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Abstract—Maximum power point tracking (MPPT) is essential for photovoltaic systems to ensure a maxi-
mum power extraction from PV panels. However, some issues such as oscillations, power loss and other tech-
nical aspects still unsolved. This paper presents and discusses a new MPPT algorithm with zero-oscillations
and unity efficiency in transient and steady-states. This algorithm leads to track the maximum power point
under extreme operating conditions. The proposed MPPT method is based on the simple adaptive linear
neuron. In addition, its implementation is achieved without any additional control loop, which resulted in a
simple control. In order to validate the proposal effectiveness, both simulation and experiment tests are car-
ried out under variable irradiance and load. Comparison between the developed MPPT and the conventional
perturb and observe algorithm is also performed. Obtained results show that with the proposed method, unity
efficiency is reached and oscillations are fully removed in the transient and steady-states. The originality of
this work is the design of a simple and efficient MPPT algorithm based on the ADALINE with unity effi-
ciency and zero-oscillations. Moreover, the proposal is verified using a real PV system under irradiance and
load changes.

Keywords: adaptive linear neuron (ADALINE), DC-DC boost-converter, maximum power point tracking
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INTRODUCTION

Power generation from photovoltaic (PV) panels
highly depends on weather conditions such as sunlight
and temperature. So, a maximum power point track-
ing (MPPT) technique is needed to maximize the pro-
duced energy. Several algorithms have been suggested
to track the maximum power point (MPP) with differ-
ent levels in complexity, cost, convergence speed,
steady-state oscillations, required sensors, and effi-
ciency [1]. These algorithms can be sorted in conven-
tional methods (CMs) and artificial intelligence (AI)
based methods.

In CMs, the most popular MPPT algorithms are
the perturb and observe (P&O) [2, 3], incremental
conductance (IC) [4, 5], short circuit current [6] and
open circuit voltage approaches [6]. Among these,
P&O and IC are the extensively used methods due to
their simplicity, acceptable performances and ease of
implementation. These methods operate by increasing
or decreasing the converter duty cycle in order to reach
the MPP, which induce oscillations in the generated
power. Moreover, they presented similar issues regard-
ing losses in steady-state [7], and tracking perfor-

mances under variable climatic conditions. As solu-
tion, adaptive CMs with variable step sizes have been
developed [8–11]. In these strategies, when the oper-
ating point is far from the MPP, the step size is
increased which enables to a fast-tracking ability. Oth-
erwise, the step size is decreased gradually. Conse-
quently, oscillations in the generated power become
well reduced, which contribute to achieve a high effi-
ciency [12]. These adaptive step size based MPPTs
acquire a fast response and accurate steady-state per-
formances. Nevertheless, some issues remain
unsolved such as residual oscillations in steady-state
and low tracking efficiency under variable environ-
mental conditions. In addition, the heavy computa-
tional and strong non-linearity of the scaling factor
restricts their application.

Recently, AI based MPPT algorithms are becom-
ing the most used approaches as alternatives to the
CMs due to their capability to resolving many prob-
lems such as convergence speed, oscillation around
the MPP, and accuracy loss under fast change in
atmospheric conditions. The well-known AI based
MPPT algorithms are the approaches based on fuzzy
logic (FL), neural networks (NNs), genetic algorithm
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(GA), and particle swarm optimization [1, 13]. These
techniques lead to consistent MPPTs, which is due to
their ability to manage nonlinear aspects of PV sys-
tems. The FL based MPPT has been largely investi-
gated in PV systems control [14, 15]. Indeed, to
achieve good performance, the input variables of
membership functions, based on the PV system power
curve, must be well tuned in different intervals [14].
This latter increases hardware and software complex-
ity and leads to heavy implementation. Meanwhile,
NN based MPPTs has become increasingly popular.
This is due to the numerous advantages of NNs.
Moreover, divers training algorithms is available
which provide a large number of solutions [1]. Several
NNs based MPPT algorithms have been proposed in
the literature. For instance, a P&O algorithm assisted
by an online learned NN is developed in [16] to solve
its low performances under fast changing in solar irra-
diance. In [17], a variable step-size MPPT based on
extension NN is suggested. A radial basis function net-
work based MPPT is proposed in [18]. In [19], a com-
bination of NN and FL with polar information con-
troller is suggested. Gas are used for optimizing the
offline trained NN in [20]. Although these NN based
MPPT algorithms can provide better MPPT perfor-
mances, some of them presented complex structures
[17–20], and required repetitive offline training with
solar irradiance and cells temperature measurement
[1, 20–23]. This can mainly contribute to increase
their implementation cost in digital signal processors.

Despite the adaptive CMs and AI based MPPT
algorithms have been proposed for improvement, they
presented some drawbacks such as oscillatory behavior
around the MPP and important losses in steady-
states. In this sense, some MPPT algorithms have
been developed to improve steady-state behavior and
provide an accurate tracking under variable environ-
mental conditions [24–27]. In [24, 25], modified IC
and P&O methods which reduced, respectively,
steady-state oscillations and improved tracking effi-
ciency, are suggested. In [26], the authors presented an
improved MPPT algorithm with zero-oscillation. This
MPPT is implemented in two stages, the first is based
on adaptive scaling factor beta to improve transient
response; and the second is based on a modified P&O
to eliminate steady-state errors. In [27], three tech-
niques are combined to improve steady-state behavior
and transient operation. The aforementioned methods
show good performances; however, some proposed
algorithms presented complex structures [24, 26, 27].

General requirements of an MPPT are the simplic-
ity, low cost, low output power f luctuation, and quick
tracking under variable operating conditions. To meet
these requirements a novel adaptive linear neuron
(ADALINE) based MPPT (AbM) is proposed in this
paper. The main advantages of the ADALINE are its
simple structure, convergence speed, filtering capabil-
ity and ability to be trained online [28]. The proposed
AbM strategy is implemented for a simplification pur-
pose without any additional control loop. A compari-
son with the P&O algorithm is performed under the
same conditions. Indeed, the P&O algorithm will be
adopted as a comparison method in this paper. This
choice is motivated by the fact that the P&O is the
most popular technique applied to track the MPP in
practice [3, 21, 25, 29, 30] and adopted by many
authors for comparison [2, 3, 10, 21]. This algorithm
is easy to implement and can be applied to all PV mod-
ules. It does not require previous knowledge of the PV
system or environmental conditions measurement.
Moreover, it exhibits satisfactory performances with
fast convergence towards the MPP. The obtained
results from the comparative study with the P&O show
perfect performances of the proposed method in tran-
sient and steady-states. The originality of this work is
the built of an efficient and simple MPPT algorithm
based on the ADALINE which acts as an adaptive fil-
ter. So, the proposal leads to achieve an MPPT algo-
rithm with unity efficiency and zero-oscillations, and
can works even under sudden changes in solar irradi-
ance. Moreover, unlike many others methods, the
proposed method is verified using a real PV system
under variable irradiance and load.

This paper is organized as follows. The general
structure of the controlled PV system is described in
the second section. In the third section, the proposed
control strategy for MPPT is provided. The forth sec-
tion presented and discussed the simulation results.
Comparison results with other advanced zero-oscilla-
tions based MPPT algorithms are reported in the fifth
section. Obtained experimental results are illustrated
and discussed in the sixth section. Finally, the seventh
section concludes this paper.

PV SYSTEM DESCRIPTION

The general structure of the PV system is presented
in Fig. 1. It consists on a PV panel, boost converter,
control unit and applied load. The measured PV panel
voltage and current are fed into the MPPT algorithm,
and subsequently, the generated output duty cycle is
used to drive the power switch. It can be seen that there
is no additional control loop in the system which
enables to reduce the complexity.

The converter output can be connected to a battery
load, to a regulated DC-bus voltage or to a simple sce-
nario of DC resistive.

PV Panel

For analysis, the adopted PV panel equivalent cir-
cuit is the single diode model. This circuit consists on
a current source with generated photocurrent Iph
directly proportional to the sun irradiance, a diode, a
series resistance Rs and a shunt resistance Rp. The I–V
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020
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Fig. 1. Architecture of the controlled PV system.
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Fig. 2. Characteristics of the used IFRI260-60 PV panel at
25°C for different solar irradiance levels (graphs plotted
with step of 200 W/m2): (a) current-versus-voltage; (b)
power-versus-voltage.
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relationship of a PV panel is given by the following
expression:

(1)

where Io is the diode reverse saturation current, a is the
diode ideality factor, q is the electron charge, k is the
Boltzmann constant, Ns is the number of cells con-
nected in series and T is the cell’s temperature in Kel-
vin. The photocurrent Iph mainly depends on the solar
irradiance. Its expression can be written as

(2)

where Isc is the PV panel short-circuit current at nom-
inal temperature and solar irradiance, G is the solar
irradiance on the device surface, Gn is the nominal
solar irradiance, Ki is the temperature coefficient and
∆T = T – Tn where T and Tn are, respectively, the mea-
sured and nominal cell’s temperatures.

According to the adopted PV model, the current–
voltage and power–voltage characteristics of the used
IFRI260-60 PV panel are shown in Fig. 2.

DC-DC Boost Converter
In PV power generation systems, DC-DC boost

converters are widely used as an adaptation stage
between the PV panel and the load. Based on the
information supplied by the MPPT algorithm, an
optimal duty-cycle is generated to maximize the solar
power available on the PV panel. The control is nor-
mally achieved by pulse-width modulation (PWM)
technique with a fixed switching frequency. Topology
of the used DC-DC boost converter is schematized in
Fig. 1.

At high switching frequency, average model of the
DC-DC boost converter can be derived. In resistive
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model of the converter is described by the following
differential equations:

(3)

(4)

where V is the input voltage, I is the input current, Vdc
is the output voltage, α is the duty cycle, IL is the load
current, and C is the DC-bus capacitance.

In case of battery load, the boost converter is
described by the following equations:

(5)

(6)

where Vb and Ib denote the battery voltage and current,
respectively.

CONTROL STRATEGY
ADALINE Theory

The ADALINE was first studied by Windrow and
his colleagues in the 1960s [28]. Due to its simple
structure and ability to be trained online, ADALINE
has become a powerful tool used in many applications
such as identification [31] and control [32].
ADALINE is a multi-input – single-output structure
which is equivalent to one neuron. Figure 3 shows the
ADALINE architecture. It’s composed by an input
vector X(k) = [x1(k) … xm(k)] of m dimension, an
adjustable weight vector W(k) = [w1(k) … wm(k)]T of m

= − − α(1 ),dcVdI V
dt L L

= − α −(1 ) ,dc
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Fig. 3. Architecture of the ADALINE.
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The estimated output of the ADALINE can be cal-
culated for any input X(k) at sample time k as follows:

(7)

ADALINE is an online learning process. Its
weights are adjusted to minimize the error e(k)
between the estimated output yest(k) and the desired

response yd(k). The estimation error e(k) is then

defined as:

(8)

Learning process means the procedure of weights
updating. When inputs are applied to the network, its
output yest(k) is compared to a target yd(k). Based on

the generated error, a learning rule is used to adjust the
weights in order to move the ADALINE output closer
to the target. The most known learning rule is that
called α-LMS algorithm given as follows:

(9)

where μ is the learning rate. Its value affects directly
the accuracy, convergence speed and stability of the
ADALINE. Indeed, low value of μ leads to increase
the accuracy and the stability at cost of slower conver-
gence speed. On the other hand, high value of μ leads
to high convergence speed but with less accuracy and
stability. So, the choice of μ is a tradeoff between the
stability and convergence speed of the ADALINE
[28]. For input pattern vectors, stability is ensured for
most practical purposes if

(10)

Proposed ADALINE Based MPPT (AbM)

As shown in Fig. 2b, for each operating condition,
there is a unique MPP located at the knee of the I(V)
curve (see Fig. 2a). In other words, the MPP is
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reached when the derivative of P according to V is null.
Therefore, the following equation must be verified:

(11)

In the other side, from (3), the input voltage of the
boost converter is given by:

(12)

The MPP is reached when the input voltages of the
DC-DC boost converter meet that given by Eq. (11).
Hence:

(13)

The quantity LdI/dt can be neglected (it worth zero
in steady-state). In transient-state, the sun irradiance
variation is often slow so, the current derivative takes
low value. Moreover, the proposed MPPT algorithm
is faster than the current variation. Using this assump-
tion and Eq. (13), the optimal duty cycle at the MPP is
then given by:

(14)

The discrete form of the above equation can be
expressed as follows:

(15)

At this stage, the ADALINE concept is introduced
to solve Eq. (15) in the aim to find the optimal duty
cycle. Then, the following equalities are posed:

(16)

(17)

(18)

Based on (16)–(18) and (9), the adaptive MPPT
algorithm is derived as follows:

(19)

After the learning process, the error e(k) becomes
low and the optimal duty cycle is then obtained.
According to (19), the diagram of the proposed AbM
strategy is shown in Fig. 4.

As seen in (20), to evaluate the desired output
yd(k), the Vdc(k) knowledge is required. The last can be

estimated in steady-state as follows:
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Fig. 4. Block diagram of the proposed AbM algorithm.
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Fig. 5. Simulation test sequences: (a) Fast and slow solar
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Table 1. PV system parameters

PV panel IFRI260-60 at STC

Pmax Maximum power 260 W

Isc Short-circuit current 8.65 A

Voc Open-circuit voltage 38.1 V

Ns Number of cells in series 60

Boost converter

fs Switching frequency 100 kHz

L Inductance 5 mH

C Capacitor 3300 μF

MPPT algorithm

μ AbM learning rate 0.015

Δα P&O step size 0.0025

Te Sampling period 0.0001 s
Consequently, there is no additional sensor for the
proposed method.

SIMULATION RESULTS

To verify performances of the proposed AbM, the
overall system is set for digital simulation in MAT-
LAB/Simulink environment. The results are com-
pared to those obtained by the conventional P&O
algorithm. In a first scenario, dynamic and steady-
state performances are examined according to fast

(200 W/m2/s) and slow (20 W/m2/s) solar irradiance
slop change. The solar irradiance G changes between

200 and 1000 W/m2. The output voltage of the boost
converter is fixed to Vdc = 300 V. This situation occurs

when the converter operates as a battery charger or
supplies a DC bus voltage. In a second scenario, the
proposed algorithm is tested under fixed solar irradi-

ance (1000 W/m2), meanwhile, the DC bus voltage is
varied between 250 and 350 V. This situation occurs,
for instance, when the converter supplies a grid con-
nected inverter. In this case, the inverter introduces a
disturbance on the DC bus voltage. The two tests
sequences are illustrated in Figs. 5a and 5b.

The AbM learning rate μ and the P&O algorithm
step size are optimized through simulation tests
according to steady state accuracy and tracking speed
requirement. From (10), an optimal choice of the
AbM learning rate μ which the same as the ADALINE
learning rate in (9) can be achieved according to the
following considerations. High value of μ leads to high
convergence speed but with less stability and accuracy.
This mainly causes oscillatory behavior during the
MPP tracking. So, correct tracking of the MPP can be
lost. On the other way, low value of μ leads to more
stability and accuracy at cost of slow tracking speed.
Accordingly, correct choice of μ is a tradeoff between
the oscillatory behavior, stability and the tracking
speed of the proposed MPPT. In this work and
according to these considerations, μ is experimentally
adjusted to 0.015 through a trial-and-error approach.
In the same way, a correct choice of the P&O step size
Δα is a tradeoff between the transient and steady states
performances. Indeed, high step size contributes to a
faster response while more power losses are caused in
steady state. Opposite situation is obtained when a low
Δα is chosen. In this work, the P&O algorithm step
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020
size is experimentally adjusted to 0.0025 through a
trial-and-error approach. The overall system parame-
ters including the used IFRI260-60 PV panel at stan-
dard test conditions (STC) are given in Table 1.

Performances under Variable Solar Irradiance
(Vdc = 300 V)

The AbM algorithm is tested with a solar irradiance
change according to the test sequences given in Fig. 5a.
The generated powers from the PV panel are plotted in
Fig. 6. From Fig. 6a, it seems that the MPP is correctly
tracked using both methods. However, a zoom in
steady-state, given in Fig. 6b, indicates that the AbM
algorithm is clearly better than the P&O algorithm.
Indeed, there are no oscillations in the power with the
proposed method. Moreover, it achieves 100% of effi-
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Fig. 6. Performances comparison between the P&O and
AbM algorithms under fast and slow solar irradiance pro-
file: (a) output power of the PV panel; (b) zoom in the out-
put power of the PV panel in steady-state; (c) zoom in the
output power of the PV panel in transient-state.
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Fig. 7. Performances comparison between the P&O and
AbM algorithms under fast and slow irradiance profile: (a)
PV output current; (b) zoom in the PV output current in
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ciency. The generated power in steady-state is 258.90 W.
This value corresponds to the theoretical optimum of
258.90 W. A zoom in transient-state of the produced
power is given in Fig. 6c. Superiority tracking of the
AbM algorithm is also observed during the transient-
state (or during the solar irradiance change) where
100% of efficiency is reached with the proposal. How-
ever, the P&O algorithm exhibits oscillations and
power loss.

Figure 7 shows the PV output current under the dif-
ferent atmospheric conditions. From Fig. 7a, it is
appearing that the optimal current has a rapid
response and track correctly the solar irradiance. The
results given in Fig. 7b clearly show that the suggested
AbM algorithm has a better performance in steady-
state compared to the conventional P&O. The current
oscillation rates (ΔI/I) for the P&O and the AbM is,
respectively, 4 and 0%. Hence, the proposal fully
removes the oscillations in the current which leads to
thermal stress elimination in the PV panel [33].
During the solar irradiance change, the current oscil-
lations for the P&O and AbM is, respectively, 4 and
<0.5%.

Figure 8 shows the output voltage of the PV panel
under variable solar irradiance conditions. As shown
in Fig. 8a, in term of oscillations, the AbM is much
better than the P&O. Indeed, a zoom in steady-state
(see Fig. 8b) reveals a complete absence of oscillations
in the voltage (ΔV/V = 0%) using the AbM. Mean-
while, in case of the P&O, the obtained voltage oscil-
lation is 2.3%. Therefore, the issues regarding losses
and oscillations in steady-state are definitively solved
by the proposal. During the solar irradiance change,
the voltage oscillations for the P&O and the AbM is,
respectively, 2.4 and <0.5% (Fig. 8c).

Performances under Variable DC Bus Voltage
(G = 1000 W/m2)

Figure 9 exhibits performances comparison
between the two algorithms according to the test
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020
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Fig. 9. Performances comparison between the P&O and
AbM algorithms under variable DC bus voltage: (a) PV out-
put power; (b) PV output current; (c) PV output voltage.
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sequences given in Fig. 5b. When variation occurs in
the DC bus voltage, the AbM algorithm has a stable
output signals compared to the output signal obtained
by the P&O.

As shown in Fig. 9a, the generated power using the
proposed control still 100% despite the DC bus voltage
variation. Figures 9b and 9c display the current and
voltage of the PV panel, respectively. It can be seen
that there are no oscillations in the both quantities in
steady-state with the suggested algorithm. Practically,
in term of oscillations, similar results are reached
during Vdc change.

COMPARISON STUDY

So far, performances comparison of the proposed
AbM is performed against the conventional P&O
algorithm. This provides a reference point to compare
with advanced MPPT algorithms. In this sense, com-
parative study between the proposal and other new
advanced zero-oscillations based MPPT algorithms
[24–27] is reported in Table 2. The selected algorithms
are presented for their advanced features that allow a
fast-tracking efficiency with zero-oscillations. In [24],
the authors propose an IC method based on the
switching ripple detection. The proposal uses a digital
lock-in amplifier to extract amplitude of the oscilla-
tion ripple even under a noise presence. In [25], a
modified P&O based on an adaptive perturbation size
with a dynamic boundary condition is proposed. This
proposal minimizes the loss due to the direction los-
ing. In [26], an improved MPPT algorithm with zero
oscillation is presented. Its implementation is per-
formed through two stages. The first stage is based on
adaptive scaling factor beta to improve transient
response and the second one is based on a modified
P&O to eliminate steady-state errors. In [27], three
techniques are combined to improve steady-state
behavior and transient operation; the first one is the
idle operation on the MPP that is used to steady-state
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020

Table 2. Comparison between the P&O, proposed methods 

Efficiency
Tracking speed

steady state transient state

P&O 99% 99% Slow – 

[24] 99% 98% Fast
– 

– 

[25] 99.4% 98.2% Fast
– 

– 

[26] 99.98% 99.83% Medium
– 

– 

[27] ≈100% 99.3% Fast
– 

– 

AbM 100% 100% Very fast
– 

– 
oscillation cancellation; the second one is an identifi-

cation of the solar irradiance change through a natural

perturbation to eliminate the confusion caused by the

solar irradiance change; and the third is a simple

multi-level adaptive tracking step that is used to obtain

an accurate tracking.

The aforementioned methods show good perfor-

mances; however, some proposed algorithms pre-

sented a complex structure [24–26]. Moreover, their

validation is performed using PV emulators [24–27],

which remain non-real PV systems. As it can be seen

in Table 2, superiority of the proposed AbM is clearly

established in terms of efficiency oscillations and sim-

plicity compared than the advanced zero-oscillations

based MPPT algorithms.
in [24–27], and the AbM

Notes

Baseline comparison algorithm

IC method based on the switching ripple detection;

The validation is made with a PV emulator

Modified P&O based on an adaptive perturbation size;

The validation is made with a PV emulator

Complex structure (combination of two methods);

The validation is made with a PV emulator

Complex structure (combination of three techniques);

The validation is made with a PV emulator

Based on the simple ADALINE;

The validation is made using a real PV system
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Fig. 10. View of the experimental test bench: (1) PC-Pentium + dSPACE board + ControlDesk; (2) dSPACE input/output con-
nectors; (3) DC-DC boost converter; (4) load resistance; (5) voltage sensor; (6) current sensor; (7) single phase power controller;
(8) PV panel; (9) halogen lamp; and (10) irradiance sensor.
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EXPERIMENTAL RESULTS

The proposed AbM algorithm has been also evalu-
ated by experiment. The test bench is depicted in
Fig. 10, which is made up of an IFRI260-60 PV panel,
boost converter, load resistance and measurement
tools. The developed AbM as well as the P&O algo-
rithms are implemented under MATLAB/Simulink
environment and executed on a dSPACE DS1104
board.

On the PV panel side, artificial solar irradiance is
provided by four halogen lamps. Their luminous
intensity is controlled using a single-phase power con-
troller. A light radiation detector is used for irradiance
measurement at the PV panel surface. Using a same
setting as the simulations, the dynamic test sequences
is composed by consecutive fast and slow increased
and decreased solar irradiance ramps. Due to the low
halogen lamps capability, the maximum irradiance
level obtained at the PV panel surface is around

500 W/m2. The boost converter supplies a load resis-
tance (R = 330 Ohm). Consequently, a simultaneous
Fig. 11. Experimental test sequences: (a) irradiance profile
reproduced in the laboratory by using halogen lumps; (b)
Variation of Vdc induced by the irradiance change.
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change of G and Vdc is achieved during the experiment.

The waveforms of the test sequences are plotted in
Figs. 11a and 11b.

Figure 12 gives output power of the PV panel when
the irradiance profile, shown in Fig. 11a, is applied.
From Fig. 12a, it can be seen that the new AbM algo-
rithm is able to track correctly the irradiance change.
Moreover, it shows better performances compared to
the conventional P&O algorithm. At high irradiance
level, the extracted power in steady-state by the AbM
and P&O are, respectively, 128 and 120 W (see
Fig. 12b). Hence, AbM method increases the output
power by 6.67%. At low irradiance level, the output
powers in steady-state are, respectively, 39 and 36 W.
In this case, the proposed method increases the power
by 8.33%. In transient-states (during fast and slow
irradiance change), superiority of the proposed
method is clearly displayed in Fig. 12c. Moreover, the
obtained results clearly demonstrates that the AbM
has a better signal waveform and reduced oscillations
compared to the P&O.

Figure 13 displays the PV panel voltage and current
sensed by Hall effect transducers. In case of the pro-
posed AbM, the result shows less oscillations and sta-
ble waveforms than the P&O. It can be noted that the
presence of oscillations with low frequencies in the
current and voltage are mostly due to noises measure-
ment (see Figs. 13c and 13d). However, the controlled
system using the AbM method has a good noise and
fluctuations rejection around the MPP.

CONCLUSIONS

New MPPT concept has been proposed in this
paper for improving maximum power extraction in PV
systems. The proposal exploits the simple ADALINE
structure which leads to easy and low-cost implemen-
tation. To verify its effectiveness, simulation and
experiment have been conducted under variable solar
irradiance and load. A comparison with the P&O
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020
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Fig. 12. Experimental comparison results of the AbM and
P&O methods: (a) PV power tracking performances; (b)
zoom on the PV power at steady state; (c) zoom on the PV
power in transient state.
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Fig. 13. Experimental comparison results of the AbM and
P&O methods: (a) PV voltage; (b) PV current; (c) zoom on
the PV voltage in steady state; (d) zoom on the PV current
in steady state.
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algorithm has been conducted under the same condi-
tions. The obtained results confirmed performances
superiority of the proposed AbM algorithm which can
be summarized as fallow:

(1) 100% of power efficiency in steady and tran-
sient-states,

(2) zero oscillations in the PV current and voltage
in steady-state,
APPLIED SOLAR ENERGY  Vol. 56  No. 2  2020
(3) minor oscillations in the PV current and voltage
in transient-state,

(4) more easily implementable than the simpler
P&O algorithm,

(5) analogic implementation is possible with basic
circuits.

The suggested method is equally effective for low
insolation levels and can works even where sudden
solar irradiance changes are likely to occur. So, the
proposal may be suitable for tracking uncommonly
fast irradiance variations like mobile solar applica-
tions. Finally, due to reduced and absence of complex
computations in the AbM scheme, it is an excellent
candidate for increasing the reliability for commercial
PV systems.

As future work, we intend to test the developed
AbM using a real laboratory prototype based on sev-
eral PV panels integrated into a more complex system
such as a distributed generation system connected to a
microgrid. The test setup can be used to evaluate the
AbM performances regarding to multiple connected
linear and non-linear loads. Other future scope is to
test the suggested MPPT algorithm for drawing the
maximum power from the PV modules in further
applications such as single-stage grid-connected PV
systems. In this application, experimental compari-
sons between the proposed AbM and other existing
MPPTs will be performed especially under partial
shading conditions.
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