
ORIGINAL ARTICLE

Cloning and characterization of CbHMGR and CbSQS genes
in Conyza blinii

Rong Sun1,2
& Jinglei Gao2

& Shan Liu2
& Hui Chen1

Received: 1 May 2020 /Accepted: 18 December 2020
# Institute of Molecular Biology, Slovak Academy of Sciences 2021

Abstract
Conyza blinii H.Lév. is a traditional medicine for the treatment of bronchitis cough. Triterpene saponins (conyzasaponins) are
major pharmacological components in C. blinii. Here, two C. blinii genes coding for the important regulatory enzymes of the
conyzasaponins biosynthetic pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and squalene synthase (SQS), were
cloned and characterized. The open reading frames of CbHMGR and CbSQS were 1740 bp and 1257 bp in length, respectively.
Gene structure display server analysis revealed that there were four introns in the gDNA ofCbHMGR and no intron in the gDNA
of CbSQS. The analyses of their deduced amino acid sequences showed that these two genes had the typical domains shown in
homologous proteins. The phylogenetic relationship between the two genes and their homologous genes were consistent with
their natural evolution. The GCMS results of enzymatic activity assays showed that CbHMGR catalysed the formation of
mevalonate fromHMG-CoA. CbSQS catalysed the synthesis of squalenewith farnesyl diphosphate as a substrate. These findings
will provide a sound base for further research on the conyzasaponins biosynthetic pathway and may have applications in the
synthetic biology of conyzasaponins production.
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Abbreviations
GC-MS Gas chromatography coupled to mass

spectrometry
HMG-CoA 3-Hydroxy-3-methylglutaryl Coenzyme A
RACE Rapid amplification of cDNA end
FPP Farnesyl diphosphate
DTT Dithiothreitol
FPKM Expected number of Fragments Per Kilobase

of transcript sequence per Millions
base pairs sequenced

Introduction

Isoprenoids in plants composed of primary metabolites and
secondary metabolites. The primary metabolites are important

in the basic life activities of plants. For example, sterol is
involved in biofilm construction; ubiquinone is involved in
respiration; carotenoids and chlorophyll are involved in pho-
tosynthesis; and gibberellins, abscisic acid, cytokines and
brassinolide are involved in plant growth and development.
Secondary metabolites play less essential roles but are impor-
tant in regulating the relationship between plants and the eco-
logical environment. Moreover, secondary metabolites usual-
ly have commercial value. They are used as pharmaceuticals,
agrochemicals, solvents and food additives (Roberts 2007).

Conyza blinii H.Lév. is a folk herb that used in western
Sichuan, for its treatment of asthmatic cough and other inflam-
matory conditions (Chinese Pharmacopoeia Commission
2015). Its main secondary metabolites are isoprenoids, includ-
ing blinin, α-amyrin, β-amyrin, oleanolic acid, ursolic acid,
conyzasaponins and so on (Xu et al. 1999; Su et al. 2001a, b,
2003). The entirety of the plant can be medicinally prepared
and themost popularC. blinii extract product is “Conyza blinii
extract tablets”, which consists of conyzasaponins (Li 1980).
In addition, conyzasaponins have anticancer activity (Ma et al.
2016). Thus the conyzasaponins are responsible for C. blinii
major pharmacologically bioactivity. However, the
conyzasaponins content in C. blinii is low, which are
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insufficient to meet the demand for pharmaceutical prepara-
tions. Hence, methods that improve conyzasaponins content
are the focal point in studies on C. blinii.

To better regulate the synthesis of target isoprenoids, it is
essential to understand their biosynthetic pathways. Previous
studies have suggested that isoprenoids are synthesized by the
MVA (mevalonic acid) pathway or theMEP (methylerythritol
phosphate) pathway (Lichtenthaler et al. 1997; Lichtenthaler
1999). Conyzasaponins are oleanane-type pentacyclic
triterpene saponins, which are synthesized via the MVA path-
way (Fig. 1). That is a complex and multi-branched pathway.
Identification of the key enzyme genes is one of the important
aspects of studying these complex, multi-branched metabolic
processes.

3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR, EC:
1.1.1.34) is the first rate-limiting enzyme in the MVA path-
way (Rodwell et al. 1976; Bach 1986; Stermer et al. 1994). It
catalyses irreversible conversion of HMG-CoA into
mevalonate, the precursor of the isoprenoids (Chappell et al.
1995). Due to its significance in isoprenoid metabolism,
HMGR has been isolated and characterized from many high
plants. Cao et al. (2010) isolated a new HMGR gene from
young leaves of Euphorbia Pekinensis by RACE. And a func-
tional colour complementation assay in Escherichia coli was
operated to prove that EpHMGR could catalyse the biosyn-
thesis of carotenoids. Kalita et al. (2015) reported the full
length cDNA cloning of HMGR and its characterization from
Centella asiatica. Most recently, genes encoding HMGRs
have been cloned from Cymbopogon winterianus (Devi
et al. 2017), Gossypium (Liu et al. 2018), Pogostemon cablin
(Zhang et al. 2019), Ginkgo biloba (Rao et al. 2019) and
Andrographis paniculata (Srinath et al. 2020).

Another important regulatory enzyme, squalene synthase
(SQS, EC: 2.5.1.21) is the first committed enzyme in the sterol

and triterpenoid biosynthesis. It converts two molecules of
FPP into squalene, a commom precursor of sterols and
triterpenes (Brown and Goldstein 1980; Abe et al. 1993).
Similarly, SQS has been cloned and characterized from many
plants, such as Arabidopsis thaliana (Kribii et al. 1997),
Centella asiatica (Kim et al. 2005), Taxus cuspidate (Huang
et al. 2007), Siraitia grosvenorii (Su et al. 2017), Taraxacum
koksaghyz (Unland et al. 2018),Medicago sativa (Kang et al.
2019) and Camellia sinensis (Fu et al. 2019).

However, the HMGR and SQS genes involved in
conyzasaponins biosynthetic pathway have not been identi-
fied. In this study, we report the isolation and molecular char-
acterization of CbHMGR and CbSQS genes from C. blinii
transcript tags. And the biological function of the two genes
were verified by in vitro enzymatic activity assays. The results
will enable us to map and regulate the important steps in-
volved in conyzasaponin biosynthetic pathway at the level
of molecular genetics in the future.

Materials and methods

Plant material

C. blinii plants were collected from 101°46′~102°30′ E, 26° N
at an altitude of 1680~2100 m in Panzhihua, Sichuan, China.

RNA and DNA isolation

Leaves collected from C. blinii were used to isolate RNA and
DNA. A RNAprep pure Plant Kit (TIANGEN) was used to
isolate the total RNA. Single-stranded cDNA was prepared
using the PrimeScript 1st Strand cDNA Synthesis Kit

Fig. 1 The conyzasaponins biosynthetic pathway. AACT, acetoacetyl-
coa thiolase; HMGS, 3-hydroxy-3-methylglutaryl coenzyme A synthase;
CbHMGR, C. blinii 3-hydroxy-3-methylglutaryl coenzyme A reductase;
MVK, mevalonate kinase; PMK, phosphor mevalonate kinase; MVD,

mevalonate diphosphate decarboxylase; IPI, IPP isomerase; FPPS,
farnesyl diphosphate synthase; CbSQS, C. blinii squalene synthase;
SQE, squalene epoxidase; βAS, β-amyrin synthase; P450s: cytochrome
P450 monooxygenases; GTs: Glycosyltransferases (Hsieh et al. 2011)
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(Takara). A Plant Genomic DNA Kit (TIANGEN) was used
to extract genomic DNA.

Gene cloning

The candidate HMGR and SQS genes were searched based on
the in-text gene names and functional annotations of unique
annotated genes from the C. blinii transcriptome annotation
library (Sun et al. 2015). According to the selected tag se-
quences, specific primers (Table 1) were designed.
PrimeSTAR Max DNA Polymerase premix (2×) (Takara)
was used to amplify sequences. The TIANquick Mini
Purification Kit (TIANGEN) was used to purify PCR prod-
ucts. The pMD19-T simple vector (TaKaRa) was used as a
cloning vector and Escherichia coli strain DH5α (stored in the
laboratory) was used as the cloning host strain. Finally, the
PCR products sequences were sequenced by Invitrogen
trading.

Bioinformatics analysis

Gene Structure Display Server (GSDS, http://gsds.cbi.pku.
edu.cn/) was used to analyse the genomic DNA sequence
features (Hu et al. 2014). The alignment of multiple se-
quence were analysed by DNAMAN software. The
SOPMA server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_
automat.pl?page=/NPSA/npsa_sopma.html) was used to
determine the secondary structure. Transmembrane
domains were analysed with the TMHMM Server 2.0
(http://www.cbs.dtu.dk/services/TMHMM-2.0/). Protein
sequences were used to construct the phylogenetic tree by
MEGA 7 software with Neighbor-Joining method and
1000 bootstrap replications (Tamura et al. 2011).

Construction of expression vectors and heterologous
expression

The specific primers with restriction sites (Table 1) were used
to amplify the coding sequences. The CbHMGR and CbSQS
PCR products were digested with BamH I and Xho I restric-
tion enzymes. Then inserted the digested products into the
corresponding sites of the pYES2/NT B vector. Colony
PCR, restriction digestion and sequencing were used to con-
firm positive clones. Subsequently, the positive plasmids were
transformed into the Saccharomyces cerevisiae strain
INVSc1. After cultivation for 3~4 days, single clones contain-
ing positive plasmids or empty vectors were inoculated in
15 mL of SC-U medium (synthetic complete medium without
uracil). To induce gene expression, 2% galactose and 1% raf-
finose were used to replace glucose. Cultures were grown for
18 h at 30 °C with shaking at 200 rpm.

Heterologous protein extraction

A One Step Yeast Active Protein Extraction Kit (Sangon
Biotech) was used to extract the heterologous proteins from
S. cerevisiae. An ultrafiltration tube (Millipore) was used to
exchange buffer and concentrate protein.

Enzyme assays

A CbHMGR enzyme activity assay was carried out as de-
scribed by Gu et al. (2015). The 1 mL reaction mixture
contained 50 mmol/L KCl, 25 mmol/L K2HPO4 (pH=7.2),
1 mmol/L EDTA, 5 mmol/L DTT, 100 μL CbHMGR crude
protein (100 μg/mL), 0.3 mmol/L NADPH (Roche),
0.3 mmol/L HMG-CoA (Sigma-Aldrich) and ddH2O. After
incubation at 30 °C for 30 min, terminate the reaction by
adding 100 μL of 6 mol/L HCl. Then, the reaction was stored
at 25 °C for 1~2 h. Finally, the reaction product was extracted
with two volumes of ethyl acetate. The extracts were analysed
by gas chromatography coupled to mass spectrometry (GC-
MS) under the same conditions as those described by Gu et al.
(2015). The product was identified with NIST software.

A CbSQS enzyme activity assay was carried out as de-
scribed by Ye et al. (2014) with some modifications. The
500 μL reaction mixture contained 40 mmol/L MgCl2,
100 mmol/L Tris-HCl (pH 7.5), 0.1 mmol/L FPP (Sigma-
Aldrich), 4 mmol/L DTT, 30 mmol/L BSA, 0.2 mmol/L
NADPH and 220 μL of CbSQS crude protein (100 μg/mL).
The mixture was incubated at 32 °C for 10 h. Then two vol-
umes of hexane were used to extract the reaction product.
Finally the concentrated organic phase was analysed by GC-
MS under the same conditions as those described by Ye et al.
(2014). The squalene was identified with NIST software.

Table 1 Primers used in this study

Primers Sequence (5′→3′)

Gene cloning primers

HMGRf ATGGACGTTCGCCAGCGCCCG

HMGRr TTAGGTTAACTTGGACATATC

SQSf ATGGGGAGTATAAAGGCAGTT

SQSr TTACAAAGAGACTTTGATTTT

Gene expression primers

CbHMGReF GGATCCGATGGACGTTCGCCAGCGCCCG

CbHMGReR CTCGAGTTAGGTTAACTTGGACATATC

CbSQSeF GGATCCGATGGGGAGTATAAAGGCAGT
T

CbSQSeR CTCGAGTTACAAAGAGACTTTGATTTT
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Results

Sixteen sequences predicted as candidate HMGRs were ob-
tained from the C.blinii transcript tags (Table S1). However
twelve among them is too short, which only encode peptide
less than 100 aa. c29868 and c45602 encode the same peptide.
c29868 (c45602) and c38514 encode peptide about 330 aa.
c29574 encode the full length HMGR protein. According to
the FPKM value of these tags indicated that c29574 tag is the
highest expressed one (Table S1). Therefore, c29574 was se-
lected as the CbHMGR gene for further research.

The CbHMGR gene has a 1740 bp long coding sequence
and encodes a peptide of 580 aa. Its GenBank accession num-
ber is KX907777. A BLASTp search revealed that CbHMGR
has the highest similarity to HMGR from Chamaemelum
nobile. The protein conserved domain prediction analysis pre-
d i c t e d t h a t t h e C bHMGR b e l o n g s t o HMG -
CoA_reductase_classI. This HMGR class catalyses the syn-
thesis of coenzyme A and mevalonate in isoprenoid synthesis
(Choi et al. 1992). The calculated molecular mass of
CbHMGR is 62.17 kDa, and its isoelectric point is 6.61.
GSDS analysis revealed four introns (1383 bp, 1165 bp,

Fig. 2 Distribution of introns in gDNA of CbHMGR

Fig. 3 Alignment analysis of CbHMGR and HMGRs from
Chamaemelum nobile (AMN10096.1), Tagetes erecta (AAC15475.1),
Gentiana lutea (BAE92730.1) and Panax ginseng (AIX87980.1).

Black: 100% homologous residues; Gray: ≥ 75% homologous residues.
A, B: two HMG-CoA binding motifs; C, D: two NADP(H) binding
motifs

2340 Biologia (2021) 76:2337–2347



470 bp and 189 bp) in the genomic DNA of CbHMGR
(Fig. 2).

Sequence alignment showed that mature CbHMGR con-
tains two HMG-CoA binding motifs (EMPVGYVQIP and
TTEGCLVA) and two NADP(H) binding moti fs
(DAMGMNM and GTVGGGT), which were the four highly
conserved motifs in all plant HMGRs and function as the
catalytic active sites of the HMGR protein (Fig. 3). The sec-
ondary structure of CbHMGRwas composed of 40.76% alpha
helices, 33.51% random coils, 17.10% extended strands and
8.64% beta turns. The results of the phylogenetic analysis
(Fig. 4) showed that CbHMGR is homologous to HMGR
from C. nobile, which is in accordance with the BLAST
results.

To examine the function of CbHMGR, the pYES-
CbHMGR recombinant plasmid was constructed, then

expressed in INVSc1 yeast. GC analysis of reaction
products of 18-h-old pYES-CbHMGR strain revealed a
single peak at 8.0 min, which was absent in the empty
pYES2/NT B vector strain and the blank control. The
MS data indicated that the particular peak detected in
pYES-CbHMGR strain (8.0 min) was mevalonic acid
lactone (Fig. 5). Consequently, we conclude that
CbHMGR is indeed a 3-hydroxy-3-methylglutaryl-CoA
reductase.

According to the transcriptome analysis, only one tag
corresponded to SQS gene (Table S1). Therefore, we
selected it as the CbSQS gene for further research.
CbSQS has a 1257-bp coding sequence which encodes
418 amino acid residues. Its GenBank accession number
is KX907779. A BLAST search indicated that CbSQS
shares 90% identity with the SQS from Artemisia

Fig. 4 Phylogenetic analysis of HMGR amino acid sequences using the neighbor-joining (NJ) method. Twenty-seven sequences from different species
were retrieved from GenBank. The accession numbers are provided after the names. CbHMGR is marked with a circle
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annua. The calculated molecular mass of CbSQS is
47.96 kDa, and its isoelectric point is 8.61. GSDS anal-
ysis indicated that there are no introns in the gDNA of
CbSQS. The result of sequence alignment showed that
CbSQS contains four highly conserved motifs and two
poor conserved motifs (Fig. 6). Domain A is an extend-
ed hydrophobic domain bounded on domain B. Domain
B and domain D are two aspartate-rich domains, which
constitute the two sets of substrate binding sites for

allylic. Domain C is a partially conserved phytoene syn-
thetases motif that is essential for catalysis. Domain E is
present only in squalene synthetases. Domain F is the
transmembrane domain of CbSQS.

The CbSQS secondary structure primarily include al-
pha helices (61.24%), with some random coils
(21.05%), extended strands (9.57%) and beta turns
(8.13%). The results of the phylogenetic analysis
(Fig. 7) showed that CbSQS has the closest genetic

Fig. 5 GC-MS results of CbHMGR in vitro enzymatic activity assay. a
GC chromatogram of the CbHMGR group reaction products (a and b),
the empty pYES2/NT B vector group reaction product (c) and the blank

control group reaction product (d). b The MS spectrum of line a in A. c
The MS spectrum and the structure of mevalonic acid lactone
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relationship with the SQS from A. annua, which con-
curs with the BLAST results.

To examine the catalytic activity of CbSQS in squalene
production, active proteins from pYES-CbSQS transgenic
yeast were incubated with FPP for 10 h at 32 °C. Analysis
of GC retention times revealed that there was a peak for the
pYES-CbSQS strain at 11.5 min, while there were no peaks
for the empty pYES2/NT B vector strain and the blank control
group. After searching the NIST database the peak detected in
the transgenic strain was confirmed as squalene (Fig. 8). This
result suggests that CbSQS catalyses conversion of FPP to
squalene.

Discussion

Conyza blinii is a rare Chinese herb endemic to southwest
China that is commonly called Jin Long Dan Cao.
According to the records of the Chinese Pharmacopoeia, it
has anti-inflammatory, antitussive, anti-asthmatic and expec-
torant effects (Chinese Pharmacopoeia Commission 2015).
The pharmacological effects of medicinal plants are mediated
by secondary metabolites, which are the main sources of nat-
ural medicines. However the contents of metabolites in the
natural plants are usually low, which hampered the applica-
tions of the pharmacologically active compounds (Misawa

2011). Overexpressing the biosynthesis pathway genes is an
effective way to enhance the yield of metabolites (Lu et al.
2016). For example, Deng et al. (2017) reported co-
overexpression of PnHMGR and PnSS could remarkably en-
hance the accumulation of total saponins in Panax
notoginseng cells, which was 3-fold higher than those in con-
trol. Overexpression of Panax ginseng HMGR resulted in 1.1-
to 1.6-fold increase of phytosterol and triterpene in hairy root
cultures of Platycodon grandiflorum (Kim et al. 2013).
Conyzasaponins are oleanane-type triterpene saponins from
C. blinii, which are responsible for C. blinii major pharmaco-
logically bioactivity. Nevertheless, the use of conyzasaponins
is hampered by their low levels in C. blinii and by the lack of
information about their biosynthetic pathway. To date there
are only two researches on conyzasaponins pathway, which
are identifying the CbSQE and CbβAS genes involved in
conyzasaponins biosynthetic pathway (Sun et al. 2016; Sun
et al. 2017). However the upstream genes have not been iden-
tified, which are also important in conyzasaponins biosynthet-
ic pathway.

HMGR is the first key enzyme in the MVA pathway
(Chappell 1995). In this study, a HMGR gene of C. blinii,
namely, CbHMGR, was cloned and identified. The open read-
ing frame length (1740 bp) of cloned CbHMGR is similar to
that of HMGRs from other plants. As previously reported that
there are two distinct classes of HMGRs: HMGRs class I and

Fig. 6 Alignment analysis of C. blinii SQS and the SQS sequences from
Eleutherococcus senticosus (AEA41712.1), Gossypium raimondii (XP_
012449773.1), Vitis vinifera (XP_002266150.1) and Artemisia annua
(AAR20329.1). Black: 100% homologous residues; Gray: ≥ 75%

homologous residues. a: Hydrophobic motif; b and d: Two aspartate-
rich motifs; c: Phytoene synthetases motif; e: Squalene synthetases pecu-
liar motif; f: Transmembrane domain
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HMGRs class II (Bochar et al. 1999). Class I HMGRs contain
N-terminal membrane domains involved in the membrane lo-
calization and the sterol-regulated degradation of HMGRmol-
ecules (Caelles et al. 1989; Denbow et al. 1996). The results of
TMHMM analysis indicated that CbHMGR, like that of all
known plant HMGRs, contains two transmembrane domains
(40–62 and 83–105), which is consistent with conserved do-
main prediction results.

Additionally, SQSs were studied as a key enzyme for the
biosynthesis of squalene as an intermediate for the production
triterpenoids. The cloned CbSQS sequence show the same
characteristics as known SQS sequences. CbSQS sequence
codes for 418 aa with a 47.96 kDa molecular mass. These
results are in accordance with those of previous reports, which
have indicated that the SQS protein is approximately 410 to
461 aa long with a molecular mass in the 42.9~52.5 kDa range
(Hanley and Chappell 1992; Robinson et al. 1993; Okada
et al. 2000). And as other SQSs, six conserved regions are

present in the CbSQS. These consensus regions are predicted
or even have been proven to be important for the SQS activity
(Gu et al. 1998; Pandit et al. 2000). In summary, these results
provide new information about previously unannotated genes
of conyzasaponins biosynthesis pathway.

Furthermore, in this study, we investigated the in vitro en-
zymatic activity of these genes. Through yeast expression
analysis, CbHMGR was characterized as a reductase that pro-
duces mevalonic acid from HMG-CoA. CbSQS was charac-
terized as a synthase, catalyses the reductive dimerization of
farnesyl pyrophosphate. These results can not only help to
increase understanding of the conyzasaponins biosynthesis
pathway, but also provide a foundation for biotechnological
improvement of the conyzasaponins content. However, fur-
ther research on their function in conyzasaponins biosynthesis
is still requiring. For example, overexpressing these genes in
homologous and ectopic plants, knock out these genes in
C. blinii or co-expressing these genes with other genes

Fig. 7 Phylogenetic analysis of SQS amino acid sequences using the neighbor-joining (NJ) method. Twenty-six sequences from different species were
retrieved from GenBank. The accession numbers are listed after the names. CbSQS is marked with a circle

2344 Biologia (2021) 76:2337–2347



involved in conyzasaponins pathway to produce
conyzasaponins using synthetic biology.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.2478/s11756-020-00671-z.
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