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Abstract—A technique for determining the damping properties of a rigid isotropic material from the
experimental data on the damping capacity of elongated cantilever-fixed test specimens due to the
internal and external aerodynamic damping is proposed. The following two methods for eliminating
the aerodynamic damping component are considered: the extrapolation of the data on the damping
capacity of a series of test specimens of different widths to the point corresponding to the zero width
and the theoretical-experimental approach. The damping properties of the material are determined
by the vibration logarithmic decrement depending on the amplitude of the linear deformation. This
dependence is represented by a power polynomial. The polynomial coefficients are determined from
the minimum condition of the goal function for the positive logarithmic decrement of the material
vibrations. These coefficients are sought at the reference point by repeatedly solving the direct
problem of determining the damping capacity of the test specimen from the given damping properties
of the material. An example is considered to illustrate the identification of the damping properties of
steel St.3.
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1. INTRODUCTION AND THEORETICAL FOUNDATIONS

According to the currently existing American standard ASTM E-756 [1], an acoustic method in
the resonance mode is used to investigate the dynamic behavior of cantilever-fixed test specimens of
different structure, which permits experimentally determining the damping properties of materials in
the frequency range from 50 to 5000 Hz. If the material is isotropic and rigid (metal, alloy, high-modulus
polymer), then the test specimen is completely manufactured from this material. But the results obtained
in this case cannot be considered as acceptable for analyzing the dynamical reaction of the structures
by the following two reasons: (1) the above-cited standard does not take into account the aerodynamic
component of the logarithmic decrement of the test specimen vibrations which can be compared with
the internal damping parameters, and for the materials with low damping properties, can decisively
influence the amplitudes of the flexural vibrations of the test specimen; (2) the damping characteristics
of the materials obtained in the case of flexural vibrations of the test specimens give only a comparative
estimate of their damping properties and cannot be used under the conditions other than the conditions in
the experiment. Therefore, it is necessary to identify the real damping properties of the material from the
internal damping characteristics of the test specimens under the conditions of their flexural vibrations.
These characteristics can be obtained by studying the resonance or damping transverse vibrations of the
test specimens. But experiments under the resonance conditions require an extremely fine tuning of the
vibration source frequency because of the fast response of the test specimen vibration amplitude to small
variations in the frequency near the resonance. More reliable data on the damping capacity of the test
specimen can be obtained by analyzing its flexural damped vibrations [2, 3].
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Fig. 1.

The damping capacity of rigid isotropic materials can be determined by using the elongated
cantilever-fixed test specimens of rectangular cross-section (Fig. 1). The damping properties of the test
specimen can be represented by the vibration logarithmic decrement (OLD) δ depending on the vibration
amplitude A of its free end. The dependence δ(A) can be obtained by processing the experimental
vibrorecord of damped vibrations of the test specimen in the air by using the technique presented
in [2], where it is shown that the damping properties of the test specimen are significantly influenced
by the external aerodynamic damping thus increasing the OLD as the specimen width b increases.
This influence can be eliminated by using an approach based on testing a series of test specimens of
the same length L and different width b. This permits constructing the dependencies δ(A, b) and then
extrapolating them to obtain the dependence δ∗(A) for b = 0 which is required to identify the damping
properties of the material.

There is a theoretical-experimental method for determining the relation δ∗(A), which significantly
decreases the number of necessary experiments:

δ∗(A) = δ(A) − δa. (1.1)

Here δ(A) is the experimental OLD of the test specimen in the air for a finite width b and δa is the OLD
computational aerodynamic component determined by the formula [3, 4]

δa =
bρfFA

hρ
(1.2)

with the notation

FA =
6.14√

β
+ 7

√
κ

ξ2

ξ2 + 3.2
, β =

b2f

ν
,

ξ = κ[2 + 1.78 ln Δ − (0.54 + 0.88 ln Δ) ln β], κ =
A

b
, Δ =

h

b
.

Here A is the deflexion amplitude of the test specimen free end in vibrations according to the first mode,
f is the vibration frequency measured in Hz, and ν = 1.5 × 10−5 m2/s is the kinematic viscosity of the
air whose viscosity is ρf = 1.29 kg/m3.

In the case of damped vibrations, the material at any point of its cross-section is in the state
of cyclic extension-compression, and the damping properties of the material are determined by the
OLD δ depending on the strain amplitude ε0. It is proposed to seek the dependence δ(ε0) as the power
polynomial

δ(ε0) =
n∑

k=0

ckε
k
0 . (1.3)

To identify the damping properties of the material, it is necessary to seek the coefficients ck (k = 0, 1,
2, . . . , n) of the polynomial (1.3) from the available dependence δ∗(A) so that the computational OLD
of the test specimen be slightly different from the experimental values of δ∗ for a given set of amplitudes
Aj (j = 1, 2, . . . ,m) in the range of representation of the dependence δ∗(A). To estimate the result, it is
necessary to introduce the norm of discrepancy of the compared quantities, for example, in the form

F (c0, c1, . . . , cn) =
‖δ∗ − δ‖
‖δ∗‖ .

Here F (c0, c1, . . . , cn) is the goal function implicitly depending on the coefficients ck, δ∗ and δ are
vectors containing the experimental and computational OLD of the test specimen for the amplitudes Aj
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Fig. 2.

(j = 1, 2, . . . ,m), and ‖δ∗ − δ‖ and ‖δ‖ are the Euclidean norms of the corresponding vectors. The
coefficients ck are determined from the minimum condition for the goal function F (c0, c1, . . . , cn) under
the restriction

δ(ε0) =
n∑

k=0

ckε
k
0 > 0.

To determine the minimum of the function of several variables, one usually employs the method
of coordinate and fastest descent [5], where it is required to calculate the partial derivatives of a
given function with respect to each independent variable. But in the absence of the explicit depen-
dence F (c0, c1, . . . , cn), it is necessary to average the partial derivatives ∂F/∂ck numerically. Therefore,
it is more preferable to use the direct methods for determining the zeroth-order terms [5] (the simplex
method, the Hooke–Jeeves configuration method, Rosenbrock’s method), where it is not required to
calculate the derivatives ∂F/∂ck . The most convenient is the Hooke–Jeeves configuration method,
which can easily be realized for any dimension of the search space.

The computational OLD of the test specimen can be obtained by using the finite-element method.
Since the test specimen shape is elongated in plan and its thickness h is much less that the width b, one
can use the computational model (Fig. 2 a) composed of beam finite elements (Fig. 2 b). The damped
vibrations of the test specimen are described by the system of differential equations

Mr̈ + Cṙ + Kr = 0 (1.4)

with the initial conditions r(0) = rno and ṙ(0) = 0, where M, C, K, and r are the mass matrix, the damp-
ing matrix, the rigidity matrix, and the vector of angular displacements of the above-described model,
rno is the vector of angular displacements for the initial static deviation wno of the free end of the test
specimen. The dot over a symbol denotes its differentiation with respect to time t. The matrices M, C,
and K are formed by the method of direct rigidity [6] from the corresponding matrices Me, Ce, and Ke

of finite elements. The form of the matrices Me and Ke is well known [7]

Me = m

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13l
35

11l2

210
9l
70

− 13l2

420

11l2

210
l3

105
13l2

420
− l3

140

9l
70

13l2

420
13l
35

− 11l2

210

− 13l2

420
− l3

140
− 11l2

210
l3

105

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ke = EI

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
l3

6
l2

− 12
l3

6
l2

6
l2

4
l

− 6
l2

2
l

− 12
l3

− 6
l2

12
l3

− 6
l2

6
l2

2
l

− 6
l2

4
l

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where m, EI, and l are the linear mass, the bending rigidity, and the length of the element.
The finite element matrices Ce depend on the model of nonelastic deformation of the material. If

the material of the test specimen has viscoelastic properties, then to describe them, one can use the
physical relations between the components of the stress tensor σij , the strain tensor εij , and the strain
rate tensor ε̇ij = ∂εij/∂t as follows:

σij = σij(εij , ε̇ij).
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In the case of uniaxial stress state, the simplest of such dependencies, which is most often used in
practice, corresponds to the well-known Voigt–Thompson–Kelvin model [8]

σ = Eε + αε̇, (1.5)

where σ, ε, and ε̇ are the normal stress, relative strain, and the rate of its variation in the time t, and
E and α are the Young modulus and the viscosity coefficient of the material. The latter is related to the
logarithmic decrement of the vibrations δ(ε0) as

α =
Eδ(ε0)

πω
,

where ω is the frequency of the material. With regard to this fact, the model (1.5) becomes

σ = Eε +
Eδ(ε0)ε̇

πω
.

We write an infinitely small increment of the work of the inelastic part of the stress σ on the
corresponding strain increment dε over the finite element volume

dA = − E

πω

∫

F

l∫

0

dεδ(ε0)ε̇ dF dx. (1.6)

The strain ε at the point z in the element cross-section can be determined in terms of its angular
displacements re = {w1 ϕ1 w2 ϕ2} by using the geometric dependence

ε = −zw′′ = −zf ′′T re, (1.7)

where f ′′ is the vector of the second derivatives of the basis function fi (i = 1, 2, 3, 4) of the finite element
with respect to its local coordinates x (Fig. 2 b). The superscript T in (1.7) and further denotes the
operation of transposition. The functions fi of the beam elements have the form

f1 = 1 − 3x2

l2
+

2x3

l3
, f2 = x − 2x2

l
+

x3

l2
, f3 =

3x2

l2
− 2x3

l3
, f4 = − x2

l
+

x3

l2
. (1.8)

The quantity ε0 can be related to the curvature amplitude χ0(x) of the element axis

ε0 = |z|χ0(x), χ0(x) = f ′′T r0,e. (1.9)

Here r0,e is the vectors of amplitudes of the nodal displacements of this element. It follows from (1.8)
and (1.9) that the dependence χ0(x) is linear within the element and it can be written as

χ0(x) = χ0,1

(
1 − x

l

)
+ χ0,2

x

l
= a

(
1 + s

x

l

)
. (1.10)

Here χ0,1 and χ0,2 are the respective amplitudes of nodes 1 and 2 of the finite element, and a = χ0,1,
s = (χ0,2 − χ0,1)/χ0,1. The quantities χ0,1 and χ0,2 are determined by the expression

{χ0,1χ0,2} =

⎡

⎢⎢⎢⎢⎣

− 6
l2

− 4
l

6
l2

− 2
l

6
l2

2
l

− 6
l2

4
l

⎤

⎥⎥⎥⎥⎦
r0,e.

With regard to (1.9) and (1.10), the dependence (1.3) becomes

δ(ε0) = δ(a, s) =
n∑

k=0

ck|z|kak

(
1 + s

x

l

)k

. (1.11)
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Substituting (1.7) and (1.11) into (1.6), we obtain

dA = − E

πω
drT

e

n∑

k=0

cka
k

∫

F

|z|k+2dF

l∫

0

f ′′f ′′T
(

1 + s
x

l

)k

dx ṙe.

The quantity dA can be represented as

dA = − EI

πω
drT

e

( n∑

k=0

ckHkIk

I

)
ṙe. (1.12)

The matrices Hk and the quantities Ik and I are determined by the expressions

Hk = ak

l∫

0

f ′′f ′′T
(

1 + s
x

l

)k

dx, Ik =
∫

F

|z|k+2dF, I =
∫

F

z2dF.

Relation (1.12) can be rewritten as

dA = −drT
e Ceṙe, Ce =

EI

πω

n∑

k=0

ckHkIk

I
, (1.13)

where Ce is the matrix of the finite element damping.
The numerical experiments showed that to identify the dependence δ(ε0) of the material, it suffices to

consider only n = 3 in (1.13). The ratios Ik/I and the matrices Hk then become

H(11)
0 =

2
l3

⎡

⎣ 6 3l

3l 2l2

⎤

⎦ , H(12)
0 =

2
l3

⎡

⎣ −6 3l

−3l 2l2

⎤

⎦ , H(22)
0 =

2
l3

⎡

⎣ 6 −3l

−3l 2l2

⎤

⎦ ,

H(11)
1 =

a

l3

⎡

⎣ 6(s + 2) 2l(s + 3)

2l(s + 3) l2(s + 4)

⎤

⎦ , H(12)
1 =

a

l3

⎡

⎣ −6(s + 2) 2l(s + 3)

−2l(s + 3) l2(s + 4)

⎤

⎦ ,

H(22)
1 =

a

l3

⎡

⎣ 6(s + 2) −2l(s + 3)

−2l(2s + 3) l2(3s + 4)

⎤

⎦ ,

H(11)
2 =

a2

15l3

⎡

⎣ 36(2s2 + 5s + 5) 3l(7s2 + 20s + 30)

3l(7s2 + 20s + 30) 2l2(4s2 + 15s + 30)

⎤

⎦ ,

H(12)
2 =

a2

15l3

⎡

⎣ −36(2s2 + 5s + 5) 3l(17s2 + 40s + 30)

−3l(7s2 + 20s + 30) l2(13s2 + 30s + 30)

⎤

⎦ ,

H(22)
2 =

a2

15l3

⎡

⎣ 36(2s2 + 5s + 5) −3l(17s2 + 40s + 30)

−3l(17s2 + 40s + 30) 2l2(19s2 + 45s + 30)

⎤

⎦ ,

H(11)
3 =

a3

5l3

⎡

⎣ 3(7s3 + 24s2 + 30s + 20) 3l(2s3 + 7s2 + 10s + 10)

3l(2s3 + 7s2 + 10s + 10) l2(2s3 + 8s2 + 15s + 20)

⎤

⎦ ,

H(12)
3 =

a3

5l3

⎡

⎣−3(7s3 + 24s2 + 30s + 20) 3l(5s3 + 17s2 + 20s + 10)

−3l(2s3 + 7s2 + 10s + 10) l2(4s3 + 13s2 + 15s + 10)

⎤

⎦ ,

H(22)
3 =

a3

5l3

⎡

⎣ 3(7s3 + 24s2 + 30s + 20) −3l(5s3 + 17s2 + 20s + 10)

−3l(2s3 + 7s2 + 10s + 10) l2(11s3 + 38s2 + 45s + 20)

⎤

⎦ .
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The matrices H(21)
k which are not written above are the transposed matrices H(12)

k .
To solve system (1.4), it is necessary to use the stepwise integration methods recalculating the

finite element matrices Ce at each vibration cycle according to the attained values χ0,1 and χ0,2 which
determine the values of a and s in the matrices Hk. Therefore, the integration step Δt necessary to trace
these values must be sufficiently small, 100–120 steps per vibration cycle, and the number of solutions
of system (1.4) in the search of the coefficients ck of the power polynomial (1.3) by direct methods can
be large (several hundreds of thousands). This leads to unacceptable computer times costs and the
inevitable accumulation of computational errors. But the vibration amplitudes A of the test specimen
are measured not from the initial static deviation wno but some time later, when the process of transition
from the static deflection shape to the lowest natural shape f1 is terminated. This permits passing from
system (1.4) to the equation for the generalized coordinate q1(t) of the shape f1:

mq̈1(t) + cq̇1(t) + kq1(t) = 0 (1.14)

with the initial conditions

q1(0) =
Amax

fw
, q̇1(0) = 0.

Here Amax is the maximal amplitude A in the range of representation of the experimental depen-
dence δ∗(A), fw is the component of the shape f1 corresponding to the deflection w of the free end of
the test specimen, m, c, and k are the generalized mass, the generalized damping coefficient, and the
generalized rigidity of the test specimen:

m = fT
1 Mf1, c = fT

1 Cf1, k = fT
1 Kf1.

The replacement of system (1.4) by the Eq. (1.14) significantly decreases the time necessary to
obtain the computational OLD of the test specimen but does not completely solve the problem of
determining the coefficients ck, because the work content required to determine them is still rather large.
Therefore, it is necessary to develop faster methods for computing the test specimen OJD, which would
permit efficiently performing computational experiments for determining the character of the obtained
dependencies δ(ε0) for different experimental dependencies δ∗(A). For this, we write Eq. (1.14) in the
form

q̈1(t + 2nq̇1(t) + ω2q1(t) = 0, (1.15)

where n = c/(2m) and ω2 = k/m. The dynamic deflection of the free end of the test specimen is described
by the function w(t) = q1(t)fw. Then instead of (1.15), we obtain the equation

ẅ(t) + 2nẇ(t) + ω2w(t) = 0 (1.16)

with the initial conditions w(0) = Amax and ẇ(0) = 0. The damping parameter n implicitly depends on
the coefficients ck of the polynomial (1.3) in terms of the damping matrices Ce of finite elements and must
be recalculated at each vibration cycle i according to the attained amplitude Ai of the test specimen. But
between the two successive amplitudes Ai and Ai+1, this parameter can be assumed to be constant and
equal to the value ni for the amplitude Ai. This permits using the well-known analytic solution for the
envelope A(τ) per one vibration cycle

A(τ) = Ai exp(−niτ), (1.17)

where 0 ≤ τ ≤ T̄ is the local time. The vibration period T̄ must be determined with regard to the
parameter ni:

T̄ =
2π√

ω2 − n2
i

.

But the numerical experiments showed that T̄ practically coincides with the vibration period T of the
ideally elastic test specimen. Therefore, we must further set T̄ = T .

The computational OLD of the test specimen with the amplitude Ai is related to the parameter ni by
the well-known dependence δi = niT . Substituting ni = ci/(2m) and T = 2π/ω into this dependence,
we obtain

δi =
ciπ

mω
. (1.18)
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Expressions (1.17) and (1.18) allow us to construct the sweep method algorithm for determining the
vibration amplitudes and the corresponding OLD of the test specimen avoiding the procedure of step
integration of Eq. (1.16):

Ai+1 = Ai exp(−niT ), δi+1 =
ci+1π

mω
. (1.19)

The generalized damping coefficient ci+1 of the test specimen is calculated by the damping matrix C of

the test specimen for the vibration amplitude Ai+1. The required values of the curvature amplitude χ
(i+1)
0,1

and χ
(i+1)
0,2 at the finite element nodes are determined by the expression

{
χ

(i+1)
0,1 χ

(i+1)
0,2

}
=

⎡

⎢⎢⎢⎢⎣

− 6
l2

− 4
l

6
l2

− 2
l

6
l2

2
l

− 6
l2

4
l

⎤

⎥⎥⎥⎥⎦
fe

Ai+1

fw
,

where fe is the vector containing the shape components f1 corresponding to the current element. The
reliability of algorithm (1.19) is confirmed by numerical experiments for determining the computational
dependence δ(A) of the test specimen according to the well-known dependence δ(ε0) of the material.

When the coefficients ck (k = 0, 1, 2, . . . , n) of the polynomial (1.3) are determined by the Hooke–
Jeeves configuration method, one meets the problem of choice of the initial (reference) point in the space
of given coefficients, which arises due to the difference in their values, i.e., each successive coefficient
turns out to be greater than the preceding one by three-four orders and higher. One of the versions for
solving this problem may consist in the recalculation of the given dependence δ∗(A) of the test specimen
into the dependence δ∗(ε0), where ε0 is the maximal strain amplitude at the fixation point corresponding
to the vibration amplitude A. The amplitude ε0 can be calculated from the amplitude A by the formula

ε0 =
χF (0)Ah

2fw
, (1.20)

where χF (0) is the curvature of the shape f1 at the fixed end of the test specimen. The dependence δ∗(ε0)
is approximated by the power polynomial of the same order as in the search of the coefficients ck of the
polynomial (1.3):

δ∗(ε0) =
n∑

k=0

c∗kε
k
0 . (1.21)

Relation (1.20) permits determining ε0,j for given values of the vibration amplitudes Aj (j = 1, 2,
3, . . . ,m) of the test specimen. Substituting ε0,j and δ∗(ε0,j) into the approximation (1.21), we obtain
a system of m linear algebraic equations for the coefficients c∗k (k = 0, 1, 2, . . . , n). The usual number
of experimental points is equal to m > n + 1. Therefore, the obtained system is overdetermined. Such a
system can be solved by the least square method. This gives the coefficients c∗k of the polynomial (1.21)
which are assumed to be the coordinates of the reference point.

But the performed numerical experiments showed that the process of search of the coefficients ck is
sometimes completed before attaining the minimum of the goal function. The possible cause of this effect
may be the already noted significant difference between the values of the coefficients F (c0, c1, . . . , cn),
which can lead to incorrect determination of these coefficients. Therefore, an approach for avoiding
this difficulty is proposed. Let us determined the strain amplitudes ε0,k for the chosen amplitudes Ak

(k = 0, 1, 2, . . . , n) of the test specimen in the range [Amin, Amax] of representation of the experimental
dependence δ∗(A):

ε0,k =
χF (0)Akh

2fw
.

The amplitudes Ak can be chosen with equal step hA = (Amax − Amin)/n including the extreme points
of the range [Amin, Amax]. Substituting ε0,k into (1.3), we obtain the system of equations

Ec = δ, (1.22)
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E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε0,0 ε2
0,0 · · · εn

0,0

1 ε0,1 ε2
0,1 · · · εn

0,1

1 ε0,2 ε2
0,2 · · · εn

0,2

· · · · · · · · · · · · · · ·

1 ε0,n ε2
0,n · · · εn

0,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0

c1

c2

· · ·

cn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ0

δ1

δ2

· · ·

δn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

System (1.22) permits determining the coefficients ck (k = 0, 1, 2, . . . , n) of the polynomial (1.3) if
the right-hand side δ of this system is known:

c = E−1δ.

This allows one to vary not the coefficients ck in the search by the material OLD δ0, δ1, δ2, . . . , δn

for given ε0,k which, in contrast to the coefficients ck, are of approximately the same order. As the
coordinates of the reference point, one can take the test specimen OLD for the vibration amplitudes Ak

(k = 0, 1, 2, . . . , n) or the average value δ∗(A) in the range of amplitudes [Amin, Amax]. The vector c
is determined at each point of the space of decrements thus ensuring the computation of the goal
function F in the search of the coefficients ck (k = 0, 1, 2, . . . , n) of the polynomial (1.3).

For the practical realization of this procedure, we propose to use the search matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ0 δ1 · · · δn

δ0 + d0 δ1 · · · δn

δ0 − d0 δ1 · · · δn

δ0 δ1 + d1 · · · δn

δ0 δ1 − d1 · · · δn

· · · · · · · · · · · ·

δ0 δ1 · · · δn + dn

δ0 δ1 · · · δn − dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.23)

The first row in the matrix P contains the coordinates δ0, δ1, δ2, . . . , δn of the reference point. The
other rows contain the coordinates of points located at the one step distance from the reference point
in each coordinate direction of the space δ. The successive verification of the content of the rows of the
matrix P is used to determine the coefficients ck and the goal function F for each row. Then the row
which gives the minimal value of F is chosen. The content of this row is rewritten into the first row of the
matrix P and becomes a new reference point. Then all other rows of the matrix P are formed as is shown
in expression (1.23) and this procedure is repeated. If the current minimal values of F in the process of
linear search corresponds to the first row of the matrix P, then the new level of searching with smaller
steps dk (k = 0, 1, 2, . . . , n) begins for the already attained value of F , and the entire procedure described
above is repeated. Such transitions with decreasing the step dk are carried out until the function F
ceases to decrease. It is recommended to decrease the steps dk in each transition approximately by a
factor of 5–10 compared with their previous values. The performed numerical experiments exhibited
high reliability and precision of the proposed version of the algorithm for searching the coefficients ck of
the polynomial (1.3).

2. EXPERIMENTAL FACILITY FOR STUDYING THE DAMPED FLEXURAL VIBRATIONS
OF TEST SPECIMENS

A special experimental facility (Fig. 3) was designed to obtain the vibrorecords of damped vibrations
of the test specimens. The facility consists of a rigidly connected basement 1 and a power wall 2. The test
specimen 3 is fixed as a cantilever to the wall. The clamping is ensured by spaced planks connected with
the wall by two rows of bolted joints which do not permit the test specimen rotation in the cross-section
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Fig. 3.

of the clamping. The displacement transducer 5 is jointed to the upright 4 mounted on the basement.
The upright position along the basement can be varied to measure the amplitude of the test specimen
vibrations as its overhang is changed.

A triangular laser transducer produced by the firm REFTEK (RF603-X/100) ensuring he precision
of the vibration amplitude measurements up to 0.01 mm is used in the facility. The digital results of
measurements enter a personal computer. The measurements start with a certain delay in time which is
necessary for the transition from the initial (static) deflection state to the lowest mode shape of the test
specimen. The developed software permits establishing up to 1000 measurements of the deflection per
second, and thus, obtaining the real vibrorecord of damped vibrations of the test specimen with a rather
high accuracy.

3. NUMERICAL EXPERIMENTS
The experiments were performed for a series of test specimens manufactured from the steel St.3 of

lengths L = 150 mm, L = 200 mm, and L = 300 mm for the width b varying from 10 mm to 50 mm
with the step of 10 mm and the thickness h = 1 mm. The vibrorecords of damped vibrations of these test
specimens were processed according to the technique described in [2], and the amplitude dependencies
of the test specimens OLD in the air were obtained for the above-cited set of b. Table 1 shows the
values of the OLD δ∗ of the test specimens of lengths L = 150 mm, L = 200 mm, and L = 300 mm
for six amplitudes A, which were obtained by extrapolation of the experimental dependence δ(A, b) to
the width b = 0.

The Young modulus E of the steel St.3 was determined from the experimental frequency f by using
the formula for calculating the basic frequency of free vibrations of an ideally elastic cantilever beam

f0 =
1
2π

(
1.875

L

)2
√

EI

m
. (3.1)

This is justified by the weak dependence of the frequency on the parameters of the internal and external
aerodynamic damping [9–12], which is also confirmed by the earlier experiments [2]. The density of the
material required to determine the linear mass m of the test specimens was taken from the reference
book [13]: ρ = 7870 kg/m3. Table 2 shows the experimentally determined frequencies f of the test
specimens of lengths L = 150 mm, L = 200 mm, and L = 300 mm and Young moduli E calculated by
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Fig. 4. Fig. 5.

Table 1

L = 150 mm L = 200 mm L = 300 mm

A, mm δ∗ A, mm δ∗ A, mm δ∗

2 0.0286 2 0.0167 2 0.0074
4 0.0473 6 0.0471 6 0.0245

6 0.0603 10 0.0632 10 0.0389
8 0.0710 14 0.0747 14 0.0496

10 0.0795 18 0.0830 18 0.0573

12 0.0855 22 0.0894 22 0.0629

Table 2

L mm f , Hz E, Pa

150 33.1 16.731× 1010

200 18.9 17.241× 1010

300 8.8 18.922× 1010

formula (3.1). The averaged modulus E = 17.631 × 1010 Pa was taken to identify the dependence δ(ε0)
of the material.

The dependence δ(ε0) is represented by the cubic polynomial

δ(ε0) = c0 + c1ε0 + c2ε
2
0 + c3ε

3
0. (3.2)

Table 3 presents the coefficients c0, c1, c2, and c3 of the polynomial (3.2) which were obtained by
the search according to the Hooke–Jeeves configuration method for the test specimens of lengths
L = 150 mm, L = 200 mm, and L = 300 mm. The computational models of all three test specimens
were represented 20 finite elements. The accuracy of determining these coefficients was estimated by
comparing the computational and experimental OLD δ and δ∗ of the above-mentioned test specimen
represented depending on the dimensionless amplitude of vibrations A/h (Fig. 4). The digits 1, 2, 3
correspond to the respective test specimens of lengths L = 150 mm, L = 200 mm, and L = 300 mm. The
computational OLD δ of the test specimens (solid lines) are sufficiently close to the experimental data δ∗

(marked by small circles).
Figure 5 illustrates the dependencies δ(ε0) for the steel St.3 for the coefficients c0, c1, c2, and c3

shown in Table 3. The dependencies δ(ε0) obtained for the test specimens of lengths L = 150 mm (solid
line) and L = 200 mm (dashed line) are sufficiently close and lie approximately in the same ranges of
strain amplitudes ε0, while the dependence δ(ε0) for L = 300 mm (dotted line) differs from the two
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Fig. 6. Fig. 7.

Table 3

L mm c0 c1 c2 c3

150 5.467 × 10−3 3.021× 102 −3.534 × 105 1.622 × 108

200 −5.178× 10−5 4.092× 102 −6.396 × 105 3.671 × 108

300 −2.266× 10−5 4.028× 102 −2.995 × 105 −7.121× 108

Table 4

L = 150 mm L = 200 mm L = 300 mm

A, mm δ∗ A, mm δ∗ A, mm δ∗

2 0.0290 2 0.0163 2 0.0073

4 0.0492 6 0.0401 6 0.0192

6 0.0583 10 0.0535 10 0.0294
8 0.0665 14 0.0627 14 0.0372

10 0.0726 18 0.0691 18 0.0437
12 0.0775 22 0.0737 22 0.0487

others. The final dependence δ(ε0) was obtained by averaging the results over the test specimens of
lengths L = 150 mm and L = 200 mm:

δ(ε0) = 2.708 × 10−3 + 3.557 × 102ε0 − 4.965 × 105ε2
0 + 2.647 × 108ε3

0.

In what follows, we present the results of identification of the dependence δ(ε0) for the same material, i.e.,
steel St.3, which were obtained for the same three test specimens of lengths L = 150 mm, L = 200 mm,
and L = 300 mm and the width b = 10 mm. The aerodynamic component of the damping was eliminated
by using formulas (1.1) and (1.2). Table 4 presents the obtained OLD δ∗ of test specimens in a vacuum
for the previously considered six amplitudes A.

Figure 6 illustrates the obtained dependencies δ(ε0) for the steel St.3 test specimens of lengths
L = 150 mm (solid line), L = 200 mm (dashed line), and L = 300 mm (dotted line). The final depen-
dence δ(ε0) is obtained by averaging the results over the first two test specimens

δ(ε0) = 2.519 × 10−3 + 3.440 × 102ε0 − 5.523 × 105ε2
0 + 3.237 × 108ε3

0.

For comparison, Fig. 7 shows the obtained averages dependencies δ(ε0) for the two versions of
eliminating the aerodynamic component of the damping of the test specimens: (1) by extrapolating
the OLD dependence in the air on the width b of the test specimen till the point b = 0 (dashed
line); (2) by applying the computational component of the aerodynamic damping for the test specimen
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width b = 10 mm (solid line). In the second version of eliminating the aerodynamic component of the
damping, the damping properties were by 12.7% lower at the average than in the first version.

CONCLUSION
It is shown that it is principally possible to identify the damping properties of rigid isotropic materials

(illustrated by an example of the steel St.3) from the experimental amplitude dependence of the test
specimen OLD in the air when the external aerodynamic component of the damping is eliminated
from this dependence. The following two versions of eliminating this component are possible: (1) by
extrapolating the OLD dependence in the air on the width b of the test specimen till the point b = 0; (2)
by applying the computational component of the aerodynamic damping for the finite width b of the test
specimen.
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