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Abstract—In the proposed theory of plasticity, the deviator constitutive relation has a trinomial
form (the vectors of stresses, stress rates, and strain rates, which are formed form the deviators, are
coplanar) and contains two material functions; one of these functions depends on the modulus of the
stress vector, and the other, on the angle between the stress vector and the strain rate, the length of
the deformation trajectory arc, and the moduli of the stress and strain vectors. The spherical parts of
the stress and strain tensors satisfy the relations of elastic variation in the volume.
We obtain conditions on the material functions of the model which ensure the mathematical well-
posedness of the statement of the initial–boundary value problem (i.e., the existence and uniqueness
of the generalized solution, and its continuous dependence on the external loads). We also describe
the scheme for solving the initial–boundary value problem step by step using the model and present
the expression for the Jacobian of the boundary value problem at the time step. These results are
formalized as a subprogram for prescribing the mechanical properties of the user material in the
finite-element complex ABAQUS, which allows one to calculate the structure deformations on the
basis of the proposed theory.

DOI: 10.3103/S0025654415060060

Keywords: plasticity, active complex loading process, initial–boundary value problem, finite
element calculations.

1. CONSTITUTIVE RELATIONS
In Il’yushin’s general mathematical theory of elastoplastic processes [1], a specific relation of

trinomial form was developed [2–6], which is based on the assumption that the stress vector σ, the
stress increment vector dσ, and the strain increment vector d��� are coplanar in the five-dimensional
space�5 [1],

dσ

ds
= N

d���

ds
− (N − P ) cos ϑ

σ

σ
, (1.1)

where σ = |σ|, ds = |d��� |, ϑ = arccos(σ/σ · d���/ds) is the angle between the vectors σ and d��� , s is the arc
length of the deformation trajectory���(s), and N and P are functionals of the parameters of the intrinsic
geometry of the deformation trajectory, which should be determined from elastoplastic deformation tests
with specimens made of the material under study.

In the present paper, we use the vectors σ and ��� related to the stress deviator Sij and the strain
deviator� ij by the formulas

σ1 = 3
2 S11, σ2 =

√
3(S22 + 1

2 S11), σ3 =
√

3S12, σ4 =
√

3S13, σ5 =
√

3S23, (1.2)

�1 =�11, �2 =
2�22 +�11√

3
, �3 =

2�12√
3

, �4 =
2�13√

3
, �5 =

2�23√
3

. (1.3)
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The vectors (1.2) and (1.3) differ from the stress and strain vectors [1] by the factors
√

3/2 and
√

2/3,
respectively. The vectors (1.2) and (1.3) are more convenient for analyzing the experimental data and
verifying the model.

Relation (1.1) is the general form of the σ ∼ ��� relation for plane deformation trajectories and
spatial trajectories with small torsion [5]. For deformation trajectories of arbitrary geometry and dimen-
sion n ≥ 3, relation (1.1) is a conjecture [4, 6], which has been confirmed with acceptable accuracy in
a series of tests along sufficiently complex deformation trajectories.1) In this connection, it is important
to study the properties of the functionals N and P and find their approximations in various classes of
loading processes. Formulas more general than (1.1) relating the vectors σ and��� and containing three
functionals of the deformation process were considered in [7, 8].

Relation (1.1) was originally proposed to describe a two-link deformation process [9]. In this case,
according to the isotropy postulate [1], N and P are functions of the angle ϑ0 of the curve break, the arc
length s0 of the deformation trajectory at the curve break time, and the arc length increment Δs= s− s0.
It follows from the isotropy and plasticity postulates [2] that, for an infinitesimal Δs, the function N is
independent of ϑ0, while the function P significantly depends on ϑ0. (For example, P is of the order
of the tangential strengthening modulus for ϑ0 � π/2 and of the order of the material shear elasticity
modulus G for ϑ0 ≥ π/2.) The functions N and P were studied in two-link deformation experiments
in [3, 10–15] and by other authors.

Consider the well-known special versions [17–20, 21–22] of relation (1.1) for two loading classes.
We rewrite (1.1) as

dσ

ds
= N

d���

ds
−

(
N cos ϑ − dσ

ds

)
σ

σ
. (1.4)

(The equation dσ/ds = P cos ϑ can be obtained by multiplying both sides of (1.1) by the vector σ/σ.)
Then the functionals N and dσ/ds should be determined. The relation of the theory of mean curvature
processes [16] can be written in the form (1.4), N = N∗, and dσ/ds = Φ′(s), where N∗ = const
in the plastic region and Φ(s) is the function of simple (i.e., active rectilinear) loading. In [17],
the following, different relation was proposed for medium curvature processes: N = σk(s)ϑ/ sin ϑ
and dσ/ds = Φ′(s) cos ϑ. (Here k(s) is the material function of complex loading.) In [18], the theory [16]
was generalized by supplementing the functions N and dσ/ds with a dependence on ϑ (of a prescribed
form) and two material functions of s (in addition to Φ(s)); the model was intended for deformation
trajectories of medium and small curvature with breaks under the assumption that, between neighboring
break points, the quantity s increases at least by the delay trace value.2) It was shown in [5, 19] that the
form of the laws of variation of the vector properties is the same for ideally elastic and ideally plastic
materials, and hence it was proposed to assume that N is a relatively slowly varying function of the
order of 3G [5] or the constant 3G [19]. The behavior of N and dσ/ds calculated directly from the
results of experiments of deformation along polynomial curves was studied in [20]; it was shown that
the assumptions N = const ≈ 0.8 × 3G and dσ/ds = f(ϑ) are acceptable in the first approximation
for describing the loading of this type beyond the elasticity region. It was proposed in [7] to describe the
deformation along plane trajectories by the functions N and dσ/ds which contain the simple loading
function Φ(s), a prescribed function of ϑ, and two material constants of complex loading. In [21, 22],
relation (1.4) with the functions N = g(σ) and dσ/ds = f(ϑ, σ, s) was experimentally and theoretically
investigated in the class of active loading processes with possible final unloading; such a version of the
theory can be considered as a development of the model [20].

In the present paper, the model considered in [21, 22] is generalized and specified on the basis of a
significantly larger array of experimental data. (They are presented in Part 2 of the present paper.) For
the functions N and dσ/ds, we adopt the following hypotheses:

N = g(σ), dσ/ds = f(ϑ, σ, s,�). (1.5)

1)R. A. Vasin, Experimental and Theoretical Study of Constitutive Relations in the Theory of Elastoplastic Processes,
Doctoral Dissertation in Physics and Mathematics (MGU, Moscow, 1987) [in Russian].

2)S. V. Ermakov, Analysis of Relations and Boundary Value Problems of the Theory of Elastoplastic Medium and
Small Curvature Processes, Candidate’s Dissertation in Physics and Mathematics (Moscow State University, Moscow,
1984) [in Russian].
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We include � = |��� | as an argument of the function f on the basis of an analysis of the results of
experiments along cyclic circular deformation trajectories. According to (1.4) and (1.5), we obtain the
vector constitutive relation

dσ

ds
= g(σ)

d���

ds
− [g(σ) cos ϑ − f(ϑ, σ, s�)]

σ

σ
. (1.6)

In deviator form, it becomes

dSij

ds
=

2
3

{
g(σ)

d� ij

ds
− [g(σ) cos ϑ − f(ϑ, σ, s,�)]

Sij

σ

}
, (1.7)

where σ =
√

3SklSkl/2 = σu is the stress intensity, � =
√

2�kl�kl/3 = εu is the strain intensity,
ds =

√
2d�kld�kl/3, and ϑ = arccos(Skld�kl/s/ds).

Relation (1.7) should be supplemented with a constraint equation relating the first invariants of stress
and strain tensors; for this equation, we use the bulk elasticity law with modulus K,

σmm = 3Kεmm. (1.8)

2. CONDITIONS OF MATHEMATICAL WELL-POSEDNESS AND METHODS
FOR SOLVING INITIAL BOUNDARY VALUE PROBLEMS

Let a body of volume Ω ⊂ R3 with piecewise smooth boundary Γ be subjected to mass and
surface forces X(t,x) and T(t,x). If the constitutive relations (1.7) and (1.8) are used, then the
quasistatic initial–boundary value problem of determining the displacement vector u(t,x), the stress
tensor εij(t,x), and the strain tensor σij(t,x), (t,x) ∈ [0, T ] × Ω, has the form

σij,j + Xi = 0,

Ṡij =
2
3

{
g(σ)�̇ ij − [g(σ) cos ϑ − f(ϑ, σ, s,�)]ṡ

Sij

σ

}
, σmm = 3Kεmm,

εij =
ui,j + uj,i

2
, ui

∣∣
Γ1

= 0, σijnj

∣∣
Γ2

= Ti.

(2.1)

It is also assumed that Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 = ∅, and Γ1 �= ∅.
Problem (2.1) is solved by the step method. The time interval [0, T ] is divided into N parts by the

points tn, n = 0, 1, . . . , N . (Here t0 = 0, tN = T , and the set {tn} contains all times of breaks of X(t,x)
and T(t,x) with respect to t). At the times tn, n = 0, 1, . . . , N − 1, we successively solve the boundary
value problem of determining the velocity vector field v(tn + 0,x), x ∈ Ω, for the known fields Sij(tn,x),
s(tn,x), and�(tn,x), which were determined at the preceding step,

σ̇ij,j(v) + Ẋi = 0,

Ṡij(v) =
2
3

{
g(σ)�̇ ij(v) − [g(σ) cos ϑ(v) − f(ϑ(v), σ, s,�)]ṡ(v)

Sij

σ

}
,

σ̇mm(v) = 3Kε̇mm(v), ε̇ij(v) =
vi,j + vj,i

2
, vi

∣
∣
Γ1

= 0, σ̇ij(v)nj

∣
∣
Γ2

= Ṫi.

(2.2)

(The dot above a symbol stands for the derivative with respect to t.) We use v(tn + 0,x) to determine
the approximate solution of problem (2.1) with time step [tn, tn+1]:

Y(t,x) = Y(tn,x) + (t − tn)Ẏ(v(tn + 0,x)), ∀(t,x) ∈ [tn, tn+1] × Ω, Y = {uk, εij , σij}.
We assume that the functions g and f , together with their first derivatives, are bounded and

continuous.3) Now consider the generalized statement of the boundary value problem (2.2) in the form
of the nonlinear operator equation [23–28]

Av = f , (2.3)

3)Piecewise continuous and piecewise smooth approximations to material functions are often used in practice. If necessary,
small neighborhoods of the break points and corners can be replaced by inclined or rounded parts.
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A : H(Ω) → H∗(Ω), 〈Ac,ψ〉 =
∫

Ω

[
Ṡij(v) + σ̇mm(v)

δij

3

]
ε̇ij(ψ) dΩ, ∀v,ψ ∈ H(Ω),

f ∈ H∗(Ω), 〈f ,ψ〉 =
∫

Ω

Ẋmψm dΩ +
∫

Γ2

Ṫmψm dΓ2, ∀ψ ∈ H(Ω).

Here H(Ω) is the Hilbert space obtained as the completion of the set of vector functions {vi ∈
C2(Ω), vi

∣∣
Γ1

= 0} with respect to the norm corresponding to the inner product

(v1,v2)H(Ω) =
∫

Ω

[2G�̇ ij(v1)�̇ ij(v2) + Kε̇mm(v1)ε̇mm(v2)] dΩ, ∀v1,v2 ∈ H(Ω).

The expressions Ṡij(v), σ̇mm(v), and ε̇ij(v) are defined in (2.2). Taking into account the type of the
space H(Ω), we impose the following constraints [23] on the external loads:

Ẋi(t,x) ∈ Lp(Ω), p > 6/5, Ṫi(t,x) ∈ Lq(Γ2), q > 4/3, ∀t ∈ [0, t]. (2.4)

The solution v ∈ H(Ω) of the operator equation (2.3) will be called a generalized solution of the
boundary value problem (2.2). If, in addition, vi ∈ C2(Ω) ∩ C1(Ω̄), then v is a classical solution of
problem (2.2). In the case of an inhomogeneous kinematic boundary condition, problem (2.2) can be
reduced to the corresponding homogenous problem by a change of variables [28].

Assume that the functions g(σ) and f(ϑ, σ, s,�) satisfy the following inequalities in their domains:

ϕ(ϑ, σ, s,�) ≡ g(σ) cos ϑ − f(ϑ, σ, s,�) ≥ 0, (2.5)

χ(ϑ, σ, s,�) ≡ g(σ) sin2 ϑ + f(ϑ, σ, s,�) cos ϑ ≥ 3Gμ = const > 0, (2.6)

2
√

χ(ϑ1, σ, s,�) − 3Gμ
√

χ(ϑ2, σ, s,�) − 3Gμ

− 2[g(σ) − 3Gμ] cos(ϑ1 − ϑ2) + ϕ(ϑ1, σ, s,�) cos ϑ2 + ϕ(ϑ2, σ, s,�) cos ϑ1 ≥ 0, (2.7)

|ϕ(ϑ1, σ, s,�) − ϕ(ϑ2, σ, s,�)| ≤ M0|ϑ1 − ϑ2|, M0 = const. (2.8)

Then the operator A given by (2.3) is strongly monotone with constant

mA = min{1, μ} (2.9)

and Lipschitz continuous with constant

MA = max
{

1,
sup g + supϕ + M0π/

√
2

3G

}
. (2.10)

Indeed, for any v1,v2 ∈ H(Ω) we obtain (omitting some intermediate transformations)

〈Av1 − Av2,v1 − v2〉 − mA‖v1 − v2‖2
H(Ω)

=
∫

Ω

{Ṡij(v1) − Ṡij(v2) − 2mA[�̇ ij(v1) −�̇ij(v2)]}[�̇ ij(v1) −�̇ij(v2)] dΩ

+ K(1 − mA)
∫

Ω

[ε̇mm(v1) − ε̇mm(v2)]2dΩ

≥
∫

Ω

{[χ(ϑ(v1), σ, s,�) cos ϑ(v1) − 3Gμ][ṡ(v1)]2

+ [χ(ϑ(v2), σ, s,�) cos ϑ(v2) − 3Gμ][ṡ(v2)]2 − [2(g(σ) − 3Gμ) cos(ϑ(v1) − ϑ(v2))

− ϕ(ϑ(v1), σ, s,�) cos ϑ(v2) − ϕ(ϑ(v2), σ, s,�) cos ϑ(v1)]ṡ(v1)ṡ(v2)} dΩ ≥ 0,
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‖Av1 − Av2‖2
H∗(Ω) − M2

A‖v1 − v2‖2
H(Ω) = (2G)−1

∫

Ω

[Ṡij(v1) − Ṡij(v2)][Ṡij(v1) − Ṡij(v2)] dΩ

− 2GM2
A

∫

Ω

[�̇ ij(v1) −�̇ij(v2)][�̇ ij(v1) −�̇ij(v2)] dΩ

− K(1 − M2
A)

∫

Ω

[ε̇mm(v1) − ε̇mm(v2)]2dΩ ≤ (3G)−1

∫

Ω

{[g(σ)|�̇�� (v1) − �̇��(v2)|

+ |ϕ(ϑ(v1), σ, s,�)ṡ(v1) − ϕ(ϑ(v2), σ, s,�)ṡ(v2)|]2 − [3GMA|�̇��(v1) − �̇��(v2)|]2} dΩ ≤ 0,

as desired. These properties of the operator A and the Browder–Minty theorem [28, pp. 97 and 104 of
the Russian translation] imply the following assertion.

Theorem. Assume that the functions g and f are bounded and continuous together with
their first derivatives and satisfy inequalities (2.5)–(2.8) and the external loads satisfy con-
ditions (2.4). Then there exists a unique generalized solution v ∈ H(Ω) of the boundary value
problem (2.2), and this solution continuously depends on the external load functional,

‖v1 − v2‖H(Ω) ≡ ‖A−1f1 −A−1f2‖H(Ω) ≤
‖f1 − f2‖H∗(Ω)

mA
, ∀f1mf2 ∈ H∗(Ω),

and can be obtained by the iteration method

Jv(k+1) = Jv(k) − γ(Av(k) − f), j = 0, 1, . . . , (2.11)

J : H(Ω) → H∗(Ω), 〈Jv1,v2〉 = (v1,v2)H(Ω), ∀v1,v2 ∈ H(Ω), (2.12)

converging for any value of the iteration parameter γ ∈ (0, 2mA/M2
A) and any initial approxima-

tion v(0) ∈ H(Ω) at the rate of a geometric progression with ratio ξ = (1 − 2mAγ + M2
Aγ2)1/2 < 1;

i.e., the error satisfies the estimate ‖v(k) − v‖ ≤ ‖Av(0) − f‖H∗(Ω)γξk/(1 − ξ); the values of mA

and MA are given in (2.9) and (2.10).

Some of the constraints imposed on the functions g and f by the assumptions of the theorem can be
given physical meaning. Condition (2.6) means that the material must be stable in the sense that the
work of stress increments on strain increments is positive, (dσ · d���) = χ(ϑ, σ, s,�)|d� |2 > 0. In the case
of simple loading from an initial isotropic state, we have ϑ = 0, ds = d� , and dσ/d� = f(0,Φ(�),� ,�),
and hence, in the special case of ϑ = 0, condition (2.6) implies that the material should have a strictly
positive tangential modulus under simple loading,4) dσ/d� =Φ′(�)≥3Gμ= const >0; on the other hand,
the condition that the function f is bounded restricts the values of the tangential modulus from above.
It follows from (2.5) and (2.6) that dσ is the sum of a vector directed along d��� and a vector opposite
to σ; thus, dσ tends to rotate σ towards d��� , which, in particular, agrees with the fact that σ and d��� are
codirected on deformation trajectories of small curvature and there is a certain angle between σ and d���
on trajectories of constant medium and large curvature. Condition (2.5) is close to the inequality

f(ϑ, σ, s,�) ≤ 3Gu cos ϑ (2.13)

(Gu is the shear modulus of the material under unloading if the unloading is assumed to be linear), which
implies the validity of the thermodynamic condition that the dissipation power is negative,

σij dε
(P )
ij = Sij d�

(P )
ij = (σ · d��� (P )) ≡

(
σ ·

[
d��� − dσ

3Gu

])
=

[
cos ϑ − f(ϑ, σ, s,�)

3Gu

]
σ|d��� | ≥ 0.

When the experimental approximations to the material functions g and f are obtained, one should
verify conditions (2.5)–(2.8) and (2.12) (for example, by numerical methods). Any violation of these

4)If the material has a yield plateau, then, when approximating the simple loading function Φ(�), the yield plateau can be
replaced by a linear strengthening segment with a sufficiently small positive slope.
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conditions can lead to erroneous results (divergence, nonuniqueness, absence of physical meaning)
when solving boundary value problems.

It follows from the results in [27] that if the conditions of the above-stated theorem (about the gener-
alized solution of the boundary value problem (2.2)) are satisfied, then the initial–boundary value prob-
lem (2.1) with external loads in the classes Xi(t,x)∈L2([0, T ], Lp(Ω)) and Ti(t,x) ∈ L2([0, T ], Lq(Γ2))
has a unique generalized solution u ∈ L2([0, T ],H(Ω)). This solution continuously depends on the
external loads (with respect to the norm of the space L2([0, T ],H∗(Ω))), and the sequence of solu-
tions obtained by the step method converges to this solution as the time step tends to zero. Here
L2([0, T ],H(Ω)) is the space of measurable functions u(t) on [0, T ] ranging in the space H(Ω) with
inner product

(u1,u2)L2([0,T ],H(Ω)) =

T∫

0

(u̇1(t), u̇2(t))H(Ω)dt, ∀u1,u2 ∈ L2([0, T ],H(Ω)).

When solving the initial–boundary value problems in our theory, it is expedient to use the explicit
step scheme

σij(tn+1) = σij(tn) + K[εmm(tn+1) − εmm(tn)]δij +
2
3

{
g(σ(tn))[� ij(tn+1) −�ij(tn)]

− ϕ(ϑ(tn−1), σ(tn), s(tn),�(tn))ṡ(tn−1)(tn+1 − tn)
Sij(tn)
σ(tn)

}
, (2.14)

where

ϑ(tn−1) = arccos
{

Skl(tn−1)[�kl(tn) −�kl(tn−1)]
σ(tn−1)[s(tn) − s(tn−1)]

}
, ṡ(tn−1) =

s(tn) − s(tn−1)
tn − tn−1

.

Then, at each time step, one needs to solve a linear (quasi-elastic) boundary value problem instead
of solving a nonlinear boundary value problem (for example, by the method of elastic solutions (2.11)) if
an implicit step scheme were used; the latter differs from (2.13) by the replacement of ϑ(tn−1), ṡ(tn−1)
by ϑ(tn), ṡ(tn). If the explicit scheme (2.13) is used, then the time step on the intervals of sharp variation
in the external load should be sufficiently small. If the scheme (2.13) is used, then the problems of
convergence and accuracy of the approximate solution of the initial–boundary value problem are solved
by comparing the solutions obtained on several time meshes with different mesh spacings (but with the
same division of the body into finite elements).

For the scheme (2.13), the tensor of tangential moduli (the material Jacobian) formally coincides with
the tensor of moduli of elasticity of an isotropic linearly elastic material with bulk modulus K and shear
modulus g(σ)/3,

∂Δσij

∂Δεkl
=

[
K − 2g(σ)

9

]
δijδkl +

g(σ)
3

(δikδjl + δilδjk). (2.15)

The computations of the components of the stress tensor σij(t + Δt) (2.13) and the material
Jacobian (2.14) from the given components of the tensors σij(t), εij(t), and Δεij(t) and known scalar
parameters of the state (at the beginning of the current time step) were realized as the subroutine UMAT,
which is intended for implementing nonstandard models of the mechanical behavior of materials in
the ABAQUS software for computations by the finite element method. The computations of the state
parameters σ(t + Δt), s(t + Δt), �(t + Δt), ϑ(t), and ṡ(t) at the end of the current time interval were
also implemented in the same subroutine. Thus, a mathematical apparatus was constructed for finite-
element computations of the structure deformation according to the scheme (1.7), (1.8). The problems
of physical reliability of the proposed theory (and hence of the solutions obtained using this theory) will
be discussed in Part 2 of this paper.
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