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Abstract—We develop a technique for calculating the plastic strain and fracture toughness fields
of a material by solving dynamical 3D problems of determining the stress-strain state in the
elastoplastic statement with possible unloading of the material taken into account. The numerical
solution was obtained by a finite difference scheme applied to the three-point shock bending tests of
parallelepiped-shaped bars made of different materials with plane crack-notches in the middle. The
fracture toughness coefficient was determined for reactor steel. The numerically calculated stress
tensor components, mean stresses, the Odquist parameter characterizing the accumulated plastic
strain, and the fracture toughness are illustrated by graphs.
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1. INTRODUCTION
Problems of shock loading of deformable solids are currently topical and are used in very diverse

settings. In [1], the plane elastic problem of dynamic interaction between an absolutely rigid indenter
and an elastic isotropic homogeneous half-space at the supersonic stage of interaction was considered
under the conditions of rigid adhesion of the contact surfaces. It was assumed that the contact region
can be multiply connected. In [2], the action of nonstationary loading on the end surface of an elastic
half-strip was studied. In [3], an experimental-computational technique for determining the dynamic
stress intensity factor (DSIF) KI was proposed. The critical fracture loads and the time of fracture of
short compact specimens were determined experimentally. DSIF was calculated according to the linear
theory as a convolution of the load and the unit signal-response, which was separately calculated by the
finite element method. Rather complete studies of the dynamics of rigid-plastic structures were described
in [4], where static and dynamic problems were studied in detail for rectangular, circular, and annular
plates and membranes under the action of loading pulses of various shapes. There is an experimental
technique [5] for studying the crack propagation and crack arrest in Charpy specimens under shock
loading and in disk specimens under thermal shock action. The results of experimental and numerical
modeling were used to determine the crack propagation rate in the specimens under study.

Numerical modeling of fracture processes allows one to optimize the program of actual tests of
materials, significantly decrease the number of sometimes rather expensive experimental tests, and
accelerate their completion. Fracture processes are modeled in the 2D [6–9] and 3D [10, 11] dynamic
elastoplastic statements. In [8–10], the numerical modeling based on 2D equations of dynamics of
elastoplastic materials with immovable cracks was used to determine the fracture toughness. In [12],
an interesting attempt was made to develop the theory of solving initial boundary-value problems for
bodies of revolution in the elastoplastic statement under thermal force loading. But this statement
of the problem is constrained by the fact that the deformation process description is geometrically
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Fig. 1.

connected with the coordinate plane (the computational scheme of finite element method is used in
spatial coordinates), which implies that small strains occur in trajectories of small curvature.

To determine the fracture toughness KIc of a material experimentally, it is necessary to carry
out a great deal of tests for numerous specimens, mainly in a sufficiently wide temperature range.
Therefore, theoretical approaches that permit significantly decreasing the number of such tests are rather
important. In [13], a probabilistic approach for determining the fracture toughness by using a quasistatic
elastoplastic model is developed. A probabilistic approach for determining the fracture toughness, which
permits determining it more precisely than by using the Master curve method, is similarly developed
in [14]. The tests are carried out for a small number of specimens at normal temperature. The Weibull
distribution parameters are nearly independent of the temperature and, only once determined, can
be used to calculate the fracture toughness dependencies in a wide temperature range. In [15], an
experimental method for determining the fracture toughness of ceramic materials on the basis of three-
point bending tests of V-notched beam specimens was developed.

In [10] and in the present paper, it is shown that the developed method for solving 3D problems in the
dynamic elastoplastic statement allows one to calculate the plastic strains more precisely than in [14],
and hence determine the fracture toughness more adequately. Moreover, in this paper the stress-strain
state of bars produced of reactor steel, titanium, aluminum, and silver and shaped as parallelepipeds with
a plane saw-cut crack (a specimen with edge crack for determining the fracture toughness in three-
point bending; i.e., SENB [16–19]) is determined by solving the spatial problem stated in the dynamic
elastoplastic setting with the possible unloading of the material taken into account.

2. STATEMENT OF THE PROBLEM
Consider the deformation of an isotropic bar {|x|≤L/2, 0≤ y≤B, 0≤ z≤H} of length L, height B,

and thickness H whose cross-section is a rectangle Σ = L×B with saw-cut crack of length l along the
vertical axis of the rectangle {x = 0, 0 ≤ y ≤ l, 0 ≤ z ≤ H} in the middle. The bar contacts with two
immovable supports in the domain {L∗ ≤ |x| ≤ L∗ + a, y = 0, 0 ≤ z ≤ H}. An absolutely rigid indenter
falls on the bar from above, which contacts with the bar in the domain {|x| ≤ A, y = B, 0 ≤ z ≤ H}
during a short time interval. Its action is uniformly replaced by the normal load P which is uniformly
distributed in time according to a linear law. Since the deformation problem is symmetric with respect to
the plane x = 0, we consider only the right-hand side of the bar (Fig. 1 a). We assume that the contact
domain does not change during the entire time interval.

Let u=(ux, uy, uz) be the displacement vector related to the components of the small strain tensor εij

by the Cauchy formulas

εii =
∂ui

∂i
, εij =

1
2

(
∂ui

∂j
+

∂uj

∂i

)
(�Σi; i, j = x, y, z). (2.1)

We represent the boundary and initial conditions (under the assumption that the domain where the
support reaction is applied and the contact between the specimen and the supports is smooth without
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separation remains unchanged) in the form

x = 0, 0 < y < l, 0 < z < H : σxx = 0, σxy = 0, σxz = 0,
x = 0, 0 < y < B, 0 < z < H : ux = 0, σxy = 0, σxz = 0,
x = L/2, 0 < y < B, 0 < z < H : σxx = 0, σxy = 0, σxz = 0,
y = 0, 0 < x < L∗, 0 < z < H : σyy = 0, σxy = 0, σyz = 0,
y = 0, L∗ < x < L∗ + a, 0 < z < H : uy = 0, σxy = 0, σyz = 0,
y = 0, L∗ + a < x < L/2, 0 < z < H : σyy = 0, σxy = 0, σyz = 0,
y = B, 0 < x < A, 0 < z < H : σyy = −P, σxy = 0, σyz = 0,
y = B, A < x < L/2, 0 < z < H : σyy = 0, σxy = 0, σyz = 0,
z = 0, 0 < x < L/2, 0 < y < B : σzz = 0, σxz = 0, σyz = 0,
z = H, 0 < x < L/2, 0 < y < B : σzz = 0, σxz = 0, σyz = 0,
t = 0 : ux = 0, uy = 0, uz = 0, u̇x = 0, u̇y = 0, u̇z = 0.

(2.2)

where t is time and the dot above a symbol denotes the derivative with respect to time.
The dynamic relations in stresses have the form

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= ρ

∂2ux

∂t2
,

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= ρ

∂2uy

∂t2
,

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
= ρ

∂2uz

∂t2
.

(2.3)

Here ρ is the density of the material.
For the physical model of the material we take a model based on the theory of nonisothermal plastic

flow for a medium with strengthening and the Huber–Mises yield condition combined with the short-
time creep hypothesis.

According to this model the stress-strain equations become

εij = εe
ij + εp

ij , εe
ij =

1
2G

sij + δij(K1σ + ϕ), dεp
ij = sij dλ, (2.4)

where sij = σij − δijσ is the stress tensor deviator, σ = 1
3 (σxx + σyy + σzz), δij is the Kronecker symbol,

G is the shear modulus, K1 = 1/(3K), K = E/[3(1 − 2ν)] is the bulk compression modulus relating
the bulk extension 3ε, the mean stress σ, and the temperature elongation ϕ as ε = Kσ + ϕ (in this case,
it is assumed that ϕ ≡ 0), ν is the Poisson ratio, E is the (Young) modulus of elasticity, and dλ is a
scalar function determined by the shape of the loading surface. We assume that this scalar function is a
quadratic function of the stress deviator components sij and that

dλ =
{

0 (f ≡ σ2
i − σ2

S(T ) < 0),
3dεp

i

2σi
(f = 0, df = 0)

}
, dεp

zz = −dεp
xx − dεp

yy ,

σi =
1√
2

[(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2 + 6(σ2
xy + σ2

xz + σ2
yz)]

1/2,

dεp
i =

√
2

3
{
(dεp

xx−dεp
yy)

2+ (dεp
xx−dεp

zz)
2+ (dεp

yy−dεp
zz)

2+ 6[(dεp
xy)

2+ (dεp
xz)

2+ (dεp
yz)

2]
}1/2

,

dεij = d

(
σij − σ

2G
+ Kσ

)
+ (σii − σ) dλ (i = j; i, j = x, y, z),

dεij = d

(
σij

2G

)
+ σij dλ (i �= j; i, j = x, y, z),

(2.5)

where σi, εp
i , and dεp

i are the stress intensity, the plastic strain intensity, and the increments of the latter.

MECHANICS OF SOLIDS Vol. 51 No. 2 2016



DETERMINATION OF THE MATERIAL FRACTURE TOUGHNESS 209

We assume that the material strengthening is a result of the plastic strain according to the tempera-
ture dependence

σS(T ) = σ02(T )
[
1 +

κ(T )
ε0

]η∗

, ε0 =
σ02(T0)

E
, (2.6)

where T is temperature, κ=
∫

εp
i is the Odquist parameter, T0 =20◦C, η∗ is the strengthening coefficient,

and σS(T ) is the yield point after the strengthening of the material at temperature T .

3. METHODS FOR SOLVING THE PROBLEM

We assume that the nonstationary interaction is studied on the time interval [0, t∗]. We take into
account the nonstationary character of the loading P and numerically integrate over the time just as in
the case of plane stress and deformed states [6, 7]. Here we apply the Gregory quadrature formula with
equidistant nodes of order m1 = 3 with coefficients Dn in the case of uniform digitation with respect to
the time with nodes tk = kΔt ∈ [0, t∗] (k = 0,K). Then at time tk with (2.4) taken into account we write

εe
ii =

σii−σ

2G
+Kσ, εe

ij =
σij

2G
,

dεp
ii

dt
= (σii−σ)

dλ

dt
,

dεp
ij

dt
= σij

dλ

dt
(�Σi; i, j = x, y, z). (3.1)

After the digitation, we write the strain increments as

Δεxx,k = B1σxx,k + B2(σyy,k + σzz,k) − bxx, Δεxy,k = B3σxy,k − bxy,

Δεyy,k = B1σyy,k + B2(σxx,k + σzz,k) − byy, Δεxz,k = B3σxz,k − bxz,

Δεzz,k = B1σzz,k + B2(σxx,k + σyy,k) − bzz, Δεyz,k = B3σyz,k − byz,

B1 =
1
3

(
K +

1
G

+ 2D0Δλk

)
, B2 =

1
3

(
K − 1

G
− D0Δλk

)
, B3 =

1
2G

+ D0Δλk,

bij =
1

2G
σij,k−1 + δij

(
K − 1

2G

)
σk−1 −

m∑
n=1

Dn(σij,k−n + δijσk−n)Δλk−n (i, j = x, y, z).

(3.2)

The function ψ = 1/(2G) + Δλ, which characterizes the yield condition, with (2.5) taken into
account, can be written as

ψ =
{

1
2G

(f < 0),
1

2G
+

3Δεp
i

2σi
(f = 0, df = 0)

}
,

Δεp
i =

√
2

3
{
(Δεp

xx − Δεp
yy)

2 + (Δεp
xx − Δεp

zz)
2 + (Δεp

yy − Δεp
zz)

2

+ 6[(Δεp
xy)

2 + (Δεp
xz)

2 + (Δεp
yz)

2]
}1/2

,

Δεe
ij,k =

1
2G

Δσij,k + δij

(
K − 1

2G

)
Δσk, Δεp

ij = Δεij − Δεe
ij (i, j = x, y, z).

(3.3)

To take into account the plastic strains contained in conditions (3.3), we use the successive approx-
imation method and can therefore reduce solving the elastoplastic problem to solving the sequence of
linear problems

ψ(n+1) =
{

ψ(n)p +
1 − p

2G
(Qσ < −Q), ψ(n) (|Qσ| < −Q), ψ(n) σ

(n)
i

σS(T )
(Qσ > Q)

}
,

Qσ = σ
(n)
i − σS(T ), 0 ≤ p ≤ 1.

(3.4)

(Her Q is the value of the largest deviation of the stress intensity from the yield point).
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From system (3.2), we obtain the following expressions for the stresses:

σxx,k = A1Δεxx,k + A2Δεyy,k + A2Δεzz,k + Yxx, σxy,k = A3Δεxy,k + Yxy,

σyy,k = A2Δεxx,k + A1Δεyy,k + A2Δεzz,k + Yyy, σxz,k = A3Δεxz,k + Yxz,

σzz,k = A2Δεxx,k + A2Δεyy,k + A1Δεzz,k + Yzz, σyz,k = A3Δεyz,k + Yyz,

Yxx = A1bxx + A2byy + A2bzz, Yxy = A3bxy, A1 =
B1 + B2

(B1 − B2)(B1 + 2B2)
,

Yyy = A2bxx + A1byy + A2bzz, Yxz = A3bxz, A2 = − B2

(B1 − B2)(B1 + 2B2)
,

Yzz = A2bxx + A2byy + A1bzz, Yyz = A3byz, A3 = −1B3.

(3.5)

The increment Δu of the displacement vector is related to the strain increment as follows:

Δεii =
∂Δui

∂t
, Δεij =

1
2

(
∂Δui

∂j
+

∂Δuj

∂i

)
(�Σi; i, j = x, y, z). (3.6)

An independent parameter characterizing the loading process is the time t (its discrete analog). But
to describe the variations in some characteristics, for the independent parameter (variable) we take the
calculated value of the stress intensity factor KI (SIF) near the crack in the static problem of three-point
bending by the force F of an elastically deformed SENB specimen. We determine the corresponding
values of this “elastic SIF” at each time tk by the relation (see [20; p. 360])

KI = 12F

√
l

BH

[
1.93 − 3.07

l

B
+ 14.53

(
l

B

)2

− 25.11
(

l

B

)3

+ 25.8
(

l

B

)4]
, (3.7)

where F = 2APH is the contact force (P = p01 + p02k) and 4B is the distance between the supports.
The calculations were carried out for reactor steel 15Kh2NMFA, titanium, aluminum, and silver.

4. DETERMINATION OF THE FRACTURE TOUGHNESS

In [21], the critical brittle fracture stresses SC(k) for reactor steels were experimentally determined
using the data of uniaxial extension with the subsequent fracture. On the basis of these results, we
proposed to approximate the yield point σ02(T ) and the critical brittle fracture stresses as follows:

σ02(T ) = a − c(T + 273) + b exp[−h(T + 273)], (4.1)

SC(κ) = [C1 + C2 exp(−Adκ)]−1/2, (4.2)

where the parameters a, c, b, h, C1, C2, and Ad characterize the mechanical properties of the polycrys-
talline material. To determine the fracture toughness factor KIc and describe the dynamic processes
in the specimens made of a polycrystalline material with carbide inclusions (which are metals), the
numerical simulation of the stress-strain state of the specimen in the three-point bending test was
used in the spatial dynamic elastoplastic setting. This setting was supplemented with the brittle fracture
criterion for the polycrystalline material, and the Weibull distribution function was used. The attained
plastic strains and stresses were determined by the finite difference method with variable step along the
axes Ox (N1 elements), Uy (N2 elements), and Oz (N3 elements). In this case, the local brittle fracture
criterion was used for each three-dimensional elementary grid cell in the form [14, 21]

σ1,k + mTε,k(T, κk(T ))σeff,k ≥ σd, (4.3)

σ1,k ≥ SC(κk(T )), (4.4)

σeff,k = σi,k − σ02, (4.5)

where σ1 is the maximum principal stress, σi is the stress intensity, σd is the effective strength of carbides
and other particles on which the cleavage microcracks originate, and σeff is the effective stress. Since
the main contribution to the appearance of plastic strains is due to the shear stress, it is expedient to
use the expression σeff = σi − τ02 as σeff . Therefore, with regard to the data experimentally determined
in [14, 21], here we use its discrete analog (4.5).
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Table 1

Metal Reactor steel Titanium Aluminum Silver

Gk 0.535714 0.409091 0.358209 0.284672
E kg/m2 2.15 × 1010 1.12 × 1010 0.7 × 1010 0.8 × 1010

ν 0.272727 0.22 0.34 0.37
ρ kg/m3 7700 4505 2688.9 1050

The strengthening coefficient mTε depending on the temperature T and the attained plastic strain ε
can be written as the product of the temperature mT (T ) by the strain component mε(κ) [14],

mTε(T, κk) = mT (T )mε(κk). (4.6)

Here mT (T )=σY s(T ), mε(κk)=S0/SC(κk), S0≡SC(κ)
∣∣
κ=0

, and σY s is the temperature-dependent
component of the yield point. In [14], the relation mT (T )=m0σY s(T ) was used with weight constant m0

experimentally determined at level 0.1. But here we propose to proceed without additional experiments
and estimate mT (T ) directly by σY s(T ); i.e., we in fact a priori assume that m0 = 1.

To take into account the fact that the fracture is a probability process owing to the carbide inclusions,
we assume that σd is a probability parameter obeying the Weibull distribution function [8–10, 13, 14]
with parameters η, σd0, and σ̃d,

p(σd) = 1 − exp
[
−

(
σd − σd0

σ̃d

)η]
. (4.7)

Since the fracture in each grid cell is assumed to be an independent event for given T0 and K0, the
probability of the brittle fracture for a given value of Pf (KI) is calculated by the formula [8–10, 13, 14]:

Pf (KI)
∣∣
T=T0

= 1 − exp
[
− 1

(σ̃d)η

K∑
l=1

ω̃l

M∑
m=1

N∑
n=1

(σl,n,m
nuc − σd0)η

]
, (4.8)

where σl,n,m
nuc = σl,n,m

1 + ml,n,m
T ml,n,m

ε σl,n,m
eff , ω̃l = 2hl/ρuc, hl is the step of the grid in the computation

domain along the axis Oz, l, m, and n are the indices of elementary cells formed by the grids along the
axes Ox, Oy, and Oz, respectively, and ρuc is the mean size of the metal grain. And in the sums in (4.8),
we take into account only the cells which are destroyed according to the conditions

σl,n,m
eff ≥ 0, σ1 ≥ SC , σl,n,m

nuc ≥ σl,n,m
d0 . (4.9)

5. NUMERICAL REALIZATION

The values of the elasticity modulus, Poisson’s ratio, density, and ratio GK = G/K of the shear
modulus to the bulk compression modulus of the materials under study are presented in Table 1. The
interval between the points of digitation of the computation domain is the least near the crack tip and
on the boundaries of the computation domain. The typical dimension of the cells at the distance at most
equal to 0.4 mm from the crack tip is set to be equal to the mean size of the metal grain ρuc = 0.05 mm.
The digitation with respect to time is uniform. The use of the finite difference method is justified in [22].

Figures 2–3 illustrate the results of calculations obtained for specimens of length L = 60 mm, height
B = 10 mm, width H = 50 mm; the depth of the notch at the specimen center is l = 3 mm, and the
strengthening coefficient is η∗ = 0.05. The distance between the reference points is 40 mm. The time
step is Δt = 0.0005 s. Half the length of the contact region is A = 2.5 mm, N1 = 22, N2 = 22, N3 = 21,
the coefficients are p01 = 8 MPa and p02 = 10 MPa, and the temperature is T = 50◦C.

It was indicated in [3] that the specimens were destroyed in 21–23 ms after the collision of the bodies.
To verify the approach proposed here, the process of fracture of specimens of material and size the same
as in [3] and under the same contact loading was modeled in the dynamical elastoplastic statement with
regard to the material unloading and the crack length extension according to the local brittle fracture
criterion (4.9). The calculations showed that the specimens were completely destroyed in 23 ms. This,
to some extent, confirms that the problem is well posed and the developed model is adequate.
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Fig. 2.

Fig. 3.

Figures 2–4 illustrate the results of computations for metals with the possible unloading of the
material. The unloading occurs by the following algorithm. If, in a cell, the absolute value of the stress
becomes less than the maximal value attained previously, then it is assumed that the plastic strains cease
to increase. the material ceases to strengthen, and the stresses again linearly depend on the strains. The
plastic strains again begin to increase and the material continues to strengthen when the absolute value
of stresses exceeds the maximal value attained previously.

Figure 2 presents the graphs of mean stresses σ (MPa) arising near the crack tip in the three-
dimensional compact specimen in the plane z = 41.3 mm (in the interior of cell 1 in Fig. 1 b). The
solid, solid with square markers, dashed with triangular markers, and dashed lines correspond to the
computations for the reactor steel, titanium, aluminum, and silver, respectively. While the “elastic SIF”
is less than KI = K∗

I = 82.3 MPa
√

m, the calculated mean stresses σ increase as the coefficient GK

decreases, and the dependence on KI is practically monotone. But as the SIF KI exceeds the value K∗
I ,

the monotone character disappears and the mean stresses begin to oscillate.
We do not present the graphic dependencies of σ on KI for the cross-section z = 49.88 mm,

but we note that the oscillations begin in this cross-section when the elastic SIF attains the
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Fig. 4.

value KI = 54 MPa
√

m, and the level of mean stresses σ is then by 23% less than that in the
plane z = 41.3 mm.

Figure 3 shows the graphs of the Odquist parameter characterizing the plastic strain accumulated
in cell 1 ahead of the crack front for the reactor steel, titanium, aluminum, and silver (solid, solid with
square markers, solid with triangular markers, and dashed lines, respectively). By analyzing Fig. 3, one
can see that the smaller the ratio of the shear modulus to the bulk compression modulus GK , the greater
the Odquist parameter and hence the plastic strain accumulated ahead of the crack front.

By comparing the plastic strains in the cross-sections z = 41.3 mm (Fig. 1 a) and z = 39.88 mm
(Fig. 1 b), one can see that the plastic strains in the cross-sections located nearer to the lateral surfaces
of the specimen is greater than in the middle.

While the elastic SIF KI take values in the interval [84.4, 102.6] for reactor steel, [84.4, 105.7] for
titanium, [84.4, 108.7] for aluminum, and [84.4, 87.4] for silver, respectively, the spread of the Odquist
parameter values in the considered cross-sections z = 4.3 and z = 49.88 does not exceed 6%. As
the loading process is complete, their greatest deviation attains the values 35%, 33%, 42%, and 25%,
respectively.

Figure 4 presents the graphs of stress distribution over the thickness of a three-dimensional specimen
in three-point bending near the crack front (cells in row 1 in Fig. 1 b) when the stress intensity attains
the value KI = 36.7 MPa

√
m. The solid, solid with square markers, solid with circular markers, and

dashed lines correspond to the stresses σxx, σyy , σzz , and σxy.
To compare the obtained results with the results obtained in [14], the results of computations without

the material unloading taken into account are given in Figs. 5–7. Figures 6 and 7 present the graphs of
the mean stress and the Odquist parameter versus the temperature near the crack tip (cells 1, Fig. 1 b),
respectively. Here the solid with square markers, solid, and solid with circular markers lines correspond
to the values in the planes z = 32.3, 41.3, and 48.3 mm, respectively. These dependencies are compared
with the results of calculations for the plane strain state (dashed lines). As the temperature increases,
the predicted increase in the accumulated plastic strain is also observed.

The probability curves KIc(T ) (solid lines in Fig. 7) are constructed for radiated specimens (produced
of steel 15Kh2NMFA) of thickness 50 mm in the embrittled state. Lines 1, 2, 3 correspond to the values
of the probability Pf (KI) of brittle fracture at the levels 0.05, 0.5, 0.95 and are compared with similar
curves in [14] (dashed lines). They were calculated for the parameter mT in the form [14]

mT = σ02(T0) − σ02(350◦C)).

The temperature dependence of the yield point (4.1) for steel in the embrittled state was constructed
for [14] a = 867 MPa, b = 975 MPa, c = 0.305 MPa K−1, and h = 1.04 × 10−2 K−1. The parameters
of the Weibull distribution (4.8) were determined for the following value of the critical SIF (fracture
toughness) [14]: KIc(50◦C)

∣∣
Pf =0.05

= 53, KIc(50◦C)
∣∣
Pf =0.5

= 88, and KIc(50◦C)
∣∣
Pf =0.95

= 123 taken

from the dashed lines in Fig. 7 at the temperature 50◦C.
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Fig. 5. Fig. 6.

Fig. 7.

The minimum of the root-mean-square deviation

min{[Pf (KI)
∣∣
KI=53, T=50◦C− 0.05]2+ [Pf (KI)

∣∣
KI=88, T=50◦C− 0.5]2+ [Pf (KI)

∣∣
KI=123, T=50◦C− 0.95]2}

was used to calculated the Weibull parameters σ̃d = 16840 MPa, η = 7, and σd0 = 1793 MPa (in [14],
they were equal to σ̃d = 4103 MPa, η = 12, and σd0 = 1840 MPa).

To calculate the values of the function Pf (KI) from the dependence (4.8), the problems were solved
for the temperature T0 in the range from −200◦C to 2006◦C with a step of 50◦C. The values of the stress
intensity KI corresponding to the brittle fracture probability values 0.05, 0.5, and 0.95 were taken, and
the points obtained on the plane TOKI (Fig. 7) were used to construct the desired dependencies for the
fracture toughness KIc(T ).

The solid lines in Fig. 7 present the curves of the fracture toughness KIc(T ) for the embrittled steel
specimens of thickness 50 mm calculated by the expression (4.5) in contrast to [14]. The resulting
fracture toughness curves KIc(T ) for the embrittled reactor steel (solid lines) completely cover the
experimental results [14] indicated in Fig. 7 by circular markers.

6. CONCLUSION
A technique for determining 3D plastic strain fields by solving the 3D problems numerically in

the dynamic elastoplastic statement is developed. The solutions of the 3D problem of plastic strain
accumulation in a specimen, which permit determining the fracture toughness in the three-point
bending in the dynamical elastoplastic setting with the material unloading process for four different
materials taken into account, are used to show that the smaller the ratio of the shear modulus to the
bulk compression modulus, the greater the plastic strains are. The obtained results describe the fracture
process more precisely than the solutions of the quasistatic elastoplastic problems in the 2D and 3D
statements used for this purpose. This allows one to improve the technique for determining the fracture
toughness of materials numerically, which was proposed in [14], and obtain adequate models of plastic
strain development and stress concentration near the crack front.
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