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Abstract—The constitutive equations of nonlinear mechanics of a prestressed electrothermoelastic
continuum are linearized in the framework of the theory of small strains imposed on finite strains.
Simple and convenient-to-operate formulas of linearized constitutive equations and equations of
motion of the medium are obtained. A model of electrothermoelastic half-space with inhomogeneous
coating, which is a structure of functionally graded layers, is proposed. It is assumed that each of the
medium components is under the action of initial mechanical strains and initial temperature, and
the materials of the medium components are orthotropic pyroelectric materials of hexagonal crystal
system of class 6 mm. The integral representation of the medium wave field is constructed by a hybrid
numerical-analytical method based on a combination of analytical solutions and numerical schemes
used to reconstruct the Green function for the inhomogeneous components of the coating and the
matrix approach used to satisfy the boundary conditions.
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INTRODUCTION
For the mass usage of contemporary artificial inhomogeneous materials in spacecraft and aircraft

construction, in production of high-technological equipment, and electronics, it is required to investigate
their physical, technological, and strength characteristics depending on the regimes and conditions
of their operation, which stimulated extensive experimental, fundamental and applied studies of the
problem. For example, the appearance of first models of functionally graded materials (FGM), i.e., of
materials whose properties vary continuously in a certain way, was first related to studies in seismology,
foundation engineering, and geophysics [1–6]. The further development of structure modeling by
using FGM components was first related to vigorous development of electronics and the possibility
of increasing the efficiency of device operation based on the use of surface acoustic waves (Gulyaev–
Bluestein waves, Rayleigh waves). Another direction in this field is related to the wide usage of synthetic
materials (metal ceramics, bi- and multimaterials, various composites) in machine engineering and
aircraft and spacecraft manufacturing. The problem complexity is that, for functionally graded materials
or structures with functionally graded coating, it is impossible solve the dynamic problems analytically.
The compromise assumption that all properties of the material vary at the same rate according to
the same law of variation in the single spatial variable is often used in the literature [7–10]. The
functionally graded material is modeled by various approaches from separation into layered elements
where the material properties are linear [7] or quadratic functions of thickness to the methods where the
functional dependence is represented either as an expansion in power series [8] or as easily differentiable
exponential [9, 10], sinusoidal, hyperbolic, and quadratic functions or polynomials [10]. In these models,
the properties of either one “supporting” material or of two materials are considered. In [11, 12], the
model deals with a bi-material whose properties vary in depth from the values for one material to the
values for the second material depending on the value, volume, and localization of the fractions of one
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material in the other material. The assumption that all properties of the material vary in the same way
permits obtaining an analytical solution, which is undoubtedly important for estimating the results of
complicated numerical or numerical-analytical modeling, but it can efficient be used to investigate the
inhomogeneity of the material properties only in some specific cases.

The relationship between thermal, electric, and elastic fields in contemporary artificial high-
technological materials ensures a mechanism for determining the thermomechanical perturbations
depending on the character of the external load and on the method for the material manufacturing,
i.e., on the initial mechanical stresses, induced electric potentials, temperature regimes, etc.

One of the first works, where the constitutive relations and the equations of motion of thermoelectric
crystals and plates were obtained, the main theorems were formulated, and the physical laws of
thermoelectric materials were studied are [13, 14]. On the basis of Mindlin’s theory of thermopiezoelec-
tricity, under the assumption that the thermal perturbations propagate at a finite speed, a generalized
linear thermoelastic theory of piezoelectric media was constructed. When solving the dynamic coupled
problems of generalized theory of electrothermoelasticity, the specific characteristics of surface wave
propagation in semibounded electrothermoelastic media were studied in [15–20], where the pyroelectric
materials of hexagonal crystal system of symmetry class 6 mm but the initial stresses were neglected.
The influence of initial mechanical and temperature actions on the dynamics of a homogeneous layer of
an anisotropic thermoelastic material was investigated in [21, 22]. The three-dimensional Green function
of the medium was constructed [21], and the influence of the initial stresses on its dispersion properties
was analyzed. The mixed problem of a layer vibrations under the action of a thermal load was solved [22],
and the specific features of the thermal flow distribution in the region of contact depending on the
character, type, and value of the initial actions were discovered. In [23], in the Lagrange coordinates
related to the body natural configuration, the constitutive relations and the equations of motion of
nonlinear mechanics of electrothermoelastic medium were successively linearized in the absence of
external fields. In the process of linearization, the fourth-order terms with respect to strains and the
second-order terms with respect to the temperature deviation were preserved in the expansion of the
thermodynamic potential. Such an approach is justified when the influence of various types of the initial
stress state on the dynamics of homogeneous electrothermoelastic materials is investigated, because,
along with the linearized equations of motion and the constitutive relations determining the law of state
of the medium, it is also necessary to consider the nonlinear effects due to the action of mechanical
strains and temperatures. But when the specific features of behavior of compound structures and media
with inhomogeneous coating are investigated, the higher-order constants taken into account complicate
the problem significantly. In the present paper, we linearize the thermodynamic potential and preserve
the second-order terms with respect to strains, electric field, and temperature deviations. We obtain
simpler and more convenient formulas of linearized constitutive relations and equations of motion of the
medium. To construct the Green matrix-function of the prestressed electrothermoelastic half-space with
functionally graded coating, we use the hybrid numerical-analytical method, earlier proposed in [24, 25],
which is based on a combination of analytical solutions for the homogeneous components of the coating
with numerical schemes of reconstructing the Green function for the inhomogeneous components
and the matrix approach used to satisfy the boundary conditions. By using the Fourier transform,
we reduce solving systems of linearized equations of motion, i.e., systems of second-order partial
differential equations with constant and variable coefficients, to solving systems of first-order ordinary
differential equations with boundary and initial-boundary conditions with respect to the components of
the displacement vector and normal components of the stress vector. The solution of a system of first-
order ordinary differential equations is constructed numerically. Such an approach to modeling media
with complex inhomogeneous coating allows us to use the distinctions between the initial stress states
of the coating elements, and in functional dependence, between the intensity and localization domains
of variations in their physical properties, as well as the distinctions between the conditions arising on the
interfaces between the medium components.

1. STATEMENT OF THE PROBLEM OF NONLINEAR VIBRATIONS
OF AN ELECTROTHERMOELASTIC MEDIUM

We consider an orthonormal Cartesian vector bases i1, i2, i3 and the reference v and actual V
configurations before and after the action of surface and mass forces, respectively. The position of a
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material point in these configurations is determined by the radius vectors r = xkik and R = Xkik and
the nabla operator representation has the form

∇0 = im
∂

∂xm
, ∇ = im

∂

∂Xm
. (1.1)

The parameters determining the state of piezoactive medium are the electric potential ϕ and the
vectors of the electric field intensity in the actual configuration

E = −∇ϕ, W = −∇0ϕ. (1.2)

The medium strain is characterized by the strain gradient, the Cauchy–Green strain measure, and
the Cauchy–Green strain tensor (I is the unit tensor),

C = ∇0R, G = C ·CT , S =
1
2

(G − I). (1.3)

The thermomechanical properties of the medium depend on the temperature θ and, in the reference
configuration, are described by the Piola stress tensor Π and the specific entropy η:

Π = P ·C, P = χS, (1.4)

η = −χθ. (1.5)

Representation (1.4) contains the Kirchhoff tensor P. The electrical properties of the medium in the
reference configuration are described by the polarization vector

π = −χW, (1.6)

by the material form of the vector of electric induction (ε0 is the dielectric permeability of a vacuum and
J is the metric multiplier)

d = ε0JC−T ·E − χW, (1.7)

and by the electric Piola–Maxwell tensor (I is the unit tensor)

m = ε0JC−T ·Ξ, (1.8)

Ξ = EE− 1
2 E · EI. (1.9)

The thermal processes are described by the temperature gradient g and the heat flux vector h defined in
the reference configuration metric:

g = ∇0θ, (1.10)

h = −λ · g. (1.11)

Here λ(C, θ,g) is the tensor of coefficients of thermal conductivity. In the case of material of class
6 mm of hexagonal crystal system, this tensor is diagonal, i.e., λ = ‖λii‖3

i=1, λ11 = λ22 �= λ33. The
tensor χS the vector χW, and the scalar quantity χθ which participate in representations (1.4)–(1.6) are
the derivatives of the thermodynamic potential χ = χ(S,W, θ) which is a scalar function determining
the energy accumulated in the deformation of a thermoelastic body [26–28].

Boundary Value Problem of Vibrations of Electrothermoelastic Medium in the Reference Configuration

We consider the problem of vibrations of an electrothermoelastic medium occupying a volume V
bounded by the surface o = o1 + o2 = o3 + o4 = o5 + o6. We assume that the displacement vector u∗ is
given on the surface part o1 and the mechanical stresses f∗ are given on the other part o2. The electric
potential ϕ∗ is given on the metallic part of the surface o3 and the charge distribution g∗ is given on
the surface part o4 which can also be partially metallized. The temperature distribution θ∗ is given on
the surface part o5 and the heat flux h∗ is given on the remaining part of the surface o6. The boundary
value problem of vibrations of the prestresses thermoelasic medium in the coordinates of the reference
configuration is described by the equation of motion

∇0 · (Π + m) = ρ0ü, (1.12)
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the equation of forced electrostatics

∇0 · d = 0, (1.13)

the heat conduction equation

∇0 · h− ρ0r + θη̇ = 0, (1.14)

and the boundary conditions

u
∣∣
o1

= u∗, n · Π
∣∣
o2

= f∗, ϕ
∣∣
o3

= ϕ∗, n · d
∣∣
o4

= −g∗, θ
∣∣
o5

= θ∗, n · h
∣∣
o6

= −h∗. (1.15)

Equations (1.12) and (1.14) involve the undeformed body density ρ0 and the intensity r of the bulk
heat sources.

2. LINEARIZATION OF THE INITIAL STRESS STATE
OF AN ELECTROTHERMOELASTIC BODY

We assume that there is a certain initial equilibrium of the electrothermoelastic body determined by
the parameters

R = R(r), ϕ = ϕ0(r), θ = T1(r). (2.1)

The stress state of the body is described by the system of equations

∇0 · (Π0 + m0) = 0, ∇0 · d0 = 0, ∇0 · h0 = 0. (2.2)

We assume that, under the action of surface and mass forces, this configuration experiences small
mechanical εu, electrical εϕ, and thermal εθ perturbations, where ε is a small parameter. The perturbed
state characteristics are denoted by the index ∗:

R× = R + εu, w× = w + εu, ϕ× = ϕ0 + εϕ, θ× = T1 + εT. (2.3)

Following [27], we write the tensor and vector quantities in the perturbed state as

Π× = Π0 + εΠ• + o(ε2), m× = m0 + εm• + o(ε2), η× = η0 + εη• + o(ε2),

d× = d0 + εd• + o(ε2), h× = h0 + εh• + o(ε2),
(2.4)

where Π•, m•, η•, d•, and h• are the convective derivatives of the corresponding functions defined by
the formula

f• =
d

dε
f(R + εu, ϕ0 + εϕ, T1 + εT )

∣∣∣∣
ε=0

. (2.5)

The parameters (2.4) determining the perturbed state of the body (2.3) must satisfy Eqs. (1.12)–
(1.14):

∇0 · (Π× + m×) = ρ0ẅ6×, ∇0 · d× = 0, ∇0 · h× + θ×η̇× = 0. (2.6)

We introduce representations (2.4) into the system of Eqs. (2.6) and take (2.2) into account. We
preserve only the terms linear in ε and obtain the linearized equations of motion, electrostatics, and heat
conduction

∇0 · (Π• + m•) = ρ0ü, ∇0 · d• = 0, ∇0 · h• + T1η̇
• = 0. (2.7)

We use the differentiation rules [27] with regard to representations (1.4)–(1.11) and formula (2.5) for the
quantities participating in Eqs. (2.7) and obtain

Π• = P• · C + P ·
◦
∇u, m• = (JC−T )• ·M + JC−T · M•,

d• = ε0(JC−T )• · E + ε0JC−T · E• + π•, (2.8)

h• =
∂h
∂S

◦ S• +
∂h
∂W

·W• +
∂h
∂θ

θ• +
∂h
∂g

· g•,

η• =
∂η

∂S
◦ S• +

∂η

∂W
· W• +

∂η

∂θ
θ•,
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P• =
∂P
∂S

◦ S• +
∂P
∂W

·W• +
∂P
∂θ

θ•, M• = ε0E•E + ε0EE• − ε0(E · E•)I,

E• = −∇u ·E −∇ϕ, π• =
∂π

∂S
◦ S• +

∂π

∂W
· W• +

∂π

∂θ
θ•. (2.9)

The symbol “◦” denotes the operation of complete multiplication [27]. The function χ = χ(S,W, θ)
determines the energy accumulated in the deformation of electrothermoelastic body. The constitutive
relations are constructed under the assumption that the state with parameters

S = 0, W = 0, θ = T0 (2.10)

is the state with minimal free energy. In the expansion of the function χ = χ(S,W, θ) near the
state (2.10), we preserve only the second-order terms with respect to strain, electric field, and the
temperature deviation and obtain the thermodynamic potential representation [28]

χ =
1
2

4CW ·· S ·· S− 3e ·W ·· S− 1
2

Cερ0τ
2T−1

0 − 2Q ·· Sτ − 1p · Wτ. (2.11)

Here 4CW is the tensor of rank IV of elastic constants of order II characterizing the linear strain at a
constant temperature and a constant electric field, 2β is the symmetric tensor of rank II of dielectric
susceptibility constants defined for constant temperature and strain, and for a material of class 6 mm of
hexagonal crystal system, this tensor is diagonal [29]: 2β = ‖βii‖3

i=1, β11 = β22 �= β33. In the linear
approximation, its components are related to the components of the tensor of dielectric permeability 2ε
by the relations εkn = ε0δkn + βkn; 3e is the tensor of rank III of piezoelectric constants related to
electroacoustic effects; 2Q is the tensor coefficient of thermoelasticity, and for a material of class 6 mm
of hexagonal crystal system [29], this tensor has the form 2Q = ‖qii‖3

i=1, q11 = q22 �= q33; 1p is the
pyroelectric vector, Cε is the specific heat capacity, ρ0 is the material density, and τ = θ − T0 is the
temperature perturbation. The tensor constant of the thermodynamic potential are determined by the
formulas

4C = Cijkliiijikil, 3e = eijkiiijik, 2β = βijiiij, Q = Qijiiij , λ = λijiiij, p = piii. (2.12)

Introducing (2.11) into expressions (1.4), (1.5), (1.7), and (1.9), we obtain

P = 4CW ·· S− 3e · W − 2Qτ, π = 3e ·· S + 2β · W + 1pτ,

η = Cερ0τT−1
0 + 2Q ·· S + 1p ·W.

(2.13)

The derivatives contained in formulas (2.8) and (2.9) have the form

∂P
∂S

= 4CW,
∂P
∂W

= −3e,
∂P
∂θ

= −2Q,

∂π

∂S
= 3e,

∂π

∂W
= 2β,

∂π

∂θ
= 1p,

∂η

∂θ
=

Cερ0

T0
.

(2.14)

Substituting expressions (2.13) and (2.14) into formulas (2.8) with regard to expressions (2.9) and
(1.6)–(1.11), we obtain

Π• = (4CW ◦ S• + 3e · ∇0ϕ − 2QT ) ·C + P · ∇0u,

m• = ε0JC−T · [((∇ · u)I −∇uT ) ·Ξ + Ξ•],

d• = ε0JC−T [((∇ · u)I −∇uT ) · E −∇u · E −∇ϕ] + π•,

π• = 3e ◦ S• − 2β · ∇0ϕ + 1pT, h• = −λ · ∇0T,

η• = 2Q ◦ S• − 1p · ∇0ϕ + Cερ0TT−1
0 .

(2.15)

Here we used the following differentiation formulas [27]:

(JC−T )• = JC−T · ((∇ · u)I −∇uT ), ∇ = C−1 · ∇0,

∂η

∂S
=

∂

∂S

(
− ∂χ

∂θ

)
= − ∂P

∂θ
, S• =

1
2

(∇0u ·CT + C · ∇0uT ),
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J• = J∇ · u, C• = ∇0u, (C−1)• = −∇u ·C−1,

(C−T )• = −C−T · ∇uT , W• = −∇0ϕ, θ• = T, g• = ∇0T.

Further, we introduce the notation

Θ = Π• + m•, Δ = d•, H = h•, v = η•..

In this notation, the linearized equations of motion, electrostatics, and heat conduction (2.7), which
describe the dynamics of prestressed electrothermoelastic body, become

∇0 ·Θ = ρ0ü, ∇0 · Δ = 0, ∇0 · H + T0v̇ = 0. (2.16)

Equations (2.16) were constructed in general form with respect to the initial stress state. In what
follows, we specify it and consider the homogeneous initial stress state.

Homogeneous Initial Stress State
We assume that the initial stress state (2.1) in an electrothermoelastic medium is homogeneous and

determined by the conditions

R = Λ · r, Λ = vkikik, θ = T1. (2.17)

In condition (2.17), vk = 1 + δk, where δk (k = 1, 2, 3) are relative elongations of the fibers directed
along the coordinate axes xk coinciding in the natural configuration with the Cartesian coordinates. We
also assume that the external electrostatic field is absent, and the electric field intensity in the material
is small and appears exceptionally due to the piezo- or pyroeffect. In this case, the terms which contain
the vector E as a multiplier can be neglected in formulas (2.15). With regard to formulas (1.1)–(1.3),
representations (2.11), (2.12), (2.17), and notation (2.16), the stress tensor, the induction and heat flux
vectors, which participate in linearized equations (2.16), can be written in component form

Θ = Π∗
ijiiij, Δ = d∗i ii, H = h∗

i ii,

Π∗
ij =

(
Cijklvk

∂uk

∂xl
+ eijk

∂ϕ

∂xk
− qijT

)
vj + Pik

∂uj

∂xk
, (2.18)

d∗i = eijkvjuj,k − (βii + ε0Jv−2
i )ϕ,i + piT, (2.19)

h∗
i = −λiiT,i, (2.20)

η• = qiivi
∂ui

∂xi
− pi

∂ϕ

∂xi
+ Cερ0TT−1

0 . (2.21)

It follows from (2.17) that the tensors determining the initial stress state are diagonal:

C = vkikik, S = Skikik, Sk = 1
2 (v2

k − 1), P = Pkikik.

If we introduce the notation

C∗
ijkl = Cijklvkvj + Pilδjk, e∗ijk = eijkvj , q∗ij = qijvj, β∗

ii = βii + ε0Jv−2
i , (2.22)

then representations (2.18) and (2.19) become

Π∗
ij = C∗

ijkl

∂uk

∂xl
+ e∗ijk

∂ϕ

∂xk
− q∗ijT, (2.23)

d∗i = e∗ijk
∂uj

∂xk
− β∗

ii

∂ϕ

∂xi
+ piT. (2.24)

With representations (2.23), (2.24), (2.20), and (2.21) taken into account, Eqs. (2.7) in component form
become

∂

∂xi

(
C∗

ijkl

∂uk

∂xl
+ e∗ijk

∂ϕ

∂xk
− q∗ijT

)
= ρ0

∂2uj

∂t2
, j = 1, 2, 3,

∂

∂xi

(
e∗ijk

∂uj

∂xk
− β∗

ii

∂ϕ

∂xi
+ piT

)
= 0,

∂

∂xi

(
λii

∂T

∂xi

)
− T1q

∗
ii

∂

∂t

(
∂ui

∂xi

)
+ T1pi

∂

∂t

(
∂ϕ

∂xi

)
− T1

Cερ0

θ0

∂T

∂t
= 0.

(2.25)
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Equations (2.25) describe the vibrations of a prestressed electrothermoelastic medium and permit
studying the influence of initial stresses on the dynamic processes in this medium under the conditions
of coupled elastic, electric, and thermal fields.

3. DYNAMIC PROBLEM FOR A LAMINAR INHOMOGENEOUS PRESTRESSED
ELECTROTHERMOELASTIC HALF-SPACE

As an example, we consider harmonic vibrations of na inhomogeneous prestressed medium consist-
ing of a package N = M − 1 of inhomogeneous layers 0 ≤ x3 ≤ H , H = h1 ≥ h2 ≥ . . . ≥ hM = 0,
|x1, x2| ≤ ∞, lying on an inhomogeneous half-space x3 ≤ 0, |x1, x2| ≤ ∞. We assume that the half-
space and all its structure elements are pyroelectrics of class 6 mm of hexagonal crystal system. The
initial stress state of the medium components is homogeneous and determined by conditions (2.17); the
external electric field is absent.

The linearized equations for the compound electrothermoelastic medium have the form

∇0 ·Θ(n) = ρ(n)ü(n), ∇0 ·Δ(n) = 0, ∇0 ·H(n) + T0η̇
(n) = 0. (3.1)

The boundary conditions (1.15) in the linearized form are represented by the expressions

u(1) = u∗∣∣
o1

, n · Θ(1) = f∗
∣∣
o2

,

ϕ(1) = ϕ∗∣∣
o3

, n ·Δ(1) = −d∗
∣∣
o4

,

θ(1) = θ∗
∣∣
o5

, n · H(1) = −h∗∣∣
o6

.

(3.2)

Here Θ(n), Δ(n), H(n), and η(n) are the linearized stress tensor and the vectors of electric induction,
heat flux, and entropy of the layer with number n (n = 1, . . . , N , N = M − 1) or of the half-space
(n = M ) defined by formulas (2.20), (2.21), (2.23), and (2.24). The quantities u∗, f∗, and n contained
in conditions (3.2) are the respective vectors of displacements, stresses, and the outer normal to the
medium surface, which are defined in natural coordinates, ρ(n) is the material density, θ(n) is the
temperature distribution in the layer with number n, and d∗, ϕ∗, h∗, and T ∗ are the charge density
distribution and the electric potentia, the heat flux and the temperature on the medium interface.

We assume that all parameters of the functionally graded components of the coating obey the law

ρ(n) = ρ
(n)
0 f (n)

ρ (x3), c
(n)
lksm = c

0(n)
lksmf (n)

c (x3), e
(n)
lkm = e

0(n)
lkm f (n)

e (x3), ε
(n)
lm = ε

0(n)
lm f (n)

ε (x3),

q
(n)
lk = q

0(n)
lk f (n)

q (x3), p
(n)
l = p

0(n)
l f (n)

p (x3), λ
(n)
lk = λ

0(n)
lk f

(n)
λ (x3), c(n)

ε = c0(n)
ε f (n)

cε
(x3),

(3.3)

where the index “0” denotes the constants of some “reference” material.
Under the above assumptions, with representations (2.20)–(2.24) taken into account, the compo-

nents of the tensor Θ(n), vectors Δ(n) and H(n), and the scalar quantity η(n) are determined by the
formulas (differentiation with respect to coordinates is denoted by indices after the comma)

Θ(n)
lk = c

∗(n)
lksmu(n)

s,m + e
∗(n)
lkm ϕ(n)

,m − q
∗(n)
lk T (n), d

(n)
l = elsm∗(n)u(n)

s,m + ε
∗(n)
lm ϕ(n)

,m + p
(n)
l T (n),

h
(n)
l = −λ

(n)
ll T

(n)
,l , η(n) = q∗(n)

sp u(n)
s,p − p(n)

m ϕ(n)
,m + ρ(n)c(n)

ε T (n)T−1
0 ,

(3.4)

c
∗(n)
lksp = P

(n)
lp δks + ν

(n)
k ν(n)

s c
(n)
lksp, e

∗(n)
lsp = ν(n)

s e
(n)
lsp , q

∗(n)
lk = ν

(n)
k q

(n)
lk ,

ε
∗(n)
lp = ε0ν

(n)
1 ν

(n)
2 ν

(n)
3 (ν(n)

l )−2δlp + β
(n)
lp .

(3.5)

In the framework of the homogeneous initial stress state (2.17), the components of the tensor P
(n)
ij

contained in representation (3.5) determine the initial stress states of the medium component with
number n:

P
(n)
ij = c

(n)
ijkkS

(n)
kk − e

(n)
ijkW

(n)
k − (T (n)

1 − T0)q
(n)
ij . (3.6)

The initial stress state of the thermoelectroelastic medium determines the vector of electric induction
which can be represented in material form as

d
(n)
k = e

(n)
kll S

(n)
ll + (ε0ν

(n)
1 ν

(n)
2 ν

(n)
3 (ν(n)

l )−2δmk + β
(n)
mk)W (n)

m + p
(n)
k (θ(n) − T0), k = 1, 2, 3. (3.7)
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It follows from conditions (2.7) that the components P
(n)
kk in formulas (3.6) are different from zero. The

absence of the initial electrostatic action d(n) = 0 (3.7) implies the condition W
(n)
1 = W

(n)
2 = 0 for the

materials of the initial symmetry class 6 mm. Thus, to determine the initial stress state parameters of the
nth component of the medium, we have four equations connecting three components of the stress tensor,
three components of the strain tensor, one component of the electric field intensity, and one component
of the electric induction vector.

In what follows, we introduce the extended vectors of displacement u(n)
eτ ={u(n)

1 , u
(n)
2 , u

(n)
3 , u

(n)
4 , u

(n)
5 }

(u(n)
4 = ϕ(n), u(n)

5 = T (n)) and of load feτ = {f1, f2, f3, f4, f5} (f4 =−d∗, f5 =−h∗) and use the notation

θ
(n)
lksp = c

∗(n)
lksp , θ

(n)
lk4p = v

(n)
k e

(n)
plk, θ

(n)
l4sp = v(n)

s e
∗(n)
lsp , θ

(n)
l44p = −ε

∗(n)
lp , k, l, s, p = 1, 2, 3,

θ
(n)
lk55 = −q

∗(n)
lk , θ

(n)
l555 = p

(n)
l , θ

(n)
5555 = −c(n)

ε ρ(n)T−1
0 .

(3.8)

Representations (3.5) and (3.8) and the properties of the “reference” material in natural state [29] imply
the relations

θ
(n)
2342 = θ

(n)
1341 = θ

(n)
1431 = θ

(n)
2432, θ

(n)
1143 = θ

(n)
3411, θ

(n)
2243 = θ

(n)
3422, θ

(n)
3343 = θ

(n)
3433.

In notation (3.8), the conservation law (3.4) can be represented as the matrix

(3.9)

We substitute expressions (3.4) with regard to representations (3.3) and the conservation law (3.9)
into the system of Eqs. (3.1) and rewrite is in the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L∗f
11[u

(n)
1 ] + θ

(n)
1 u

(n)
2,12 + L∗f

13[u
(n)
3 ] + L∗f

14[u
(n)
4 ] + θ

(n)
1155u

(n)
5,1 = 0,

θ
(n)
1 u

(n)
1,12 + L∗f

22[u
(n)
2 ] + L∗f

23[u
(n)
3 ] + L∗f

24[u
(n)
4 ] + θ

(n)
2255u

(n)
5,2 = 0,

L∗f
31[u

(n)
1 ] + L∗f

32[u
(n)
2 ] + L∗f

33[u
(n)
3 ] + L∗f

34[u
(n)
4 ] + L∗f

35[u
(n)
5 ] = 0,

L∗f
41[u

(n)
1 ] + L∗f

42[u
(n)
2 ] + L∗f

34[u
(n)
3 ] + L∗f

44[u
(n)
4 ] + L∗f

45[u
(n)
5 ] = 0,

iωT
(n)
1 [θ(n)

1155u
(n)
1,1 + θ

(n)
2255u

(n)
2,2 + θ

(n)
3355u

(n)
3,3 + θ

(n)
3555u

(n)
4,3 ] − L∗f

55[u
(n)
5 ] = 0.

(3.10)
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The problem is supplemented with the boundary conditions. On the surface x3 = h, we have

u
(1)
k = u∗

k(x1, x2), (x1, x2) ∈ o1, Θ(1)
3k = fk(x1, x2), k = 1, 2, 3, (x1, x2) ∈ o2,

u
(1)
5 = ϕ∗(x1, x2), (x1, x2) ∈ o3, d

(1)
3 = f4(x1, x2), (x1, x2) ∈ o4,

u
(1)
5 = T ∗(x1, x2), (x1, x2) ∈ o5, λ

(1)
33 u

(1)
5,3 = f5(x1, x2), (x1, x2) ∈ o6.

(3.11)

On the interface x3 = hk, k = 2, . . . ,M , we have

Σ(n)
k = Σ(n+1)

k , u
(n)
k = u

(n+1)
k (k = 1, . . . , 5 n = 2, . . . ,M − 1). (3.12)

At infinity, we have

x3 → −∞ u
(M)
k ↓ 0. (3.13)

In formulas (3.10)–(3.12), we used the notation

θ
(n)
1 = θ

(n)
1122 + θ

(n)
1212, (3.14)

L∗f
kk = L∗

kk +
∂θ

(n)
3kk3

∂x3

∂

∂x3
(k = 1, 2, 3), L∗f

44 = L∗
44 +

∂θ
(n)
3443

∂x3

∂

∂x3
L∗f

55 = L∗
55 +

∂λ
(n)
33

∂x3

∂

∂x3
,

L∗f
s3 = (θ(n)

ss33 + θ
(n)
s3s3)

∂2

∂xs∂x3
+

∂θ
(n)
s3s3

∂x3

∂

∂xs
, L∗f

s4 = (θ(n)
ss43 + θ

(n)
3s4s)

∂2

∂xs∂x3
+

∂θ
(n)
3s4s

∂x3

∂

∂xs
,

L∗f
3s = (θ(n)

ss33 + θ
(n)
s3s3)

∂2

∂xs∂x3
+

∂θ
(n)
ss33

∂x3

∂

∂xs
, L∗f

4s = (θ(n)
ss43 + θ

(n)
3s4s)

∂2

∂xs∂x3
+

∂θ
(n)
34ss

∂x3

∂

∂xs
, s = 1, 2,

L∗f
34 = L∗

34 +
∂θ

(n)
3343

∂x3

∂

∂x3
, L∗f

35 = θ
(n)
3355

∂

∂x3
+

∂θ
(n)
3355

∂x3
, L∗f

45 = θ
(n)
3555

∂

∂x3
+

∂θ
(n)
3555

∂x3
,

L∗
kk = θ

(n)
ikki

∂2

∂x2
i

+ ρ(n)ω2 (k, i = 1, 2, 3),

L∗
34 = θ

(n)
k34k

∂2

∂x2
k

, L∗
44 = θ

(n)
k44k

∂2

∂x2
k

, L∗
55 = λ

(n)
kk

∂2

∂x2
k

− iωT
(n)
1 θ

(n)
5555 (k = 1, 2, 3),

Σ(n)
eτ = {Σ(n)

k }5
k=1, Σ(n)

p = Θ(n)
3p (p = 1, 2, 3), Σ(n)

4 = d
(n)
3 , Σ(n)

5 = −h
(n)
3 = λ

(n)
33 u

(n)
5,3 . (3.15)

Further, we pass to dimensionless normalized parameters [17, 18]:

x′
i =

ω∗xi

V
(M)
p

, u
(n)′
i =

ρ(M)ω∗V
(M)
p

q
(M)
11 T0

u
(n)
i , T (n)′ =

T (n)

T0
, ϕ(n)′ =

ϕ(n)

ϕ0
, ω′ =

ω

ω∗ ,

ω∗ =
c
(M)
ε c

(M)
11

λ
(M)
11

, T
(n)′
1 =

T
(n)
1

T0
, λ

(n)′
ij =

λ
(n)
ij

λ
(M)
11

, ρ′ =
ρ

ρ0
, c′ε =

cε

c0
ε

,

Θ(n)′
ij =

Θ(n)
ij

q
(M)
11 T0

, d
(n)′
i =

c
(M)
11

q
(M)
11 T0e

(M)
33

d
(n)
i , h

(n)′
i =

V
(M)
p

ω∗T0λ
(M)
11

h
(n)
i (i, j = 1, 2, 3),

θ
(n)′
ijkl =

θ
(n)
ijkl

c
(M)
11

(k, l = 1, 2, 3), θ
(n)′
ik4p =

θ
(n)
ik4p

e
(M)
33

, θ
(n)′
i4kp =

θ
(n)
i4kp

e
(M)
33

(i, k, p = 1, 2, 3),

θ
(n)′
k44k =

θ
(n)
k44k

e
(M)
33

, θ
(n)′
kk55 =

θ
(n)
kk55

e
(M)
33

(k = 1, 2, 3), θ
(n)′
3555 =

c
(M)
11

q
(M)
11 e

(M)
33

p
(n)
3 , θ

(n)′
5555 =

ρ(n)c
(n)
ε

T0ρ(M)c
(M)
ε

,

E =
T0(q

(M)
11 )2

ρ(M)c
(M)
ε c

(M)
11

, Ep =
ω∗e

(M)
33 ϕ0

q
(M)
11 T0V

(M)
p

, η =
c
(M)
11 ε

(M)
33

(e(M)
33 )2

, Eη = Epη, E
(n)
T = ET

(n)′
1 ,
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where E, Ep, and Eη are dimensionless normalizing multipliers. In the dimensionless parameters (from
now on, the primes are omitted), the linearized equations (3.10) with the notation (3.14) taken into
account become⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L∗f
11[u

(n)
1 ] + θ

(n)
1 u

(n)
2,12 + L∗f

13[u
(n)
3 ] + EpL∗f

14[u
(n)
4 ] + θ

(n)
1155u

(n)
5,1 = 0,

θ
(n)
1 u

(n)
1,12 + L∗f

22[u
(n)
2 ] + L∗f

23[u
(n)
3 ] + EpL∗f

24[u
(n)
4 ] + θ

(n)
2255u

(n)
5,2 = 0,

L∗f
31[u

(n)
1 ] + L∗f

32[u
(n)
2 ] + L∗f

33[u
(n)
3 ] + EpL∗f

34[u
(n)
4 ] + L∗f

35[u
(n)
5 ] = 0,

L∗f
41[u

(n)
1 ] + L∗f

42[u
(n)
2 ] + L∗f

34[u
(n)
3 ] + EηL∗f

44[u
(n)
4 ] + L∗f

45[u
(n)
5 ] = 0,

iωE
(n)
T [θ(n)

1155u
(n)
1,1 + θ

(n)
2255u

(n)
2,2 + θ

(n)
3355u

(n)
3,3 + Epθ

(n)
3555u

(n)
4,3 ] − L∗f

55[u
(n)
5 ] = 0.

(3.16)

The components of the extended vector Σ(n)
eτ (3.15) is represented in dimensionless form as

Σ(n)
1 = Θ(n)

31 = θ
(n)
3113u1,3 + θ

(n)
1313u

(n)
3,1 + Epθ

(n)
3141u

(n)
4,1 ,

Σ(n)
2 = Θ(n)

32 = θ
(n)
3223u2,3 + θ

(n)
2323u

(n)
3,2 + Epθ

(n)
3242u

(n)
4,2 ,

Σ(n)
3 = Θ(n)

33 = θ
(n)
1133u1,1 + θ

(n)
2233u

(n)
2,2 + θ

(n)
3333u

(n)
3,3 + Epθ

(n)
3343u

(n)
4,3 + θ

(n)
3355u

(n)
5 ,

Σ(n)
4 = d

(n)
3 = θ

(n)
3411u1,1 + θ

(n)
3422u

(n)
2,2 + θ

(n)
3433u

(n)
3,3 + Eηθ

(n)
3443u

(n)
4,3 + θ

(n)
3555u

(n)
5 ,

Σ(n)
5 = −h

(n)
3 = λ

(n)
33 u

(n)
5,3 .

(3.17)

4. GREEN FUNCTION OF A PRESTRESSED THERMOELECTROELASTIC HALF-SPACE
WITH INHOMOGENEOUS COATING

Applying the Fourier transform in the coordinates x1 and x2 (α1 and α2 are the transformation
parameters) to problem (3.16), (3.11)–(3.13), we write it in the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

LΛf
11 [U (n)

1 ] − α1α2θ
(n)
1 U

(n)
2 + LΛf

13 [U (n)
3 ] + EpLΛf

14 [U (n)
4 ] − iα1θ

(n)
1155U

(n)
5 = 0,

−α1α2θ
(n)
1 U

(n)
1 + LΛf

22 [U (n)
2 ] + LΛf

23 [U (n)
3 ] + EpLΛf

24 [U (n)
4 ] − iα2θ

(n)
2255U

(n)
5 = 0,

LΛf
31 [U (n)

1 ] + LΛf
32 [U (n)

2 ] + LΛf
33 [U (n)

3 ] + EpLΛf
34 [U (n)

4 ] + LΛf
35 [U (n)

5 ] = 0,
LΛf

41 [U (n)
1 ] + LΛf

42 [U (n)
2 ] + LΛf

34 [U (n)
3 ] + EηLΛf

44 [U (n)
4 ] + LΛf

45 [U (n)
5 ] = 0,

ωE
(n)
T [α1θ

(n)
1155U

(n)
1 + α2θ

(n)
2255U

(n)
2 + iθ

(n)
3355U

(n)′
3 + iθ

(n)
3555EpU

(n)′
4 ] − LΛf

55 [U (n)
5 ] = 0,

(4.1)

x3 = h :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ
(n)
3113U

(n)′
1 − iα1θ

(n)
1313U

(n)
3 − iα1Epθ

(n)
3141U

(n)
4 = F1,

θ
(n)
3223U

(n)′
2 − iα2θ

(n)
2323U

(n)
3 − iα2Epθ

(n)
3242U

(n)
4 = F2,

−iα1θ
(n)
1133U

(n)
1 − iα2θ

(n)
2233U

(n)
2 + θ

(n)
3333U

(n)′
3 + Epθ

(n)
3343U

(n)′
4 + θ

(n)
3355U

(n)
5 = F3,

−iα1θ
(n)
3411U

(n)
1 − iα2θ

(n)
3422U

(n)
2 + θ

(n)
3433U

(n)′
3 + Eηθ

(n)
3443U

(n)′
4 + θ

(n)
3555U

(n)
5 = F4,

λ
(n)
33 U

(n)′
5 = F5,

(4.2)

x3 = hk (k = 2, . . . ,M) :

ΣΛ(n)
k = ΣΛ(n+1)

k , U
(n)
k = U

(n+1)
k (k = 1, . . . , 5, n = 2, . . . ,M − 1), (4.3)

x3 → −∞ U
(M)
k ↓ 0. (4.4)

Here U
(n)
k , ΣΛ(n)

k , and Fk (k =1, . . . , 5) are the Fourier transforms of the components of extended vectors

u(n)
eτ , stresses Σ(n)

eτ (3.17), and the prescribed load feτ . We used the following notation in (4.1):

LΛ
kk = θ

(n)
3kk3

∂2

∂x2
3

− α2
sθ

(n)
skks + ρ(n)ω2 (k = 1, 2, 3), LΛ

34 = θ
(n)
3343

∂2

∂x2
3

− α2
sθ

(n)
s34s,

LΛ
44 = θ

(n)
3443

∂2

∂x2
3

− α2
sθ

(n)
s44s, LΛ

55 = λ
(n)
33

∂2

∂x2
3

− α2
sλ

(n)
ss − iωT

(n)
1 θ

(n)
5555, s = 1, 2,
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LΛf
kk = LΛ

kk + θ
(n)′
3kk3

∂

∂x3
(k = 1, 2, 3), LΛf

44 = LΛ
44 + θ

(n)′
3443

∂

∂x3
, LΛf

55 = LΛ
55 + λ

(n)′
33

∂

∂x3
,

LΛf
s3 = −iαs(θ

(n)
ss33 + θ

(n)
s3s3)

∂

∂x3
+ θ

(n)′
s3s3

∂

∂xs
, LΛf

s4 = −iαs(θ
(n)
ss43 + θ

(n)
3s4s)

∂

∂x3
+ θ

(n)′
3s4s

∂

∂xs
,

LΛf
3s = −iαs(θ

(n)
ss33+θ

(n)
s3s3)

∂

∂x3
+ θ

(n)′
ss33

∂

∂xs
, LΛf

4s = −iαs(θ
(n)
ss43+θ

(n)
3s4s)

∂

∂x3
+ θ

(n)′
34ss

∂

∂xs
, s = 1, 2,

Lλf
34 = LΛ

34 + θ
(n)′
3343

∂

∂x3
, Lλf

35 = θ
(n)
3355

∂

∂x3
+ θ

(n)′
3355, Lλf

45 = θ
(n)
3555

∂

∂x3
+ θ

(n)′
3555.

Here and hereafter, the prime denotes the derivative with respect to x3.
To solve problem (4.1)–(4.4), we use the approach developed in [24, 25]. For this, we introduce the

new variables

Y(n) =

⎛
⎝Yn

Σ

Yn
u

⎞
⎠ , Yn

Σ = ‖ΣΛ(n)
k ‖5

k=1, Yn
u = ‖U (n)

k ‖10
k=5. (4.5)

In the new variables, system (4.1) becomes

Y(n)′ = M(n)(α1, α2, x3)Y(n), (4.6)

M(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 m
(n)
13 m

(n)
14 0 m

(n)
16 m

(n)
17 0 0 m

(n)
1,10

0 0 m
(n)
23 m

(n)
24 0 m

(n)
26 m

(n)
27 0 0 m

(n)
2,10

m
(n)
31 m

(n)
32 0 0 0 0 0 m

(n)
38 m

(n)
39 0

m
(n)
41 m

(n)
42 0 0 0 0 0 m

(n)
48 m

(n)
49 0

0 0 m
(n)
53 m

(n)
54 0 m

(n)
56 m

(n)
57 0 0 m

(n)
5,10

m
(n)
61 0 0 0 0 0 0 m

(n)
68 m

(n)
69 0

0 m
(n)
72 0 0 0 0 0 m

(n)
68 m

(n)
69 0

0 0 m
(n)
83 m

(n)
84 0 m

(n)
86 m

(n)
87 0 0 m

(n)
8,10

0 0 m
(n)
93 m

(n)
94 0 m

(n)
96 m

(n)
97 0 0 m

(n)
9,10

0 0 0 0 m
(n)
10,5 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)

m
(n)
k3 = −iαkr

(n)
ke r

−(n)
0 , m

(n)
k4 = −iαkr

(n)
k Epr

−(n)
0 ,

m
(n)
k,5+k = −α2

k(Ep(θ
(n)
kk43)

2θ
(n)
3333 − 2Epr

(n)
k θ

(n)
kk43 − Eηθ

(n)
3443(θ

(n)
kk33)

2)r−(n)
0 + P

(n)
k ,

m
(n)
k,10 = iαk(θ(n)

3355r
(n)
ke + Epθ

(n)
3555r

(n)
k + θ

(n)
kk55)r

−(n)
0 (k = 1, 2),

m
(n)
17 = α1α2(Epr

(n)
1 θ

(n)
2243 + θ

(n)
1 r

(n)
0 + θ

(n)
2233r

(n)
1e )r−(n)

0 , m
(n)
26 = m

(n)
17 ,

m
(n)
3k = iαkθ

(n)
k3k3θ

−(n)
3kk3 (k = 1, 2), m

(n)
38 = −

2∑
k=1

α2
k(θ

(n)
k3k3)

2θ
−(n)
3kk3 + P

(n)
3 ,

m
(n)
39 = −

2∑
k=1

α2
kEpθ

(n)
k3k3θ

(n)
3k4kθ

−(n)
3kk3 + EpP

(n)
4 ,

m
(n)
49 = −

2∑
k=1

α2
kEp(θ

(n)
3k4k)

2θ
−(n)
3kk3 + EηP

(n)
5 ,

m
(n)
4k = iαkθ

(n)
3k4kθ

−(n)
3kk3 (k = 1, 2), m

(n)
48 = m

(n)
39 (Ep)−1,

m
(n)
53 = −iωE

(n)
T r

(n)
3e r

−(n)
0 , m

(n)
54 = −iωEpE

(n)
T r

(n)
3 r

−(n)
0 ,
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m
(n)
56 = ωE

(n)
T α1r

−(n)
0 (θ(n)

3355r
(n)
1e + Epθ

(n)
3555r

(n)
1 + θ

(n)
1155r

(n)
0 ),

m
(n)
57 = ωE

(n)
T α2r

−(n)
0 (θ(n)

3355r
(n)
2e + Epθ

(n)
3555r

(n)
2 + θ

(n)
2255r

(n)
0 ),

m
(n)
5,10 = iωE

(n)
T r

−(n)
0 (θ(n)

3355r
(n)
3e + Epθ

(n)
3555r

(n)
3 ) + P

(n)
6 ,

m
(n)
61 = (θ(n)

3113)
−1, m

(n)
68 = m

(n)
31 , m

(n)
69 = Epm

(n)
41 ,

m
(n)
72 = (θ(n)

3223)
−1, m

(n)
78 = m

(n)
32 , m

(n)
79 = Epm

(n)
42 ,

m
(n)
83 = −Eηθ

(n)
3443r

−(n)
0 , m

(n)
84 = Epθ

(n)
3343r

−(n)
0 ,

m
(n)
86 = m

(n)
13 , m

(n)
87 = m

(n)
23 , m

(n)
8,10 = r

(n)
3e r

−(n)
0 ,

m
(n)
93 = m

(n)
84 (Ep)−1, m

(n)
94 = −θ

(n)
3333r

−(n)
0 , m

(n)
96 = m

(n)
14 (Ep)−1,

m
(n)
97 = m

(n)
24 (Ep)−1, m

(n)
9,10 = r

(n)
3 r

−(n)
0 , m

(n)
10,5 = λ

−(n)
33 = (λ(n)

33 )−1,

P
(n)
k = α2

i θ
(n)
ikki − ρ(n)ω2 (k = 1, 2, 3),

P
(n)
4 = α2

i θ
(n)
i34i, P

(n)
5 = α2

i θ
(n)
i44i,

P
(n)
6 = α2

i λ
(n)
ii + iωT

(n)
1 θ

(n)
5555 (i = 1, 2),

r
(n)
0 = Ep(θ

(n)
3343)

2 − Eηθ3333θ
(n)
3443, r(n)

s = θ
(n)
ss43θ

(n)
3333 − θ

(n)
ss33θ

(n)
3343 (s = 1, 2),

r
(n)
3 = θ

(n)
3555θ

(n)
3333 − θ

(n)
3355θ

(n)
3343,

r(n)
se = Eηθ

(n)
ss33θ

(n)
3343 − Epθ

(n)
ss43θ

(n)
3343 (s = 1, 2), r

(n)
3e = Eηθ

(n)
3355θ

(n)
3443 − θ

(n)
3555θ

(n)
3343.

System (4.6) in notation (4.5), (4.7) is a system of first-order ordinary differential equations with
variable coefficients. This system can be solved by using several numerical methods. In the present paper,
we solve it by the Runge–Kutta method modified by Merson, which permits reconstructing the solution

with a prescribed accuracy. We expand the function Y
(n)
k as

Y
(n)
k =

10∑
p=1

cp+g(α1, α2)y
(n)
kp (α1, α2, x3), k = 1, 2, . . . , 10, g = 10(n− 1), n = 1, 2, . . . ,M − 1 (4.8)

in linearly independent solutions y
(n)
kp (α1, α2, x3) of the Cauchy problem for Eq. (4.6) with the initial

conditions y
(n)
kp (α1, α2, 0) = δkp.

We represent the solution for the half-space with regard to (3.5) in the form

U (M)
p (α1, α2, x3) = −iαp

5∑
k=1

f
(M)
pk ck+ge

σ
(M)
k x3 , p = 1, 2, g = 10(M − 1),

U (M)
p (α1, α2, x3) =

5∑
k=1

f
(M)
pk ck+ge

σ
(M)
k x3 , p = 3, 4, 5.

(4.9)

Here σ
(n)
k are the roots of the characteristic equation (n = M )

detM(n)
σ = 0,

M(n)
σ (r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
(n)
11 −α2

2θ
(n)
1 rθ

(n)
2 rψ

(n)
1 Ep θ

(n)
1155

−α2
1θ

(n)
1 A

(n)
22 rθ

(n)
3 rψ

(n)
2 Ep θ

(n)
2255

−α2
1rθ

(n)
2 −α2

2rθ
(n)
3 A

(n)
33 A

(n)
34 Ep rθ

(n)
3355

−α2
1rψ

(n)
1 −α2

2rψ
(n)
2 A

(n)
34 A

(n)
44 Eη rθ

(n)
3555

−α2
1iωE

(n)
T θ

(n)
1155 −α2

2iωE
(n)
T θ

(n)
2255 iωE

(n)
T rθ

(n)
3355 iωE

(n)
T Eηrθ

(n)
3555 −A

(n)
55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)
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A
(n)
kk = θ

(n)
3kk3(σ

(n)
k )2 − α2

sθ
(n)
skks + ρ(n)ω2, k = 1, 2, 3, A

(n)
34 = θ

(n)
3343(σ

(n)
2 )2 − α2

sθ
(n)
s34s,

A
(n)
44 = θ

(n)
3443(σ

(n)
k )2 − α2

sθ
(n)
s44s, A

(n)
55 = λ

(n)
33 (σ(n)

k )2 − α2
sλ

(n)
ss − iωT

(n)
1 θ

(n)
5555, s = 1, 2,

θ
(n)
2 = θ

(n)
1133 + θ

(n)
1313, θ

(n)
3 = θ

(n)
2233 + θ

(n)
2323, ψ

(n)
1 = θ

(n)
1143 + θ

(n)
3141, ψ

(n)
2 = θ

(n)
2243 + θ

(n)
3242.

(4.11)

The coefficients f
(n)
pk (p, k = 1, . . . , 5) satisfy the homogeneous system of equations with the matrix

M(n)
σ (σ(n)

k ) (4.10). The unknown variables ck are determined by substituting expressions (4.8) into the
boundary conditions (4.2) and (4.3) which results in the linear system of algebraic equations

AC = F. (4.12)

Here C =↑ {cp}10(M−1)+5
p=1 is the vector of unknowns, F =↑ {Feτ,F0}, Feτ is the Fourier transform of the

vector of prescribed load, and F0 is a vector whose dimension is determined by the problem geometry.
The matrix A can be represented as

A =

⎛
⎝ B1(h1) 0

A1(h2,...,M ) BM (hM )

⎞
⎠ , (4.13)

where B1(h1) and BM (hM ) are rectangular 5 × 10 and 10 × 5 matrices, respectively. The matrices A
and A1(h2,...,M) are square matrices whose dimension depends on the geometric parameters of the
problem and is determined by the formulas [5(2M − 1)] and [10(M − 1)], respectively. The entries of
the matrix (4.13) have the form

B1(h1) = ‖y(1)
kp (α1, α2, h1)‖p=1,...,10

k=1,...,5 , (4.14)

BM (hM ) =

⎛
⎝lM

fM

⎞
⎠ , lM = ‖ − l

(M)
ij ‖5

i,j=1, fM = ‖ − f
(M)
ij ‖5

i,j=1, (4.15)

l
(M)
sk = σ

(M)
k θ

(M)
3ss3f

(M)
sk + θ

(M)
s3s3f

(M)
3k + Epθ

(M)
3s4sf

(M)
4k (s = 1, 2), l

(M)
5k = σ

(M)
k λ

(M)
33 f

(M)
5k ,

l
(M)
3k = σ

(M)
k θ

(M)
3333f

(M)
3k − α2

sθ
(M)
ss33f

(M)
sk + σ

(M)
k Epθ

(M)
3343f

(M)
4k + θ

(M)
3355f

(M)
5k ,

l
(M)
4k = σ

(M)
k θ

(M)
3433f

(M)
3k − α2

sθ
(M)
34ssf

(M)
sk + σ

(M)
k Eηθ

(M)
3443f

(M)
4k + θ

(M)
3355f

(M)
5k (s = 1, 2),

A1(h2,...,M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1(h2) P2(h2) 0 0
... 0 0

0 B2(h3) P3(h3) 0
... 0 0

0 0 B3(h4) P4(h4)
... 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0
... BM−2(hM−1) PM−1(hM−1)

0 0 0 0
... 0 PM−1(hM−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.16)

In representation (4.16), Bn(hk) and Pk(hl) = −Bk(hl) are 10 × 10 matrices. The upper index
corresponds to the layer number, the argument, to the interface between layers. The matrices Bn(hk) in
general form with regard to the notation (4.14) and (4.15) are determined by the formula

B1(h1) = ‖y(1)
kp (α1, α2, h1)‖10

k,p=1, B1(hk) = ‖y(n)
kp (α1, α2, hk)‖10

k,p=1, n = 2, 3, . . . ,M − 1. (4.17)

The dispersion equation of the problem has the form

Δ0 = detA = 0.
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Applying the inverse Fourier transform to expressions (4.8), (4.16), and (4.9) with regard to
(4.10)–(4.12), we obtain the solution of the boundary value problem (3.1)–(3.5) in the form

u(n)
eτ (x1, x2, x3) =

1
4π2

∫∫
Ω

k(n)
eτ (x1 − ξ, x2 − η, x3)feτ(ξ, η) dξ dη, (4.18)

k(n)
eτ (s, t, x3) =

∫
Γ1

∫
Γ2

K(n)
eτ (α1, α2, x3)e−i(α1s+α2t)dα1 dα2, (4.19)

K(n)
eτ (α1, α2, x3) = ‖K(n)

lj ‖5
l,j=1. (4.20)

The components of the matrix K(n))
eτ are defined by the formulas (p = 10(n − 1), n = 1, 2, . . . ,M − 1):

K
(n)
lj =

1
Δ0

10∑
k=1

Δjk+py
(n)
l+5k(α1, α2, x3), l, j = 1, . . . , 5, (4.21)

for the half-space

K
(M)
lj =

1
Δ0

5∑
k=1

f
(M)
lk Δjk+10(M−1)e

σ
(M)
k x3, l, j = 1, . . . , 5, (4.22)

where Δ0 and Δns are the determinant and the algebraic complement of the corresponding element of
the matrix A whose entries are given by formulas (4.14)–(4.17).

The integral representation (4.18) with the Green function (4.19)–(4.22) determine the medium point
displacement under the action of a load prescribed on its surface. The contours Γ1 and Γ2 pass in the
domain of the integrand analyticity and are chosen according to the rules given in [30].

CONCLUSION
When the properties of new artificial materials are studied, the working properties and the strength

characteristics of pieces operating under the constant action of various factors and manufactured from
contemporary high-technology materials are estimated, and materials with prescribed properties are
designed, special demands are imposed on the modeling of media and processes arising in such materials
experiencing various external actions. In this case, it is necessary to combine the adequate consideration
of the material properties and their variations depending on the character of the initial mechanical and
thermal actions and the possibility of constructing sufficiently simple and effective solutions.

The numerical-analytical method proposed in this paper to construct the Green function of complex,
including functionally graded, media permits sufficiently completely taking into account not only the
difference between the structure elements but also the character of the initial stress states of functionally
graded elements. It should be noted that, composing the functional dependence in inhomogeneous
components, one can consider variations in the properties of either one “reference” material or two
materials. The nonlinear relations of mechanics of thermoelectroelasticity were linearized to consider
the influence of the initial actions on the material property variations in the framework of the theory of
small strain imposed on finite strains. Preserving the second-order terms with respect to strains, electric
field, and the temperature deviation in the thermodynamic potential permits obtaining simpler and more
convenient formulas of linearized constitutive relations and equations of motion of the medium on the
one hand, and taking into account the influence of nonlinear effects of the action of the temperature and
mechanical strains on the variations in the initial properties of the material on the other hand.
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