure, and the properties of the mineral composing
the specimens under study are given in appropriate handbooks and cadasters [3–5]. In any case, the
computational technique can be used for the preliminary rapid analysis.

The works where the ideas of the homogenization method were used to calculate the stress strain
state (SSS) of rocks or soil massifs have been known for several dozen years [6–9]. But these studies
deal with the homogenized elastic properties, for example, of stratified soils [6, 7]. In [1, 10], the
homogenization method was applied to a “dry” porous medium, which results in developing a technique
for calculating the effective models of elasticity. In this paper, we consider the case of fluid-saturated
medium, which additionally implies a technique for calculations the pore pressure transfer tensor.

There also exist many approximate formulas [11] based on the Eshelby solution [12], which permit
calculating the effective properties.

The scalar coefficient α of transfer of the pore pressure on the matrix solid material was introduce
din [13–17], and therefore, in the literature, it is also called the Biot coefficient (parameter) [18–20]. For
a statically homogeneous and isotropic porous fluid-saturated soil, the scalar coefficient α enters the
expression for the effective stress 〈σij〉eff :

〈σij〉eff = 〈σΠ
ij〉 − αδij〈p〉, (1.1)

where 〈σΠ
ij〉 are the homogenized combined stresses, 〈σij〉eff are the homogenized effective stresses in

the soil solid phase which are transferred through the contacts between the rock grains, and 〈p〉 is the
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homogenized pressure of the liquid. Therefore, the pore pressure transfer coefficient shows what part
of the pore pressure must be taken into account in calculations of the effective stresses. The following
formula for calculating the coefficient α is given in [14–17]:

α = 1 − βs

βeff
,

where βs is the compressibility of the matrix solid material and βeff is the effective compressibility of the
soil; a rigorous derivation of this formula is given in [15, 21, 22], and an experimental verification of the
expression for α can be found in [16]. Thus, for isotropic rocks, α is a scalar dimensionless parameter
varying from 0 to 1 and depending on the soil properties (mainly on the porosity and the shape of the
pores) and the effective stresses [21, 22]. If the effective compressibility of the rock significantly exceeds
the compressibility of the matrix solid material (βeff � βs), then one can assume that the complete
value of the seam pressure influences the rock strain (α ≈ 1). For example, such a situation is observed
when studying the stress state of highly porous loose sands and weakly loose sandstones lying near the
Earth surface under the conditions of small pressures. For poor-porous strongly compacted rocks with
extremely many closed pores, the effective compressibility of the rock turns out to be close in value to
the compressibility of the matrix solid material of the soil (βeff ≈ βs). In this case, a variation in the pore
pressure does not lead to strain origination in the rock, and hence it is expedient to set α ≈ 0 [21]. The
high compressibility βeff is also observed in poor-porous rocks such as granite, because they contain
narrow cracks with large surface area, while the rocks with the same low content of porosity but with
circular pores exhibit a weak compressibility βeff [22]. The studies [23] showed that, for sandstones,
the value of α varies from 0.60 to 0.85 as their open porosity varies from several percents to 26%. As the
effective strain in the soil increases, its effective compressibility βeff decreases, and hence the coefficient α
also decreases.

The fact that the real value of the pore pressure transfer coefficient is taken into account in for-
mula (1.1) allows one correctly to determine the effective stresses, and this is important in geotechnical
calculations. Therefore, many researchers use the coefficient α in the models describing the process of
deformation of a loaded fluid-saturated soil [13–26].

But it is more difficult to determine the coefficient α than to determine the effective moduli of elasticity.
Different authors have currently proposed some experimental methods for determining this coefficient.
For example, a method for determining the coefficient α on a special high pressure installation was
developed in [16].

In the case of anisotropic media, the formula for calculating the effective stresses contains the pore
pressure transfer tensor αij [19, 20, 24–26]:

〈σij〉eff = 〈σΠ
ij〉 − αij〈p〉.

The following formula for determined the tensor αij for a medium with structure anisotropy, i.e., for a
medium whose matrix consist of a homogeneous isotropic solid material, was derived in [25, 20]:

αij = δij − CijklS
s
klmn,

where Cijkl is the effective tensor of elasticity moduli of the rock with mutually connected pores and
Ss

klmn is the tensor of compliance of the matrix solid material. In this case, it is assumed that a hydrostatic
state originates in the matrix solid material if it experiences the action of the pressure p. In the case
of transversal isotropy and orthotropy, the author of [25] obtained simper formulas for calculating the
tensor αij , and these formulas contain parameters which can directly be determined in experiments.
In [20], the final formulas for αij for the types of symmetry (cubic, hexagonal, and orthorhombic)
encountered most often were derived and it was shown that, in the case of isotropic medium, the
expression for αij takes a familiar form just as in [14–17]. In [26], the formula for determining the
pore pressure transfer tensor was derived in the case of general anisotropy, and the material tensors
contained in the formula for calculating αij are interpreted in terms of the parameters which can directly
be measured in well-known experiments. The cases of isotropy and transversal isotropy are considered
as illustrative examples. The author thus draw emphasize the importance of experimental methods for
determining the tensor αij in special cases of anisotropy.

In the present paper, we propose a computational method for determining the tensor αij which differs
from the methods considered above. It is base on solving local problems in the representative volume
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element and is similar to the method for calculating the effective elastic properties. The difference from
the above-cited studies is in the following. In [25, 20, 26], the tensor contained in the expression for
strains expressed in terms of stresses was first determined, and αij was then obtained by inverting this
relation, and only in the case of open pores. In the present paper, we initially determine the tensor αij

contained in the expression for the stresses expressed in terms of strains. The situation is the same as in
the case of effective moduli of elasticity and compliance. The method represented below can also be used
in the cases where the matrix solid material is inhomogeneous and the pores are open or closed.

2. ASYMPTOTIC ANALYSIS
The proposed mathematically rigorous method for determining the effective moduli of elasticity and

the pore pressure transfer tensor is based on the asymptotic homogenization of the equilibrium equation
for the inhomogeneous elastic porous medium:

[Cijkluk,l],j + Xi = 0, x ∈ V (2.1)

with boundary conditions on the pore surface Σpore:

Cijkluk,lnj = −pni. (2.2)

Here we assume that p is a known pore pressure.
We standardly introduce fast coordinates ξi as

ξi =
xi

ε
, ε =

l

L
� 1,

where xi are the slow coordinates, l is the characteristic dimension of the representative volume element
(RVE) of the porous medium, and L is the characteristic global dimension of the entire porous medium.
For the periodic medium, the representation volume element is the cell of periodicity [2]. In Eqs. (2.1)
and (2.2), the tensor of moduli of elasticity and the normal n depend on the fact coordinates ξi, and the
pressure p, on xi. The point is that the liquid pressure p has the asymptotic representation [27]

p = p0(x) + εp1(x, ξ) + · · · . (2.3)

To obtain the first terms of the asymptotic solution of problem (2.1)–(2.2), it suffices to determine the
first term which we further denote by p(x). We seek the solution of problem (2.1)–(2.2) as the asymptotic
series

uk(x, ξ) = vk(x) + εNkpq(ξ)vp,q(x) + · · · + εMk(ξ)p(x) + · · · , (2.4)

where Nkpq1...qm(ξ) and Mkq1...qm(ξ) are local functions of fast coordinates.
To obtain the effective moduli of elasticity C and the tensor α, it suffices to consider the first terms

in (2.4), and precisely these terms are written in (2.4). The boundary conditions on ∂V are not considered
in this case.

By linearity, it is natural to represent the solution (2.4) of Eqs. (2.1) with conditions (2.2) as the sum
of two solutions:

uk = u
(1)
k + u

(2)
k , (2.5)

[Cijkl(ξ)u(1)
k,l ],j + Xi = 0, ξ ∈ V,

Cijkl(ξ)u(1)
k,l nj(ξ) = 0, ξ ∈ Σpore,

(2.6)

[Cijkl(ξ)u(2)
k,l ],j = 0, ξ ∈ V, (2.7)

Cijkl(ξ)u(2)
k,l nj(ξ) = −p(x)ni(ξ), ξ ∈ Σpore. (2.8)

Here we assumed that the modulus of bulk compression of water is significantly less than the modulus
of bulk compression of the soil solid material, and hence we assume that there is no fluid in the pores
in problem (2.5)–(2.6). We note that the bulk compressibility of the fluid can be taken into account in
problem (2.5). In this case, a pore is replaced by a material with the modulus of bulk compression of
the fluid and a small shear modulus. The latter is required to ensure the elasticity of the problem. The
boundary condition (2.6) is not posed in this case.
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The asymptotic solution (2.4) is divided into two solutions:

u
(1)
k (x, ξ) = vk(x) + εNkpq(ξ)vp,q(x) + · · · , (2.9)

u
(2)
k (x, ξ) = εMk(ξ)p(x) + · · · . (2.10)

Substituting (2.9) into (2.5)–(2.6) and (2.10) into (2.7)–(2.8), we obtain the following results. In the
RVE, the functions Nkpq and Mk satisfy the equations and the boundary conditions

[CijklNkpq,l + Cijpq],j = 0, ξ ∈ VRVE, (2.11)

[CijklNkpq,l + Cijpq]nj = 0, ξ ∈ Σpore, (2.12)

[CijklMk,l + Cijpq],j = 0, ξ ∈ VRVE, (2.13)

CijklMk,lnj = (−ni), ξ ∈ Σpore. (2.14)

The boundary conditions on the boundary ΣRVE have different form depending on the medium in
question, i.e., periodic or nonperiodic.

If the porous medium is nonperiodic, then the following condition can be posed on the RVE boundary:

Nkpq = 0, Mk = 0, ξ ∈ ΣRVE. (2.15)

In this case, there arise a boundary layer near the boundary ΣRVE, but this boundary layer does not
affect the values of the averages over the RVE within the accepted accuracy. This property simply follows
from the definition of RVE.

But if the RVE is the cell of periodicity, then, on its boundary ΣRVE, the following periodicity
conditions for the functions Nkpq and Mk are posed:

Nkpq

∣
∣
ξα=lα/2

= Nkpq

∣
∣
ξα=−lα/2

, − lα
2

≤ ξα ≤ lα
2

, α = 1, 2, 3, (2.16)

(CijklNkpq,l + Cijpq)nj

∣
∣
ξα=lα/2

= −(CijklNkpq,l + Cijpq)nj

∣
∣
ξα=−lα/2

, (2.17)

Mk

∣
∣
ξα=−lα/2

= Mk

∣
∣
ξα=lα/2

, (2.18)

CijklMk,lnj

∣
∣
ξα=−lα/2

= −CijklMk,lnj

∣
∣
ξα=lα/2

. (2.19)

The following additional conditions are required for local problems with conditions (2.16)–(2.19):

〈Nkpq〉 = 0, 〈Mk〉 = 0 (2.20)

(the angular brackets denote the value averaged over the RVE). We note that, to calculate the effective
properties, the periodic conditions are also often posed on the RVE boundary in the case of nonperiodic
structure of the medium.

The mean stress has the form

〈σΠ
ij〉 = Ceff

ijklvk,l + 〈CijklMk,l〉p,

where the effective moduli of elasticity become

Ceff
ijpq = 〈CijklNkpq,l + Cijpq〉.

Thus, an asymptotic analysis implies the pore pressure transfer tensor αij :

αij = −〈CijklMk,l〉.
In this case, the homogenized equation of equilibrium has the form

Ceff
ijklvk,lj + Xi = αijp,j, (2.21)

where Ceff
ijkl and αij are calculated by solving local problems (2.11)–(2.14) in the RVE with condi-

tions (2.15) or (2.16)–(2.20). It is assumed that these problems must be solved by the finite element
method.

Thus, the derivation of the equilibrium equation (3.32) (the second equation of the Biot coupled model
of poroelasticity [24]) completes the derivation of this model on the basis of the asymptotic approach. The
first equation of the Biot model (equation of filtration) was obtained asymptotically in [1, 27], where the
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homogenization of the viscous liquid flow in a porous medium was given, which leads to the Darcy law
and actually to the filtration equation.

Solving the local problems which is necessary to calculating the effective properties, one can
simultaneously estimate the local distribution of stresses by the formula

σij = (CijklNkpq,l + Cijpq)vp,q + CijklMk,lp.

In this case, there is no restriction on the inhomogeneity of matrix solid material of the porous medium
and on the presence of closed pores containing liquid or gas under the (locally distributed) pressure or
not.

3. PORES UNIFORMLY ORIENTED IN SPACE

One of possible techniques for calculating the effective tensor of pore pressure transfer for media with
arbitrarily oriented elongated pores is that the homogenization process consists of two stages [29]. At the
first stage, the material with parallel pores is considered. In this case, the effective tensor is transversally
isotropic (axis 1 is directed along the axis of elongation of the holes)

⎡

⎢
⎢
⎢
⎣

α11 α12 0

α12 α22 0

0 0 α22

⎤

⎥
⎥
⎥
⎦

.

These coefficients are calculated by solving the problem in the representative volume element (cell of
periodicity in the case of periodic media).

The spatial homogenization permits obtaining the final formulas. The homogenization procedure
corresponds to the process where the parallel fibers acquire all possible directions in the space with
respect to a given coordinate system. Under the assumption that the holes are uniformly distributed over
the directions in the space, to obtain the final formulas, it is necessary to calculate the integrals

1
4π

2π∫

0

p∫

0

iα′
IJ(ϕ, θ) sin θ dθ dϕ,

where the components α′
IJ(ϕ, θ) are the components of the pore pressure transfer tensor in the case of

parallel fibers directed along the axis 1′ of the coordinate system with primes, which is given by two Euler
angles ϕ and θ with respect to the basic (without primes) coordinate system. The coordinates α′

IJ are
transformed by the law

α′
IJ(ϕ, θ) = AIiAJjαij ,

A11 = cos θ, A12 = sin θ sin ϕ, A13 = − cos ϕ sin θ,

A21 = 0, A22 = cos ϕ, A23 = sin ϕ,

A31 = sin θ, A32 = − sin ϕ cos θ, A33 = cos ϕ cos θ.

After the required calculations, we obtain the following formulas for the effective tensor of the pore
pressure transfer

⎡

⎢
⎢
⎢
⎣

1
3 α11 + 2

3 α22 0 0

0 1
3 α11 + 2

3 α22 0

0 0 1
3 α11 + 2

3 α22

⎤

⎥
⎥
⎥
⎦

.

As expected, the obtained tensor is isotropic, and we can say that the coefficient of the pore pressure
transfer α is equal to the arithmetic mean of the components of the transversal tensor.
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Fig. 1.

Fig. 2.

4. ANALYSIS OF THE RESULTS AND EXAMPLES
The above-described technique based on solving some local problems was applied to calculate the

effective elastic moduli and the pore pressure transfer tensor for some model and geological specimens
to study their dependence on different parameters.

In the case of model structures, the medium is assumed to be periodic and the local problems were
solved on the cell of periodicity. It was first investigate how the coefficient of the pore pressure transfer α
depends on the pore shape. The pore with symmetry such that α11 = α22 = α33 = α were considered, and
two-dimensional (Fig. 1) and three-dimensional (Fig. 3) specimens with the same porosity n = 18.9%
(Poisson’s ratio of the matrix solid material ν = 0.3) were studied. The point is that the structure of
geological materials is more often known in the form of two-dimensional rather than three-dimensional
images. The following values were calculated for the coefficient α for the specimens shown in Fig. 1:
(1) 0.4495, (2) 0.4940, (3) 0.6649; and in Fig. 2, (1) 0.3662; (2) 0.4052, (3) 0.4435. One can see that the
specimens with a cross pore have the greatest value of α, and the specimens with a circular pore have the
least value. These calculations allows us to conclude that the closer the pore shape to the circular shape,
the less the coefficient α. It is also useful to note that, for similar pore shapes, the values of α for plane
specimens are greater than those for volume specimens approximately by 20–30%. This observation
can be used to analyze the two-dimensional images of real three-dimensional geological structures. The
possibility of such comparison for model structures means that it is expedient to consider them.

Figure 3 shows how the coefficient α depends on the porosity n (in percents) for two-dimensional
(1, 2 ) and three-dimensional (3, 4 ) specimens with a pore shapes as (1 ) square, (2 ) circle, (3 ) cube,
(4 ) ball. One can see the regular increase in α as the porosity increases. We again note that, for similar
shapes of the pores, the values of α are greater for plane models.

For the isotropic matrix solid material, the coefficient α depends only on the Poisson ratio. This
dependence is shown in Figs. 4 and 5. The coefficient of the pore pressure transfer α increases with
the Poisson ratio ν, as is illustrated by the graphs of α versus ν for plane specimens with a circular
pore (Fig. 4) and volume specimens with spherical pore (Fig. 5). The numbers of the graphs in Figs. 4
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Fig. 3.

Fig. 4.

Fig. 5.

and 5 correspond to specimens of different porosity: (1) 38.48%, (2) 28.27%, (3) 19.83%, (4) 12.57%,
(5) 7.07%, (6) 3.14%. For the same values of ν, the coefficient α increases with the specimen porosity.

Further, we consider the cases where the tensor α is not spherical. The results of investigation
of the pore pressure transfer tensor for model specimens with a pore shaped as an ellipsoid (Fig. 6)
and an ellipsoidal pore (Fig. 7) are given in Tables 1 and 2, respectively. All specimens have the same
porosity n = 11.31%. For each specimen, the tensor component α22 has the greatest value, and axis 2
is parallel to the direction of the least elongated axis of the ellipse or ellipsoid. The nonmonotone
dependence for α11 is very remarkable. As the pore elongation increases, the values of α22 increase,
while the values of the other components of the tensor α first decrease and then increase.

The calculations of the pore pressure transfer tensor for transversally isotropic specimens with
cylinder-shaped pores (Fig. 8, Table 3) and with pores shaped as elongated parallelepipeds (Fig. 9,
Table 4) permit using the methods for calculating the effective tensor of the pore pressure transfer
for media with arbitrarily oriented pores on the basis of the already available tensor α for the media
with pores located in parallel. As was already noted, this tensor turns out to be isotropic, i.e., we can
speak about the coefficient of the pore pressure transfer α. The results of calculations of the tensor αββ
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Fig. 6.

Fig. 7.

Table 1

1 2 3 4 5 6

α11 0.31 0.29 0.29 0.30 0.33 0.37
α22 0.31 0.34 0.40 0.47 0.58 0.69

Table 2

1 2 3 4

α11 0.24 0.23 0.23 0.25

α22 0.24 0.26 0.31 0.40

α22 0.24 0.24 0.24 0.26

Table 3

1 2 3 4 5

n 2.83 3.85 5.03 6.36 7.39
α11 0.18 0.26 0.36 0.47 0.57

α22 = α33 0.10 0.14 0.19 0.24 0.29
α 0.13 0.18 0.24 0.32 0.38

(β = 1, 2, 3) in the case of parallel pores and of the coefficient α calculated from them in the case of
chaotically located pores are shown in Tables 3 and 4. These tables allow us to conclude that, for disks,
the coefficient α is approximately two times greater if it is recalculated for the same porosity. Moreover,
the dependence on the porosity is nearly linear in both cases.

The above-developed technique was used to study the effective properties of real rocks. Some specific
specimens of magmatic rocks, hyaloclastites and volcanic tuff, were investigated. In these calculations,
the properties of minerals and rocks contained in these specimens were taken from the reference
literature [3–5].
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Fig. 8.

Fig. 9.

Table 4

1 2 3 4 5

n 0.15 0.18 0.20 0.22 0.24

α11 0.0036 0.0042 0.0047 0.0054 0.0058
α22 = α33 0.0050 0.0057 0.0065 0.0074 0.0080

α 0.0045 0.0052 0.0059 0.0067 0.0073

The hyaloclastites are volcanic sedimentary rocks formed in the processes of underwater volcanic
eruption. Due to the fast cooling of the lava contacting with water, small fragments of volcanic glass are
formed, which are then hardened under the action of various postgenetic processes [30]. Two specimens
of Iceland hyaloclastites were investigated: with angular chaotic pores (n = 15%) (Fig. 10) and with
circular pores (n = 33%) (Fig. 11). Figures 10 and 11 show thin sections of the specimens and their
models used in calculations. In the calculations of elastic moduli, the specimen‘s were assumed to be
dry. The following properties of volcanic glass were accepted in the calculations: E = 13.4 × 103 MPa
and ν = 0.24 for the first specimen, E = 12.3 × 103 MPa and ν = 0.24 for the second specimen. The
calculated values of components of the elasticity modulus tensor (n × 103 MPa) and the pore pressure
transfer tensor are given in Table 5. We note that C1111 ≈ C2222 and α11 = α22 = α for both specimens,
because the pores are uniformly located in them and are chaotically oriented in the first specimen. The
values of components of the tensor C were used to calculate the effective Young moduli and Poisson
ratios. The calculated values of the effective elastic properties turned out to be close to the experimentally
determined values of the corresponding factors (Table 5). This fact proves the efficiency of the proposed
technique for calculating the tensor C, and indirectly, the tensor α. For both specimens, α = 0.58 despite
the fact that the porosity of the first specimen (n = 15%) is significantly lower than that of the second
specimen (n = 33%). This again confirms the law previously revealed by studying the model specimens,
i.e., α depends on the pore shape, and this coefficient is lower for media with circular pore than for media
with angular (slot-like) pores.

The thin-section and the model of the specimen under study are shown in Fig. 12. The micropsephitic
lithoclastic tuff consists of basalt-compound lava fragments and plagioclase fragments (n = 7%). The
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Fig. 10.

Fig. 11.

Table 5

Rock Hyaloclastites with angular pores Hyaloclastites with circular pores Volcanic tuff

α11 0.58 0.58 0.33

α22 0.58 0.58 0.35

C1111 7.0 6.1 18.2
C2222 7.3 6.1 17.4

C1122 1.7 1.8 3.9

Ecalc 6.3 5.0 18.0
νcalc 0.20 0.21 0.20

Eexper 6.5 5.3 16.8
νexper 0.19 0.23 0.18
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Fig. 12.

pores in lave fragments are edged by zeolites crystals. The specimen was obtained from the Mutnovsky
geothermal region in Kamchatka. The following properties of minerals and rock composing the specimen
were used in the calculations: lava (dark grey color in the mode in Fig. 12): E = 22.0 × 103 MPa
and ν = 0.2; zeolites (black color): E = 28.0 × 103 MPa and ν = 0.22; plagioclases (light grey color)
E = 80.0 × 103 MPa and ν = 0.28. (The white color in the model in Fig. 12 indicates the pores.) The
obtained values of components of the elasticity modulus tensor and the tensor α are given in Table 5.
One can see that the calculated values of the elastic properties for the tuff specimen are also close to the
experimental values.

5. CONCLUSION
In the present paper, the equilibrium equation for the fluid-saturated porous medium contained in

the Biot model was obtained on the basis of the homogenization method. As a result, a computational
method for determining the tensor of pore pressure transfer to the matrix solid material by solving local
problems in the representative volume element (RVE) was proposed. The technique for calculating
the effective tensor of the pore pressure transfer was considered for media with uniformly oriented
pores, namely, this tensor was calculated on the representative volume element with parallel-oriented
pores and then homogenized across the space. This technique was illustrated for model specimens and
for real structures of geological materials. It was investigated how the pore pressure transfer tensor
depends on the porosity, pore shape and orientation, and Poisson ratio. The results of calculations of the
properties of rock specimens selected in geothermal deposits in Kamchatka and Iceland coincided with
the experimental data, which confirms the possibility of using the proposed technique in the engineering
geology.
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