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Abstract—A version of the metal plasticity relaxation model based on a plasticity integral criterion
with the characteristic relaxation time parameter is suggested. The dislocation concepts of metal
plasticity together with the Maxwell model for a strongly viscous fluid are used to show that
this characteristic relaxation time parameter can be interpreted in terms of dissipation and energy
accumulation in the case of mobile dislocations. The coincidence of the values of characteristic
plastic relaxation time obtained for various descriptions of the whisker deformation allows one to
conclude that the characteristic relaxation time is a basic characteristic of the material dynamic
properties.
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1. INTRODUCTION

Several cases of unexpected mechanical behavior of metals in deformation can readily be explained by
taking their dynamic characteristics into account. One such well-known paradox is the sharp yield point
phenomenon in metal whiskers [1, 2] when, in the case of quasistatic loading rates 10−4–10−2 s−1, the
stresses attained in the material are dozens times greater than the value of its quasistatic yield point [3].
This effect can be explained in terms of the material “dislocation starvation” [4], when the amount of
mobile defects is insufficient for ensuring the required plastic strain rate and the elastic stresses continue
to grow. From the mechanical standpoint, this phenomenon expresses the fact that the material already
experiences dynamic deformations for such “quasistatic” strain rates. Namely, for a material with such
properties, these strain rates are already sufficient for exciting the dynamic deformation mode, which
cannot be described on the basis of quasistatic concepts that there are critical flow stresses in the
material. To describe the dynamic characteristics of the material, it is necessary to explicitly take into
account the fact that the material cannot unboundedly experience plastic relaxations of the arising
stresses and a certain time is required for the development of relaxation process inside the material.
This can be attained by introducing an additional dynamic characteristic of the material itself, i.e., the
characteristic plastic relaxation time parameter. Obviously, this parameter should be independent of the
deformation process characteristics but should express the mechanical properties of the material itself
in a wide range of loading rates.

2. VERSION OF PLASTICITY RELAXATION MODEL
BASED ON INTEGRAL YIELD CRITERION

For the Voigt solid, the stress–strain dependence has the form

σ = 2Gε + με̇, (2.1)
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which can also be rewritten as ε̇ + 2Gε/μ = σ/μ. It is assumed that, along with elastic stresses in
the dynamic strain mode, there is a certain additional viscous term proportional to the strain rate.
Multiplying both sides of (2.1) by 2G exp(2G/μ), we obtain

2G
d

dt

[
ε · exp

(
− t

τ

)]
=

σ(t)
τ

exp
(
− t

τ

)
, (2.2)

where the characteristic time τ = μ/(2G) is introduced. By integrating (2.2) over time, we obtain

2Gε =
1
τ

t∫
0

σ(s) exp
(
− t − s

τ

)
ds. (2.3)

The left-hand side of this equation is the elastic stress in the quasistatic setting, where ε̇ = 0 in (2.1).
Equation (2.2) can be interpreted in the framework of the “fading memory” concept [5] as follows: the
contribution to the current state of the defect structure made by the load previously acting at times s� t
is much less than the contribution of the recently acting load. The current stress values must be replaced
by its “already relaxed” value, and the stresses that earlier acted in the material enter the equation with
constantly decreasing weight coefficients. In the general case, this implies the inequality in integral form

t∫
0

σ(s)K(t − s) ds ≤ σ0
y , (2.4)

where the kernel of the integral operator K(t) is the memory decay function. By comparing (2.3)
with (2.4), we see that the Voigt model is associated with the exponential memory decay

K(t) =
1
τ

exp
(
− t

τ

)
, (2.5)

where, as in (2.3), the characteristic time has the form τ = μ/(2G). As a simpler approximation to the
exponential law (2.5), one can suggest to describe the decay by the step function [6]

K(t) =

⎧⎨
⎩

1
τ

, 0 ≤ t ≤ τ,

0, t > τ.
(2.6)

Then Eq. (2.6) implies the metal integral yield criterion in the form [6, 7]

1
τ

t∫
t−τ

[
Σ(s)
σ0

y

]α

ds ≤ 1. (2.7)

Here Σ(t) is the function describing the time dependence of the stress, τ is the characteristic stress
relaxation time, σ0

y is the static yield point, and α is the stress sensitivity coefficient. Under the
assumption of elastic deformation Σ(t) = 2Gε(t), this criterion allows one to compute the time t∗ of
appearance of the macroscopic yield corresponding to the time at which (2.7) becomes an equality. The
phenomenological approach based on the concept of incubation yield time [7] also allows one to take
into account the plastic deformation evolution and describe the sharp yield point effect. Consider the
simplest version of such a model. We assume that the deformation in the specimen increases linearly
as ε(t) = ε̇tH(t), where H(t) is the Heaviside function. We introduce the dimensionless relaxation
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Fig. 1.

function 0 < γ(t) ≤ 1 by the condition

γ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for
1
τ

t∫
t−τ

[
Σ(s)
σY

]α

ds ≤ 1,

1
{

1
τ

t∫
t−τ

[
Σ(s)
σ0

y

]α

ds ≤ 1
}1/α

, for
1
τ

t∫
t−τ

[
Σ(s)
σY

]α

ds > 1.
(2.8)

Here Σ(t) = 2Gε̇tH(t) is the function coinciding with the stress in the specimen at the stage of elastic
deformation, i.e., before the time t∗ of appearance of the macroscopic plastic flow; this time is calculated
by criterion (2.7). We assume that the following condition is satisfied at the subsequent times t ≥ t∗
corresponding to the plastic deformation of the material:

1
τ

t∫
t−τ

[
γ(t)Σ(s)

σy

]α

ds = 1. (2.9)

The actual stresses in the deformed specimen for t ≥ t∗ are determined by the relation

σ(t) = 2g(t)ε(t), (2.10)

where g(t) = G1−β(t) and β is a scalar parameter (0 ≤ β ≤ 1) which controls the strengthening degree.
(The case β =0 corresponds to the absence of strengthening.) Figure 1 illustrates an example of calcula-
tions of the deformation curve in the case where the deformation linearly increases with time on the basis
of (2.7)–(2.10) for a hypothetical material with deformation strengthening approximately corresponding
to soft steel [8], (G = 100 MPa, σY = 200 MPa, β = 0.18, τ = 0.4 s, and ε̇ = 8.5 × 10−3 s−1). The
crystal strain rate is ε̇ = 8.5 × 10−3 s−1, which corresponds to the case of sufficiently slow “quasistatic”
loading. Nevertheless, in the first seconds of the deformation, the stresses behaves nonmonotonically and
their maximum value is by an order of magnitude greater than the value of the static yield point for this
material. The experimental points are taken from [8] (from now on, the stresses on the ordinate axis are
measured in MPa). The simulation of deformation of copper and cadmium whiskers in a setting similar
to the experiments [9, 10] on the basis of (2.7)–(2.10) shows that the experimental data correspond
to τ = 11 for copper and τ = 9 for cadmium, and this is several orders of magnitude greater than the
relaxation times obtained for base metals [5–7].
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Fig. 2.

Figure 2 illustrates the simulation of the sharp yield point effect with the subsequent deformation
strengthening according to the model (2.7)–(2.10) in the case of deformation of steel specimens
(G = 78 GPa, σY = 310 MPa, α = 1). The points correspond to the experimental data given in [11].
In this material, the sharp yield point effect, which is typical of whiskers, is already not observed at
quasistatic strain rates t × 102 s−1 (curve 2 ), but this effect is clearly observed in the case of dynamic
deformation at the rates 103 s−1 (curve 1 ). The points correspond to the recently obtained experimental
data [11]. It is remarkable that in this case the obtained value of relaxation time scale is already equal
only to 14 microseconds.

3. KINETIC REPRESENTATION OF THE RELAXATION PROCESS
IN PLASTIC DEFORMATION

Another possible approach to the description of dynamic deformation with the characteristic plastic
relaxation time parameter taken into account is the Maxwell model for a strongly viscous liquid [12].
In the framework of this model, it is assumed that there is a stress relaxation time τ such that the
material experiences elastic deformation at smaller times and viscoplastic deformation at greater times.
The equation of variations in the shear stresses στ can be written as [12]

dστ

dt
= 2G

dε

dt
− σeff

τ
H(σeff ), (3.1)

where G is the shear modulus of the material, σeff − στ − σy is the acting effective stress such that the
shear stress relaxation is possible for its positive value, σy is the barrier stress which it is necessary to
overcome for dislocations to be able to slide, and H(x) is the Heaviside function. By integrating (3.1)
with the constant strain ε̇ = const and the initial condition στ (0) = σy, we obtain the following time
dependence of the stresses [12]:

στ (t) = σy + 2Gτε̇

[
1 − exp

(
− t

τ

)]
. (3.2)

In the case of a steady-state flow, the expression (3.2) determines the level of maximal stresses attained
in the material, and it can be rewritten as

σmax
τ = σy + 2Gτε̇. (3.3)

The maximum shear stresses (3.3) are proportional to the yield point of the material. It follows from (3.3)
that, in the case of small characteristic times and strain rates, we have a constant value of the yield point,
which can vary only due to the strain strengthening. On the other hand, at high strain rates or at large
characteristic relaxation times, the second term in (3.3) becomes significant and the dependence of the
yield point on the strain rate is rather complicated.

We use Eq. (3.1) to estimate the characteristic time of plastic relaxation due to the dislocation sliding.
Consider the dislocation model of crystal plasticity, which states that the plastic strain is caused by
displacements of separate defects of the crystal structure [3]. At times exceeding the acceleration time
of dislocations (of the order of 10−10 s), we can assume that their motion is steady-state and σ̇ = 0.
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Then, under the condition that the high external stresses are significantly greater than the barrier
stresses στ � σy , it follows from (3.2) that

στ = 2Gτε̇. (3.4)

In [13], it was shown that, by substituting (3.4) into the Orovan relation [3] and by using the dislocation
dynamic equation [14–16], we obtain the following expression for the characteristic stress relaxation
time:

τD =
Bf

Gb2ρD
∼ Bf

ED
, (3.5)

where ED is the total elastic energy of dislocation lines per unit volume and Bf = (vD/2)ρb2 charac-
terizes the rate of scattering of the dislocation kinetic energy [16]; vD ∼ 1013 s−1 is the nearly Debye
frequency whose inverse value gives the time of scattering of the kinetic energy of mobile dislocations
and ρ is the material density. The time (3.5) is inversely proportional to the dislocation density and can
vary in sufficiently broad ranges. At the initial deformation stages, which are important for the sharp
yield point effect, the relaxation time is completely determined by the density of dislocations which are
present in the material before the deformation.

From the standpoint of the above-mentions models of an elastoviscoplastic body, there are no
fundamental differences between the shear strength in the case of “quasistatic” strain and in the case
of “dynamic” strain. Everything is determined by the values of the parameters describing the internal
structure and the defect substructure of the material. The transition between the “static” and “dynamic”
modes occurs according to (3.3) at the strain rates ε̇tr ∼ yb/(2Gτ)≡ yb/μ, where the coefficient μ = 2Gτ
characterizing the dynamic viscosity depends on the elastic properties and the defect substructure of the
metal. For various defect concentrations in the material, this strain rate can take practically any values.

The defect structure and the mechanical properties of the material vary in the course of plastic
deformation. The characteristic time variation is structurally determined by variations in the dislocation
density in the material which, in the absence of deformation strength (σy(ε) which holds at the initial
stages of deformation in problems of the sharp yield point effect), can be represented as

ρD(εpl) = ρmax
D + (ρ0

D − ρmax
D ) exp(−εplkα). (3.6)

By substituting (3.6) into (3.5), for the characteristic relaxation time we have

τ(εpl) =
Bf

Gb2ρmax
D + (ρ0

D − ρmax
D ) exp(−εplkα)

. (3.7)

Finally, by substituting (3.7) into (3.3), we obtain an equation for calculating the dependence of
maximum stresses (attained in the material in the process of its plastic flow, i.e., the dynamic yield point)
on the degree of deformation.

The total strain of the material is the sum of the plastic and elastic parts each of which varies in
the course of deformation. The value of the plastic deformation is determined by integrating the Orovan
relation [3] and generally depends on the dislocation velocity and on the their density [14–16], but in
the case of whicker deformation, the density of mobile dislocations varies by more than six orders of
magnitude while the variations in their velocity are insignificant. Therefore, to estimate the fraction
of plastic deformation, we can assume that it is proportional to the dislocation density and use the
approximate relation εpl = (ρD/ρflow

D )ε, where ρflow
D ∼ 1013 m−2 is the dislocation density corresponding

to the purely plastic deformation of the material.
The results of calculations according to this model were compared with experimental data [8–11].

For the constants we used the tabulated parameters [17] and the constants of the dislocation plasticity
model [14–16]. At the initial state of deformation, the shear stresses increase elastically as σel

τ (ε) = 2Gε.
The plastic stress relaxation begins when the condition σel

τ ≥ is satisfied, and these stresses must
be recalculated with the relaxation mechanisms of plasticity taken into account. If the amount of
dislocations in the material is small, then the elastic stresses still continue to grow for a certain time until
the dislocation density becomes sufficient for the stress relaxation rate to exceed the rate of growth of
elastic stresses. For example, for the strain rate 10−2 s−1, we have the time τ ∼0.1 s and 2Gτε̇∼100 MPa
already for the dislocation density ρD ∼ 105 m−2 which is quite comparable with the values of σy ; on the
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Fig. 3.

Fig. 4.

other hand, this correction decreases to hundredth fractions of megapascal and becomes negligibly small
as the dislocation density increases to normal values ρD > 1010 m−2.

The calculations describing the deformation of cadmium and copper specimens were performed, the
comparison with experimental data [8] was used to determine the values of the initial dislocation density
(IND), and the values of characteristic times of the material deformation were calculated by (3.5). In

the case of copper deformation, we obtained ρ
0(Cu)
D ∼ 102 m−2 and τ

0(Cd)
D ∼ 10 s; in experiments with

cadmium, we obtained ρ
0(Cu)
D ∼ 104 m−2 and τ

0(Cd)
D ∼ 4 s.

Figure 3 illustrates three deformation modes at the rate 2.2 × 10−2 s−1, which are significantly
different. The solid curve presents the results of calculations by the Maxwell model with the dislocation
kinetics taken into account, where the characteristic time is four seconds. The dash-dotted line
corresponds to calculations by the model (2.7)–(2.10), where the characteristic time is nine seconds.
The purely elastic mode is realized until the value of the static yield point σy is attained, and then the
plastic flow begins, but since the amount of dislocations in the material is insufficient, the stresses
continue to grow in the almost elastic mode. In this case, the characteristic relaxation time is assumed
to be constant, and it corresponds to the initial dislocation density. The graphs of dislocation density
dependence on the strain, which are given in Fig. 4 for various values of the initial dislocation density
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(IND), show that the dislocation density grows rather slowly until the value of the of order of 106 m−2

is attained; after this it increases by six orders of magnitude while the degree of deformation varies
only by 0.1%–0.2%. At this strain rate (2.2 × 10−2 s−1), this occurs in time t ∼ ε/ε̇, which is
approximately 0.1 s. In this case, the “width” of the sharp yield point does not exceed 4% of the total
deformation, which takes nearly 2 s of time. All these times are significantly less than the obtained
characteristic relaxation time of the material. Figure 4 also demonstrates that the significant influence
of plasticity begins as the deformation exceeds 3%. Comparing Fig. 3 with Fig. 4, we see that all first
experimental points are actually in the region of purely elastic deformation. In particular, this justifies
our neglect of the deformation strengthening phenomenon when modeling the sharp yield point effect.
Figure 3 shows that, in the case of deformations exceeding 2%, the flow stress sharply decreases to
the value of the static yield point which is attained at deformations nearly equal to 4%. In this region,
a significant increase in the dislocation density leads to an appropriated decrease in the relaxation
time (3.5). The kinetic equation for the dislocation density (3.6) is important for describing the stress
drop only at this stage and does not play any significant role in the remaining part of the whisker
deformation region.

The relaxation times obtained by the structure approach (3.5) agree well with the times obtained
on the basis of the phenomenological plasticity model determined by the criterion (2.7), (2.9). This
coincidence of the relaxation times calculated by various approaches allows one to assume that the
expression (3.5) correctly describes the relationship between the material internal structure character-
istics and the macroscopic parameter of characteristic times of plastic deformation and can be used to
determine them. On the other hand, this also shows that the dynamic approach is rather general and the
relaxation processes determined by characteristic plastic relaxation times play a fundamental role in the
description of deformation processes. In this sense, any specific realization of the relaxation mechanism
in the framework of the chosen plasticity model is of minor importance.

4. CONCLUSION

Thus, the dynamic deformation mode is determined not by external factors but by the relation between
the strain rate and the material ability to relaxation of elastic stresses arising in it. The value of the
characteristic plastic relaxation time determines the relaxation properties of the material and is one of
its basic dynamic characteristics. This time is independent of the strain rate and is determined at the
microlevel by the dynamic properties of the basic carriers of plastic deformation and by their amount
per unit volume. The coincidence of the values of characteristic time obtained by various approaches
confirms the claim that its nature is universal. At relatively small strains, the mechanical properties are
determined by a single value of the characteristic time corresponding to the initial dislocation density.
At strong plastic deformations, it is necessary to take into account the irreversible changes in the defect
structure of the material, which can be described by simple kinetic equations for the dislocation density
variations [13–15]. Macroscopically, this can be expressed as a decrease in the characteristic time of
plastic deformation with time. In the case of deformation of metal whickers, the characteristic relaxation
time turns out to be very large; i.e., it is several orders of magnitude greater than the relaxation times
typical of usual specimens of metals with large dislocation densities [5].
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