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Abstract—We obtain elasticity equations of higher (in the general case, infinite) order than the
equations of the classical theory. In contrast to the numerous known versions of the nonclassical
theory (Cosserat, nonsymmetric, microstructure, micropolar, multipolar, and gradient), which also
result in higher-order equations and contain elasticity relations for traditional and couple stresses
with a large number of elastic constants, our theory, regardless of the order of the equations, contains
only one additional constant, which can be expressed in terms of the microstructure parameter of
the medium. The basic equations of the generalized theory are presented for one-, two-, and three-
dimensional problems; these equations take into account the stress gradients and can be written in
terms of generalized stresses, strains, and displacements. A boundary value problem that does not
require the introduction of couple stresses is stated for the generalized theory of elasticity.
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1. INTRODUCTION
To show that one has to generalize the classical theory of elasticity, consider the problem proposed by

Reissner [1] and studied earlier in [2]. We study the plane stress state of a fixed quarter-space loaded by
constant tangential stresses τ0 (Fig. 1). The exact solution of this problem has the form [1, 2]

σx = τ0

(
xy

x2 + y2
+ arctan

y

x
− π

2

)
, σy = −τ0

(
xy

x2 + y2
− arctan

y
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2

)
,

τxy = τyx = τ0
y2

x2 + y2
.

(1.1)

The stresses (1.1) satisfy the equilibrium equations

∂σx

∂x
+

∂τyx

∂y
= 0,

∂σy

∂y
+

∂τyx

∂x
= 0, τxy = τyx, (1.2)

the strain consistency equation, and the boundary conditions σx = 0, τxy = τ0 for x = 0 and σy = 0,
τyx = 0 for y = 0. It is important that the stresses (1.1) are finite functions in the entire domain, that is,
for 0 ≤ x < ∞ and 0 ≤ y < ∞. A specific feature of this problem is that the stress tensor symmetry is
violated at the origin x = 0, y = 0, because τxy(x = 0) �= τyx(y = 0). This specific feature leads to the
following effects. First, the stress derivatives, which have the form

∂σx
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Fig. 1.

satisfy the equilibrium equations (1.2) but are infinite at the origin. We have σx = 0 at point O
and σx = −πτ0/2 at point A (Fig. 1). Thus, the stresses at points O and A differ by a finite value
regardless of the distance OA, which can be infinitely small. Second, the moment equation for the
element OACB in Fig. 1 is satisfied not owing to the stress tensor symmetry but because the normal
and tangential stresses are nonuniformly distributed on the sides AC and BC of this element. Thus,
the stresses at point O are not differentiable functions and do not satisfy the symmetry conditions, and
hence the equilibrium equations (1.2), obtained under the assumption that the stress distributions are
uniform on the sides of an infinitely small element and that the stress tensor is symmetric, do not hold in
a neighborhood of the origin.

The problem under study is well posed in the framework of the Cosserat theory of elasticity [3]. A
survey of the Cosserat and other versions of the nonclassical theory of elasticity and the corresponding
references can be found in [4–11]. A specific feature of these theories is that the elasticity relations
contain a system of additional elastic constants whose experimental determination encounters certain
difficulties. In particular, the classical theory of elasticity of isotropic bodies contains two independent
constants, but the Cosserat theory contains four constants, the Cosserat theory with microrotations
taken into account contains six constants, the microstructure theory contains 15 constants, and the
number of such constants in the multipolar and gradient theories depends on the level of the theory.

In the present paper, we propose a nonclassical theory that contains one additional constant regard-
less of the order of the equations. We introduce generalized stresses taking into account the gradients
of traditional stresses; this determines the specific characteristics of the proposed theory compared with
the known versions of gradient theories based on the strain gradients [8].

2. UNIAXIAL STRESS STATE
To demonstrate the specific features of the proposed theory, consider the uniaxial stress state. We

single out a small but finite element −a/2 ≤ x ≤ a/2 (Fig. 2) whose sides x = ±a/2 are subjected to the
stress σx. We represent σx by a Maclaurin series to obtain

σ±
x = σx ± a

2
σ′

x +
a2

2!22
σ′′

x ± a3

3!23
σ(3)

x +
a4

4!24
σ(4)

x ± a5

5!25
σ(5)

x + · · · . (2.1)

Here (∗)′ = d(∗)/dx and σ±
x = σx(x = ±a/2). The equilibrium equation for the element shown in Fig. 2

has the form

σ+
x − σ−

x = σ′
x +

a2

3!22
σ(3)

x +
a4

5!24
σ(5)

x + · · · = 0. (2.2)

If the derivatives of the stresses are finite and a is small, then it suffices to preserve only the first term
in Eq. (2.2), and Eq. (2.2) degenerates into the equilibrium equation of the classical elasticity. But we
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Fig. 2.

shall consider Eq. (2.2) as an equation which generally has infinitely high order and contains a small
parameter a2.

We introduce the following important hypothesis. Since the small parameter a2 occurs in Eq. (2.2)
as a coefficient multiplying the higher-order derivatives, the structure of the solution of this equation
is known. It consists of a penetrating solution which follows from Eq. (2.2) for a2 = 0 and a system
of boundary layer type solutions with increasing variability factors. It is also known that the solutions
of the second type must be exponential. However the structure of Eq. (2.2) shows that these solutions
have trigonometric form, which contradicts the physical meaning of the problem. It is important that the
proposed theory is phenomenological; i.e., it assumes that the medium characteristics should be deter-
mined experimentally for macroscopic specimens. In this case, the parameter A (Fig. 1) is determined
experimentally as well, but there are grounds to believe that this parameter is a microstructure parameter
of the medium which cannot be determined in principle by using a phenomenological theory and
macroscopic experiments. To eliminate the possibility of determining the parameter a in the framework
of the proposed theory, we assume

a = 2
√

6ir, (2.3)

where i is the imaginary unit and r is an experimentally determinable constant. Thus, the parameter a
is imaginary and, in contrast to the parameter r, cannot be determined by experiments traditional in the
phenomenological theory. As a result, the equilibrium equation (2.2) acquires the definitive form

L(σx) = σ′
x − r2σ(3)

x +
r4

80
σ(5)

x − · · · = 0. (2.4)

This equation has a traditional penetrating solution obtained for r = 0 and a system of exponentially
decaying solutions of the boundary layer type.

The stress is related to the strain by the traditional Hooke law containing one elastic constant in the
case of uniaxial extension, i.e., the modulus of elasticity; namely,

σx = Eεx, εx = u′. (2.5)

We substitute relations (2.5) into Eq. (2.4) and obtain

u′′ − r2u(4) +
r4

80
u(6) − · · · = 0. (2.6)

To obtain the boundary conditions, we use the virtual work principle, which yields∫
L(σx)δu dx = 0.
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Fig. 3.

By substituting L(σx) from Eq. (2.4) into this relation and by integrating by parts, we obtain the
following boundary conditions:(

σx − r2σ′′
x +

r4

80
σ(4)

x − · · ·
)

δu = 0,
(

r2σ′
x − r4

80
σ(3)

x + · · ·
)

δu′ = 0,
(

r4

80
σ′′

x + · · ·
)

δu′′ = 0.

Equation (2.6) and relations (2.5) allows us to write out the elastic energy variation

δU =
∫ (

σxδεx + r2σ′
xδε′x +

r4

80
σ′′

xδε′′x + · · ·
)

dx.

In conclusion, consider an alternative method for deriving the equilibrium equation (2.4), which deals
with the plane and spatial problems and which we use in our subsequent considerations. Consider
the element shown in Fig. 3 and introduce a local coordinate α such that −a/2 ≤ α ≤ a/2 near the
point (x, y). The stress acting at the point x is defined as

σ̄x(x) =
1
a

a/2∫
−a/2

σx(x, α) dα. (2.7)

We represent the stress σx(x, α) acting inside the element shown in Fig. 3 by a Taylor series around
the point x; i.e.,

σx(x, α) = σx(x) + α
∂σx

∂x
+

1
2!

α2 ∂2σx

∂x2
+

1
3!

α3 ∂3σx

∂x3
+

1
4!

α4 ∂4σx

∂x4
+ · · · . (2.8)

By substituting the expansion (2.8) into (2.7) and by integrating, we obtain

σ̄x(x) = σx +
a2

3!22
σ′′

x +
a4

5!24
σ(4)

x + · · · . (2.9)

In the absence of bulk forces, a condition for the conservation of a tensor field is the condition that the
divergence of the field is zero [12], which has the form σ̄′

x = 0 in the uniaxial stress state. By substituting
the expansion (2.9) into this relation and by taking into account condition (2.3), we obtain Eq. (2.4).
Note that the stresses (2.9) can be treated as generalized stresses taking into account the traditional
stress gradients.

3. ANDREEV’S EXPERIMENTS
A series of Andreev’s experiments with extendable plates whose width varies step by step (Fig. 4) was

described in [13]. The stress was measured in the plate cross-sections AB and CD, and then Hooke’s
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Fig. 4.

law was used to determine the stresses and the resultant stresses in these cross-sections. Numerous
experiments discovered a paradoxical effect: the resultant stress in cross-section CD turned out to be
equal to the applied force, and the resultant stress in cross-section AB turned out to be by 30% less
than the applied force. In response to the remarks of opponents (one of whom was one of the authors of
the present paper), Andreev carried out a complex of experimental studies to justify the discovered effect.
In particular, the accuracy of strain measurements by the resistance transducers was confirmed by tests
with plates with the distance AB equal to 300 mm. The strains were measured by 120 transducers with
base 5 mm and with equal resistance. The strains were measured by an alternative method based on
the use of a grid placed on the plate and by an optical method for measuring grid node displacements.
In this case, the resultant stress in cross-section AB turned out to be 45% less than the applied force.
The influence of the transverse strain was investigated; i.e., the variations in the plate thickness were
measured in the process of experiment. The effect was observed for two limit forms of Hooke’s law which
correspond to the plane stress state and the plane strain. Finally, the effect was the same for various
values of the load, which eliminates the influence of nonlinearity.

To obtain a qualitative explanation of Andreev’s effect, we use Eq. (2.6) where we only preserve the
first two terms; i.e.,

r2uIV − uII = 0.

The solution of this equation in the domain x ≥ 0 in Fig. 4 corresponds to the stress

σx = σ0 − rCe−x/r, (3.1)

where C is a constant of integration. The one-dimensional solution (3.1) only qualitatively describes the
stress state of part ABCD of the plate shown in Fig. 4. But it follows from this solution that σx ≈ σ0 in
cross-section CD located at a certain distance from the cross-section x=0, while we have σx =σ0 − rC
in cross-section AB, which qualitatively agrees with the results of Andreev’s experiments. Note that the
constant C contained in the solution (3.1) can be found from the boundary conditions, and the constant r
can in principle be determined from experiments similar to Andreev’s experiment if the stress gradient is
measured on segment AC (Fig. 4).
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4. PLANE STRESS STATE

Consider the plane stress state described in the classical theory of elasticity by the equilibrium
equations (1.2), the elasticity relations

σx = Ē(εx + νεy), σy = Ē(εy + νεx), Ē = E(1 − ν2), (4.1)

τxy = τyx = Gγ, G =
E

2(1 + ν)
, (4.2)

and the geometric relations

εx =
∂u

∂x
, εy =

∂v

∂y
, γ =

∂v

∂x
+

∂u

∂y
, ω =

1
2

(
∂v

∂x
− ∂u

∂y

)
(4.3)

determining the strains ε and γ and the rotation angle ω. Note that, with (4.3) taken into account, the
elasticity relations (4.2) for the tangential stresses can be written as

τxy = 2G
(

∂v

∂x
− ω

)
, τyx = 2G

(
∂u

∂y
− ω

)
. (4.4)

To derive the equilibrium equations for the plane problem of generalized elasticity, we introduce the
stress tensor t(σx, σy, τxy, τyx) at the point (x, y) and represent it by a Taylor series around this point
(Fig. 3); i.e.,

t(x, y, α, β) = t(x, y) + α
∂t

∂x
+ β

∂t

∂y
+

1
2!

(
α2 ∂2t

∂x2
+ 2αβ

∂2t

∂x∂y
+ β2 ∂2t

∂y2

)

+
1
3!

(
α3 ∂3t

∂x3
+ 3α2β

∂3t

∂x2∂y
+ 3β2α

∂3t

∂y2∂x
+ β3 ∂3t

∂y3

)
+ · · · . (4.5)

When constructing the two-dimensional theory, we preserve only the terms represented in Eq. (4.5).
For example, we consider edges 1–2 and 3–4 of the element shown in Fig. 3. We set α = ±a/2 and
determine the resultant force R and the moments M created by the stresses t acting on these edges,

R1−2
3−4(t) =

a/2∫
−a/2

t dβ = ta ± a2

2
∂t

∂x
+

a3

8

(
∂2t

∂x2
+

1
3

∂2t

∂y2

)
± a4

48

(
∂3t

∂x3
+

1
3

∂3t

∂x∂y2

)
,

M1−2
3−4 (t) =

a/2∫
−a/2

tβ dβ =
a3

12
∂t

∂y
± a4

24
∂2t

∂x∂y
± a5

96

(
∂3t

∂x2∂y
+

1
5

∂3t

∂y3

)
.

(4.6)

The expressions for the resultant force and the moment created by the stresses acting on edges 1–2
and 3–4 of the element shown in Fig. 3 can be obtained from relations (4.6) with x replaced by y and y
replaced by x.

The equilibrium equations for the element in Fig. 3 have the form

R1−2(σx) − R3−4(σx) + R2−3(τyx) − R1−4(τxy) = 0,
R2−3(σy) − R1−4(σy) + R1−2(τxy) − R3−4(τxy) = 0,
[R1−2(τxy) − R3−4(τxy) + R2−3(τyx) − R1−4(τyx)]a

+ M1−2(σx) − M3−4(σx) + M2−3(σy) − M1−4(σy) = 0.

(4.7)

By substituting (4.6) into (4.7), we obtain

∂σx

∂x
+

∂τyx

∂y
+

a2

24
∂

∂x
Δ(σx + τyx) = 0,

∂σy

∂y
+

∂τxy

∂x
+

a2

24
∂

∂y
Δ(σy + τxy) = 0,

(4.8)
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τxy − τyx +
a2

24
Δ(τxy − τyx) +

a2

12

(
∂2τxy

∂x2
− ∂2τyx

∂y2

)
+

a2

12
∂2

∂x∂y
(σx − σy) = 0,

Δ(. . .) =
∂2(. . .)

∂x2
+

∂2(. . .)
∂y2

.

(4.9)

We use Eqs. (4.8) to eliminate the last term from the right-hand side of Eq. (4.9). As a result, we
obtain

τxy − τyx +
a2

24
Δ(τxy − τyx) +

a4

288

[
∂2

∂x∂y
(σx − σy) +

∂2

∂y2
Δτyx − ∂2

∂x2
Δτxy

]
= 0. (4.10)

Since Eqs. (4.8) contain terms with coefficients 1 and a2, we can neglect the last term in Eq. (4.10)
containing a4 and rewrite this equation as

τxy − τyx +
a2

24
Δ(τxy − τyx) = 0. (4.11)

Equations (4.8) and (4.11) can also be obtained by using the approach described in the concluding
part of Section 2. We introduce the generalized stress t̄ by analogy with the expression (2.7); i.e.,

t̄(x, y) =
1
a2

a/2∫
−a/2

dα

a/2∫
−a/2

t(x, y, α, β) dβ.

By substituting the expansion (4.5) into this relation, we obtain

t̄(x, y) = t +
a2

24
Δt. (4.12)

According to the general conditions for the conservation of a tensor field [7], the divergence of the
tensor t̄(x, y) must be zero, which corresponds to the equilibrium equations for the element shown in
Fig. 3 in the direction of the x- and y-axes. Moreover, the tensor t̄(x, y) should satisfy the symmetry
condition, which ensures that the moment equation is satisfied. As a result, we obtain the equilibrium
equations (4.8) and (4.11).

We take into account condition (2.3) and introduce the generalized stress by the formulas

σ̄x,y = σx,y − r2Δσx,y, τ̄xy,yx = τxy,yx − r2Δτxy,yx. (4.13)

Then the equilibrium equations (4.8) and (4.11) finally become

∂σ̄x

∂x
+

∂τ̄yx

∂y
= 0,

∂σ̄y

∂y
+

∂τ̄xy

∂x
= 0, τ̄xy − τ̄yx = 0, (4.14)

and coincide in form with the equilibrium equations of the classical theory of elasticity.
Consider the elasticity relations. The considered theory preserves relation (4.1) between the normal

stresses and strains, which was obtained in tension experiments with macrospecimens. But it is
necessary to generalize the elasticity relation (4.2) for the tangential stress, because τxy �= τyx in the
proposed theory in the general case. To generalize relations (4.4), instead of ω, we introduce an unknown
angle of rotation θ independent of displacements. Then

τxy = 2Gεxy , τyx = 2Gεyx, (4.15)

εxy =
∂v

∂x
− θ, εyx =

∂u

∂y
− θ. (4.16)

We represent the tangential stresses as the sum of symmetric and antisymmetric components; i.e.,

τxy = τs + τa, τyx = τa + τs, τs = Gγ, τa = 2G(ω − θ), (4.17)

where γ and ω are given by formulas (4.3). Thus, the elasticity relations in the proposed generalized
theory are determined by equations (4.1) and (4.15).
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As above in Section 2, to write out the boundary conditions, we use the virtual work principle, which
yields

∫∫ [(
∂σ̄x

∂x
+

∂τ̄yx

∂y

)
δu +

(
∂σ̄y

∂y
+

∂τ̄xy

∂x

)
δv + (τ̄xy − τ̄yx)δθ

]
dx dy = 0.

By using the geometric relations (4.3) and (4.16) and by integrating by parts, we obtain an expression
for the variation in the potential deformation energy,

δU =
∫∫ {

σxδεx + σyδεy + τxyδεxy + τyxδεyx

+
c2

24

[
∂σx

∂x
δ

(
∂εx

∂x

)
+

∂σx

∂y
δ

(
∂εx

∂y

)
+

∂σy

∂y
δ

(
∂εy

∂y

)
+

∂σy

∂x
δ

(
∂εy

∂x

)

+
∂τxy

∂x
δ

(
∂εxy

∂x

)
+

∂τxy

∂y
δ

(
∂εxy

∂y

)
+

∂τyx

∂x
δ

(
∂εyx

∂x

)
+

∂τyx

∂y
δ

(
∂εyx

∂y

)]}
dx dy,

the boundary conditions

σ̄xδu = 0, τ̄xyδv = 0 for x = const,

σ̄yδv = 0, τ̄yxδu = 0 for y = const
(4.18)

similar to the traditional ones, and the additional conditions

r2 ∂σx

∂x
δεx = 0, r2 ∂τxy

∂x
δεxy = 0, r2 ∂τyx

∂x
δεyx = 0 for x = const,

r2 ∂σy

∂y
δεy = 0, r2 ∂τxy

∂y
δεxy = 0, r2 ∂τyx

∂y
δεyx = 0 for y = const.

(4.19)

We introduce the generalized displacements and angles of rotation

(ū, v̄) = (u, v) − r2Δ(u, v), (ω̄, θ̄) = (ω, θ) − r2Δ(ω, θ). (4.20)

By using the elasticity relations (4.1), (4.15) and the geometric relations (4.3), (4.16), we can obtain
the following relations between the generalized stresses (4.13) and displacements (3.20):

σ̄x = Ē

(
∂ū

∂x
+ ν

∂v̄

∂y

)
, σ̄y = Ē

(
∂v̄

∂y
+ ν

∂ū

∂x

)
,

τ̄xy = 2G
(

∂v̄

∂x
− ω̄

)
, τ̄yx = 2G

(
∂ū

∂y
+ ω̄

)
.

(4.21)

Together with the equilibrium equations (4.14), relations (4.21) form a complete system of equations
coinciding with the equations of the classical theory of elasticity. If the boundary conditions are static,
then the boundary value problem of the considered theory coincides with the first basic problem of
the classical theory of elasticity. But this is not true in the general case. In contrast to the classical
theory, the solution of the problem in the generalized theory determines the generalized stresses and
displacements (4.13) and (4.20) rather than the traditional ones. By integrating Eqs. (4.13) and (4.21)
for known generalized stresses and displacements with the boundary conditions (4.19), we can obtain
traditional stresses and displacements. With (4.13) and (4.17) taken into account, we can rewrite the
boundary conditions (4.18) and (4.19) for the boundary x = const as follows:

(σx − r2Δσx)δu = 0, (τxy − r2Δτxy)δv = 0,

r
∂σx

∂x
δεx = 0, r2 ∂τs

∂x
δγ = 0, r2 ∂τa

∂x
δ(ω − θ) = 0,

(4.22)

where τs and τa are determined by formulas (4.17).
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5. GENERAL CASE OF STRESS STATE
In the general case, the equilibrium equations (4.7) of the plane problem can be generalized as

Li = σij,j − r2Δσij,j + · · · = 0,

Mk = σijεijk − r2Δ(σijεijk) + · · · = 0.
(5.1)

Here εijk is the Levi-Civita tensor. To state the boundary value problem in displacements and write
out the boundary conditions, just as earlier in Sections 2 and 4, we use the virtual work principle.
Consider the variational form∫∫∫

{Liδui + Miδθi} dV =
∫∫∫ {

[σij,j − r2Δσij,j]δui + [σmnεmni − r2Δ(σmnεmni)]δθi

}
dV, (5.2)

where ui is the displacement vector, θk is the vector of rotations unrelated to the displacements ui, and
V is the volume of the body. By integrating by parts in (5.2), we obtain∫∫∫

{Liδui + Miδθi} dV

= −
∫∫∫ {

σijδui,j + r2σij,kδui,jk + (σmnεmni)δθi + r2(σmnεmni),kδθi,k

}
dV

+
∮ {

[σij − r2σij,kk]njδui + [r2σij,knk]δui,j + r2(σmnεmni),knkδθi

}
dF. (5.3)

Here nj is the unit normal vector to the smooth part of the surface F bounding the body volume V . The
first term on the right-hand side in (5.3) is the expression for the potential energy

δU =
∫∫∫ {

σijδui,j + r2σij,kδui,jk + (σmnεmni)δθi + r2(σmnεmni),kδθi,k

}
dV, (5.4)

and the second term allows us to write out the natural boundary conditions. The expression for the virtual
work principle can also be written as∫∫∫

{Liδui + Miδ(θi − ωi)} dV = 0, ωk = − 1
2

ui,jεijk,

where ωk is the vector of rotations in the classical theory of elasticity. Then the boundary conditions can
be represented in the form completely coinciding with the boundary conditions (4.22) written earlier for
the plane problem. For the smooth surface with the normal ni, which is the boundary of the body, we
have

[σij − r2σij,kk]njδui = 0, [σij,knk]δui,j = 0, [(σmnεmni),knk]δ(θi − ωi) = 0. (5.5)

Consider formula (5.4) determining the potential energy variation. The latter can be written as

δUV (ui,j, ui,jk, θk, θk,p) =
∫∫∫ [

∂UV

∂ui,j
δui,j +

∂UV

∂ui,jk
ui,jk +

∂UV

∂θk
δθk +

∂UV

∂θk,p
δθk,p

]
dV. (5.6)

Formula (5.6) allows us to determine the elasticity relations. With (5.4) taken into account, we obtain

σij =
∂UV

∂ui,j
, σij,k =

1
r2

∂UV

∂ui,jk
, σij� ijk =

∂UV

∂θk
, σij,p� ijk =

1
r2

∂UV

∂θk,p
. (5.7)

In the proposed model, the variational form (5.2) dictates a special structure of the potential energy
and the respective special form of physical relations (5.7). One can see that relations (5.7) are consistent
and imply consistent physical relations if the potential energy has the form

U =
1
2

∫∫∫ {
Cijmnεijεmn + Cijmnr2δklεij,kεmn,l + 2G(ωi − θi) + 2Gr2(ωi,j − θi,j)(ωi,j − θi,j)

}
dV,

where Cijmn = λδijδmn + μ(δimδjn + δinδjm), λ is the Lamé coefficient, and δij is the Kronecker tensor.
In this case, Green’s formulas (5.7) for the stress tensor σij become

σij = [λδijδmn + G(δimδjn + δinδjm)]um,n + G(θk − ωk)εijk, σmnεmni = 2G(θi − ωi). (5.8)
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Physical relations (5.8) completely correspond to the constitutive equations (4.20) written earlier for
the plane problem.

System (5.1) of equilibrium equations, the elasticity relations (5.8), and the boundary conditions (5.5)
completely determine the mathematical statement of the problem of generalized theory of elasticity.

6. CONCLUSION
In this paper, we constructed a new version of the classical theory of elasticity whose equations

contain the generalized stresses which take into account the gradients of the traditional stresses and
contain one additional (to the moduli E and G) constant which needs to be determined experimentally.
For problems with static boundary conditions, the corresponding solutions coincide with the classical
ones if the stress tensor symmetry conditions are not violated in the boundary conditions. For example,
in the problem illustrated in Fig. 1, these conditions are violated at point O, and to solve this problem,
one has to use the equations of the generalized theory. In problems with mixed and kinematic boundary
conditions, the generalized theory should be used if the solutions of the corresponding problems of
the classical theory of elasticity lead to a stress state with greater stress gradients. Such a problem
is shown, for example, in Fig. 4; namely, near points A and B, the stress state rapidly varies with
the coordinates. Finally, it seems expedient to use the generalized theory in problems whose classical
solution is singular [2, 14]. In particular, numerous problems of the body stress state near cracks belong
to this class.
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