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Abstract
Peptidase clan is the largest group of proteases with common ancestry as identified by structural homology. A peptidase with
unknown catalytic type is referred to as an unassigned peptidase clan, which can be classified into 8 peptidase families (U32,
U40, U49, U56, U57, U62, U69, and U72). The members of this clan are widely dispersed in diverse microbial pathogens and
their apparent involvement in the microbial virulence is not yet known for antibiotic drug discovery. In the present study, we have
analyzed their common structural and functional characteristics using evolutionary genetic analysis. As shown by our analysis,
the molecular and functional characteristics of this clan diverged across the microbial pathogens. It also indicates that the
members of each family might have evolved independently and a peptidase core converged to interconnect the unassigned
peptidase clan. Several evolutionary constraints have been identified as selective measures from this clan that inferred on their
functional evolution and divergence. Genetic diversity analysis described that many members of this clan have evolved as new
molecular functions across the microbial pathogens by imposing the Darwinian positive selection. Structural analysis of this
study indicates that members of this clan have a conserved fold, convergence in functional parts, and divergence in spatial
structural arrangements. As the results of our study, the neofunctionalization of several unassigned peptidases provides a full
virulence for microbial pathogens occupying at the different pathophysiological niche.
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Introduction

Molecular virulence of some bacteria and parasites can sur-
vive and reproduce inside phagocytic cells. Cell surface pro-
teins, toxic proteins, and hydrolytic enzymes are some of the
common virulence factors produced by the pathogenic bacte-
ria.Microbial infections depend on a combination of virulence
factors, the immune status of the host, and the innate resis-
tance of the host. Molecular virulence of any pathogenic bac-
teria is usually determined by the proteins in nature
(Henderson and Nataro 2001). Proteinase is a hydrolytic

enzyme that breaks down peptide bonds in proteins and pep-
tides. It can be classified into 8 main clans based on the cata-
lytic residues (Rawlings and Barrett 1993; Rawlings et al.
2004, 2006) and further grouped into 225 families with 71
peptide inhibitors (Rawlings et al. 2012).

A peptidase with the unknown active site and the catalytic
site is grouped as an unassigned peptidase clan (Hicks et al.
2001). A clan is a group of families that are thought to share a
common ancestor. According to the MEROPS 9.5, 8 pepti-
dase families (U32, U40, U49, U56, U57, U62, U69, and
U72) belong to unassigned peptidase clan. These familymem-
bers are widely distributed in diverse microbial pathogens
(Rawlings 2010, Rawlings et al. 2012) and play important
roles in the microbe-microbe and microbe-host interactions.
Some members of this clan allow a pathogen to evade the
host’s immune response, and degrade some extracellular com-
ponents in the host tissues (Popoff and Bouvet 2009).
Consequently, a redox potential has been lowered in the in-
fected tissues due to the buildup of metabolites from protein
degradation (Mittal et al. 2014). It ensures a competitive ad-
vantage to the pathogens to possibly implicate for microbial
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infections and diseases. However, it is still debated to evaluate
potential associations between unassigned peptidases and mi-
crobial virulence in contrast to the mammalian counterparts.

To date, crystallographic structures have been solved only
for the Thermotoga maritima DNA gyrase, a member of the
unassigned peptidase U62 family (Rife et al. 2005). The spec-
ificity, structures, and biochemical functions of microbial un-
assigned peptidases are not yet known in detail compared to
those found in humans (Duarte et al. 2016). Most recently,
apparent involvements of the members of this clan were ex-
tensively analyzed to understand the microbial pathogenesis
and virulence mechanisms based on the evolutionary aspects
of their structures and functions (Sharov 2014; Chellapandi
and Prisilla 2017).

Several evolutionary constraints have been identified from
the structures and functions of some virulence proteins or
protein families (Chellapandi et al. 2013, 2018, 2019;
Prathiviraj et al. 2016; Prisilla et al. 2016; 2017). A common
functional core is conserved and substantially established
across unassigned peptidases of microbial pathogens by evo-
lutionary pressure (Barrett and Rawlings 2007). In this study,
evolutionary genetic analysis was carried out to understand
the molecular involvement of unassigned peptidases in the
microbial virulence and pathogenesis. Current bioinformatics
resources can ensure our knowledge of explicating the molec-
ular hypothesis of their structures, functions, and evolution
behind the development of human therapeutics.

Materials and methods

Dataset

The unassigned peptidase’s sequences were retrieved from the
UniProt database (http://www.uniprot.org/). These sequences
were used as templates for the identification of respective
similarity hits by searching against microbial pathogens
using the National Center for Biotechnology Information-
Delta-Blast program (Boratyn et al. 2012). A topology of con-
served domains in each target peptidase was identified with
the Simple Modular Architecture Research Tool 8.0 server
(Letunic and Bork 2018). The sequences with low sequence
similarity, and partially conserved domain removed from the
dataset (Table S1).

Evolutionary genetic analysis

Multiple sequence alignment was separately carried out for
each family by ClustalX 2.0 software (Thompson et al.
1997). The aligned sequences were inspected manually and
refined to obtain a significant alignment. Homogeneous pat-
terns among all lineages were searched with a neighbor-
joining algorithm using the Molecular Evolutionary Genetics

Analysis (MEGA) X software (Kumar et al. 2018). The final
phylogenetic tree was manually corrected and constructed
with 1000 bootstrapping replicates. A supertree was construct-
ed for the overall clan members with the COBALT server
using a Fast Minimum Evolution algorithm (Papadopoulos
and Agarwala 2007). Phylogenetic divergence across each
family was calculated from corresponding trees by
SplitsTree 4.0 software (Huson and Bryant 2006) using the
BioNJ algorithm. Evolutionary genetic analyses were per-
formed with MEGA software. Recombination frequency and
population-scaled mutation rate were calculated by
Recombination Detection Program 3.0 software using the
Recomb2007 method (Martin et al. 2010). Coefficients for
the type-I (θI) and type-II (θII) functional divergence were
examined with DIVERGE 3.0 software (Gu et al. 2013) using
the Kimuramodel with 100 bootstraps. Synonymous and non-
synonymous substitution sites subject to the Darwinian selec-
tion were calculated by a selective strength (Ka/Ks ratio, ω)
using the Ka/Ks calculator 2.0 (Wang et al. 2010) and HyPhy
2.2.1 program (Pond et al. 2005). The evolution rate of each
family was calculated by Rate4Site 2.01 software (Mayrose
et al. 2004). Evolutionary patterns were inferred between two
similarity sequences of microbial pathogens by EMBOSS
ALIGN (http://www.ebi.ac.uk/Tools/psa/emboss_needle/)
using different amino acid substitution matrices.

Structural and functional analysis

The structural homologs were searched in the protein
databank with the Position-Specific Iterated-Basic Local
Alignment Search Tool (Altschul et al. 1997) and then used
as structural templates for the prediction of 3D structures from
the target sequences using the SWISS-MODEL (Biasini et al.
2014). The predicted structures were analyzed for their quality
and accuracy by Structural Analysis and Verification Server
(https://services.mbi.ucla.edu/SAVES/). The protein folding
rates of all structural classes were predicted from the target
sequences by the FoldRate server using a multiple regression
program (Gromiha et al. 2006). The sequentially conserved
motifs and regular expression patterns across unassigned pep-
tidase families were discovered byMEME Suite 5.1.1 (Bailey
et al. 2015). The PROSITE signature matches and ProRule-
associated functional and structural residues were detected
using the ScanProsite (de Castro et al. 2006).

Results

The members of this clan are found in diverse pathogenic
b a c t e r i a , a n d m a n y o f t h em b e l o n g t o t h e
Enterobacteriaceae family (Table 1). Peptidases U32 and
U62 are immensely dispersed in microbes compared to other
families. Peptidases U32, U57, and U69 are mainly present in
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the pathogenic bacteria, particularly Mycobacterium
tuberculosis. The phylogenetic trees were constructed for in-
ferring the origin and evolution of microbial unassigned pep-
tidases (Fig. 1 and Fig.S1). Each family of this clan is formed
eight major groups separately, and some members from pep-
tidases U57, U49, U69, and U62 are distinct from the respec-
tive clusters. It revealed that the conserved domains of such
families slightly diverged, despite entire protein sequences.
Some members in the peptidase U49 are diverged from the
members of peptidase U49 and clustered with fewmembers in
the peptidase U69 (Salmonella enterica). Peptidase U32 is
clustered separately within microbial pathogens.

Estimates of genetic diversity of this clan implied that the
overall transition/transversion ratio is ranged from 0.60 to
1.28, in which peptidase U57 is highly diverged by a radical
nucleotide substitution (Table 2). Evolution rates (α) of pep-
tidases U49 and U69 are relatively higher than other families,
reflecting that both families may undergo rate variation among
sites. Estimates of phylogenetic distance and invariant sites
are closely related to one another within the family. The phy-
logenetic diversity of peptidases U32 and U62 is expanded
with diverged functions (Fig. S2).

Estimates of population-scaled recombination pinpointed
that nucleotide/amino acid diversity of peptidase U57 has ex-
panded more than other families. Duplication/shuffling events
show to impact on the functional divergence of peptidases
U62 and U72. Peptidases U49, U62, and U69 are diverged

for functional selection by imposing the Darwinian positive
selection (Table 2). It indicated that somemembers of this clan
widely diverge in the microbial pathogens at the species level
and most of them are retained by neutral evolution within
closely related species (Table S2). Conserved domains of this
clan are not separately diverged but a new functionmight have
evolved at the same evolution rate in the microbial pathogens.

Besides, recombination events were observed as evolution-
ary constraints for the evolution of new function or tomaintain
existing function in the microbial pathogenic lineage. There
are no recombination events detected in the peptidases U56
and U69. The recombination/mutability rate is notably higher
in the peptidases U72 and U49 compared to others (Tables S3-
S4). Peptidase U62 is less conserved as the result of frequent
substitution mutations (Fig. S3-S4). The primary coevolved
residues are contributed to the functional evolution of the
members of this clan during the coevolution process
(Table S5).

Peptidase U62 contains a PmbA-TldD domain expected to
undergo type-I divergence by fixing the function in both
groups but variable in another group (Table 3). A conserved
domain across peptidase U72 undergoes type-II divergence.
The rate of gene duplication events across peptidases U62 and
U72 imposed by type-I divergence is faintly higher than those
events that have undergone type-II divergence. An extensive
analysis of common motifs provided a clue to understanding
the catalytic function and substrate-binding specificity of each

Fig. 1 Dendrogram for unassigned peptidase clan in the microbial
pathogens, reconstructed by Fast Minimum Evolution algorithm in the
COBALT server using closely related protein sequences obtained from
diverse microbial pathogens. Datasets used for the phylogenetic tree

construction and trees of individual families are available in the
Supplementary file. The circular view of all microbial unassigned
peptidases is represented in Fig. 1a. A condensed view of respective
unassigned peptidase families is represented in Fig. 1b
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family in this clan (Fig. 2). The results of our study revealed
that the peptidase motif is a common conserved functional
core subjected to diverge for substrate recognition.

Homology models were generated for understudied target
peptidases as shown in Fig. 3a. It has been shown that all
modeled proteins have exhibited a 21–61% sequence identity
with dissimilar molecular functions (Table 4). All modeled
proteins were validated for their structural quality and accura-
cy using the Ramachandran plot. It shows that modeled resi-
dues of each target proteins are in the allowed region and few
residues are in disallowed regions. We predicted above 90%
residues are in allowed regions in the plot. However, structural
motifs in the peptidases are analogs to those present in the

structural templates. It pointed out that a conserved fold and
spatial structural arrangement might have evolved separately
at different evolution rates. Results of fold rate prediction
show the structures of peptidases U32 and U49 consisted of
all-alpha classes with the fast-folding rate (Fig. 3b). Peptidase
U56 structure composes unknown structural classes at differ-
ent folding rates. Peptidase U57 structure has a mixed struc-
tural class with a slow folding rate. The structures of the pep-
tidases U62, U69, and U72 have mixed structural classes with
a fast-folding rate. The results of this study are considerably
better to understand the entanglement of folding imprints in
the arrangement of structural elements and associated molec-
ular functions.

Table 2 Estimates of genetic diversity and Darwinian selection for unassigned peptidase clan in the microbial pathogens

Genetic parameters U32 U49 U56 U57 U62 U69 U72

Transition/Transversion ratio (R) 0.61 0.83 0.74 1.28 0.92 1.07 0.60

Rate variation among sites (α) 1.3628 8.1378 2.5804 0.4943 1.7207 10.2361 0.1657

Evolutionary distance (d) 0.4762 0.7228 0.1340 0.2326 0.6511 1.0753 0.1822

Number of segregating sites (S) 65 153 149 169 304 134 295

Invariant sites (+ I) 0.8036 0.9311 0.2469 0.4783 0.9311 0.7365 0.3958

Phylogenetic diversity 4.1259 3.0491 0.8956 1.4740 6.0270 3.5552 1.4312

Nucleotide/amino acid diversity (π) 0.4649 0.7051 0.1340 1.7097 0.6297 0.4275 0.1800

Recombination/mutability rate (Δ) 0.0013 0.1626 0.0014 0.1126 0.0985 0.1226 0.2409

Recombination frequency (Φ) 0.0396 0.3273 0.1396 0.2278 0.2320 0.2154 0.1432

Tajima test statistic (D) 0.4590 5.5525 -0.1530 0.7075 6.3971 3.4128 0.9641

Non-synonymous substitution rate (dN) 4.8119 3.0535 1.9863 2.2463 11.188 5.7423 1.1032

Synonymous substitution rate (dS) 4.9995 3.2017 4.1785 5.66 15.206 6.2654 1.0398

Selective strength (dN – dS; Ω) -0.1876 -0.1481 -2.1921 -3.4137 -4.0182 -0.5231 0.0634

Table 1 Description of unassigned peptidase clan in the microbial pathogens

Family Functional description Overall microbes Microbial pathogens Gene

SEq. data# Seed UniProt ID SEq. data* Target UniProt ID

U32 Collagenase 2683 PGI P33437 69 HPY I9UMN6 PrtC

U40 Protein P5 murein endopeptidase 2 BP6 P07582 - - - -

U49 Lit peptidase 11 ECO P11072 11 ECO C9QYH3 Lit

U56 Homomultimeric peptidase 214 TMA Q9WZP2 32 MTU E2VFI3 TMIG_
03997

U57 YabG sporulation specific peptidase 213 BSU P37548 59 CBO C3KYF1 YabG

U62 Microcin-processing peptidase 1 2894 ECO P0AFK0 40 MTU F2V391 PmbA/TldD

U69 AIDA-I self-cleaving autotransporter 727 ECO Q03155 65 STY H9L455 MisL

U72 Dop isopeptidase 551 MTU O33247 37 MTU L0NUD3 Dop

#Sequence data represented only for microorganisms, not for other higher organisms

*Sequence data represented only for microbial pathogens

(Lit: Late induced T4, YabG: Sporulation-specific protease, AIDA-1: Adhesin involved in diffuse adherence-1, Dop: Deamidase of pup, PGI:
Porphyromonas gingivalis, BP6: Bacteriophage phi-6, ECO: Escherichia coli, TMA: Thermotoga maritime, BSU: Bacillus subtilis, MTU:
Mycobacterium tuberculosis, HPY: Helicobacter canadensis, CBO: Clostridium botulinum, STY: Salmonella typhimurium)
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Discussion

Unassigned peptidase U32 family

Peptidase U32 degrades soluble fibrillar type I collagen and
does not have a zinc-binding motif similar to bacterial colla-
genases belonging to the peptidase M9 family (Kato et al.
1992). Peptidase U32 is essential for initial penetration of
the host, facilitating the prompt establishment of infection
with the concomitant progression of chronic periodontitis
(Han et al. 2008; Grenier and La 2011; Figaj et al. 2019).
Collagenolysis mechanism of this family remains speculative
due to the existence of different functional regions and domain
organization. In this study, peptidase U62 from C. botulinum
type A was closely related to the C. botulinum neurotoxins
peptidase, as described earlier (Doxey et al. 2008). It is also
found that the existence of invariant sites in different function-
al regions and domains has influenced the phylogenetic diver-
gence and functional expansion of this family within microbi-
al pathogens. Microbial peptidase U32 might have evolved by
gene duplication and divergence, as previously hypothesized
for clostridial collagenases (Bond and Wart 1984; Matsushita
et al. 1999). The members of peptidase U32 had a distinct

structure and common functional analogy to the collagenases
as a result of the functional convergence (Galperin et al.
2012).

Fig. 2 WebLogo representations
of the conserved functional motifs
identified across the unassigned
peptidase clan in the microbial
pathogens. The residue
frequencies are represented by
their relative height and the site-
specific probabilities as total col-
umn height, reflecting informa-
tive value for conservation and
function

Table 3 Coefficients of functional divergence between homologous
clusters of unassigned peptidase clan in the microbial pathogens,
estimated by DIVERGE. The details of microorganisms in each cluster
are available in Supplementary file

Family Cluster θ1 θ2 α

U62 C1/C2 0.999±0.296 -0.443±0.038 0.668

C1/C3 0.523±0.125 0.749±0.383 0.779

C1/C4 0.304±0.145 0.761±0.033 0.596

C2/C3 0.999±0.304 0.460±0.043 0.608

C2/C4 0.999±0.399 0.585±0.031 0.201

C3/C4 0.462±0.150 0.046±0.051 0.572

U72 C1/C2 0.001 ± 0.022 -0.003 ± 0.017 0.104

C1/C3 0.881 ± 0.268 -0.137 ± 0.059 0.931

C2/C3 0.472 ± 0.135 -0.098 ± 0.058 0.801

θI and θII are coefficients of type-I and type-II functional divergence,
respectively. The parameter α is the gamma shape parameter for rate
variation among sites between clusters. Functional divergence coeffi-
cients could not be detected for other families.
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Unassigned peptidase U49 family

Lit is a constitutively expressed peptidase that hydrolyzes a
single peptide bond within the universally conserved switch
region (R58GV-ITI motif) of the host translation factor EF-
Tu1 . A pu t a t i v e Z inc - b i nd i ng ca t a l y t i c mo t i f
H160EXXHX67H

232 and His169 are important for Lit pepti-
dase activity that mediates exclusion in Escherichia coli K-12
(Copeland and Kleanthous 2005). EF-Tu1 forms a weak com-
plex with a major capsid protein gp23 (Gol peptide) that

serves as a signal for viral infection, ultimately leading to
the arrest of protein synthesis and cell death before phage
maturation (Georgiou et al. 1998; Bingham et al. 2000). In
our study, Lit peptidase shared very little global similarity with
other peptidases. Even if most of the family members in this
family are related, few of them were diverged from the same
family and clustered to the peptidase U69. It revealed that
functional purification of this family in the microbial patho-
gens can be imposed by strain-specific neutral evolution at a
slow non-synonymous substitution rate.

Unassigned peptidase U56 family

Homomultimeric peptidase (linocin M18) is an antilisterial
bacteriocin that belongs to peptidase U56, which can hydro-
lyze chymotrypsin, trypsin, and casein. There is no amino acid
sequence homology to any other peptidases (Boucabeille et al.
1997). Linocin M18 from T. maritima is a perspective for its
antimicrobial ecological strategies in a hyperthermophilic
niche (Hicks et al. 1998, 2001). As shown by our analysis,
the members of this family have evolved by several evolution-
ary forces. We observed the coevolution process as an evolu-
tionary force to bring functional divergence across the pepti-
dase U56 in the microbial pathogens. It was agreed to the
previous hypothesis on the coevolution of functionally
constrained characters described by Wagner (1984).

Unassigned peptidase U57 family

A sporulation-specific peptidase (YabG) has a relatively com-
plex role for proteolysis in the maturation of spore cortex and
coat assembly proteins such as cotF, cotT, yrbA, spoIVA,
yeeK, and yxeE (Takamatsu et al. 2000a, b). The protein mod-
ification process involved in the spore germination is mediat-
ed by comprehensive interactions among yabG, Tgl, and their
substrates in the mature spores (Henriques and Moran 2000;
Kuwana et al. 2006). Our study described that the evolution of
such a sporulation-specific family is quite complex
encompassing multiple tandem duplications (Galperin et al.

Table 4 Prediction of tertiary structures and validation of the target protein sequences from unassigned peptidase clan in the microbial pathogens using
homology modeling

Family UniProt ID Identity (%) Template Structural validation
(Allowed region in %)

Molecular function

U32 I9UMN6 28 (17/61) 4AAA 92.2 Cdkl2 kinase

U49 C9QYH3 27 (15/56) 3 cm 94.3 Bovine chymosin

U56 E2VFI3 36 (95/267) 3DKT 92.3 Maritimacin

U62 F2V391 21 (44/212) 1VL4 92 The modulator of DNA gyrase

U69 H9L455 37 (49/131) 3ML3 95 IcsA autotransporter

25 (65/269) 3QQ2 BrkA autotransporter

U72 L0NUD3 61 (306/505) 4B0R 96.4 Pup depupylase/ deamidase

Fig. 3 Graphical representation of protein models (a) and protein folding
imprints (b) of unassigned peptidase clan in the microbial pathogens
based on their fold rates
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2012). We observed phylogenetic proximity between pepti-
dase U57 and peptidase U72, suggestive of the inter-
transitory evolutionary ancestry of these families. Bacillus
cytotoxicus sporulation-specific peptidase has shown to di-
verge from the same family as a result of nucleotide/amino
acid diversity during the evolution process. Interestingly, the
members of this family were remarkably diverged compared
to others due to amino acid substitutions and transition/
transversion processes. Moreover, the protein structure of the
members of this family might have evolved with mixed struc-
tural classes with a slow folding rate.

Unassigned peptidase U62 family

Microcin B17 is a ribosomally synthesized peptide produced
by diverse strains of Gram-negative bacteria carrying a
pMCCB17 plasmid (Allali et al. 2002). Microcin-processing
peptidase 1 cleaves the microcin B17 precursor at the Gly26-
Val27 in the peptide clan. Consequently, it participates in the
process of controlling DNA gyrase activity by controlling cell
death (ccdA) of sex factor F, which ultimately leads to cell
death (Murayama et al. 1996). Phylogenetic inference of our
study indicated that the members of peptidase U62 were evo-
lutionarily distinct from distantly related organisms. A con-
served domain PmbA_TldD diverged within the family mem-
bers, which could be resulted due to the type-I divergence.
Results of this study also suggested that the members in the
peptidase U62 might have evolved via recombination process
and amino acid substitutions in accordance to the earlier work
(Bedau and Packard 2003; Clark et al. 2012).

Unassigned peptidase U69 family

Auto-transporters are secreted proteins that are assembled in
the outer membrane of bacterial cells. AIDA-I self-cleaving
autotransporter protein serves as a virulence protein in differ-
ent toxigenic E. coli strains (Henderson and Nataro 2001).
During the proteolytic cleavage, its processed mature passen-
ger domain is stabilized by non-covalent interaction with the
30 kDa β-domain. It has been reported to involve in the bac-
terial pathogenesis (Benz and Schmidt 1992, 1993). As a re-
sult of our study, the members of this family might undergo a
rate variation among sites during the evolutionary process
since the evolution rate was relatively different from others
(Bedau and Packard 2003). There were no recombination
events and low evolutionary change for functional divergence.
Interestingly, a selective strength for protein functionwas rath-
er than gene function. Some members of this family might
have evolved with a specific and distinct function, which is
adaptive to the particular niche occupied by the microbial
pathogens. As shown by our analysis, structural domains of
this family member could be evolutionarily optimized during
the colonization of new niches owing to the overall passenger

domain scaffold being widely divergent (Kostakioti and
Stathopoulos 2006; Celik et al. 2012).

Unassigned peptidase U72 family

Deamidase of Pup (prokaryotic ubiquitin-like protein) (Dop)
converts the C-terminal glutamine of Pup to glutamate, which
forms an isopeptide bond with an ε-amino group of lysine
residues of target proteins by the enzyme PafA (proteasome
accessory factor A) (Özcelik et al. 2012; Ofer et al. 2013;
Prathiviraj and Chellapandi 2020). It is an evolutionary deriv-
ative of glutamine synthetases consisting of GhExE as a dis-
tinctive signature (Iyer et al. 2009). Pup depupylase/
deamidase belongs to the carboxylate-amine ligase family
(Barandun et al. 2012). Dop and PafA are similar in overall
structure and fold with differences in loop regions. The active
site is located in a broad β-sheet cradle accessible at one end
(Özcelik et al. 2012). Pup-proteasome system is evaluated as a
promising drug target for emerging multi-drug-resistant
M. tuberculosis strains (Ofer et al. 2013; Prathiviraj and
Chellapandi 2020). In the present study, the Pup protein has
a conserved motif with a G[EQ] signature at the C-terminus. It
was structurally unrelated to the ubiquitin fold, and the func-
tion of the protein modifier was converged. It also found that a
phyletic pattern of mycobacterial PafAwas closely related to
the Pup and both of these proteins were genomic neighbors in
all bacterial lineages. We observed a functional linkage be-
tween Pup/PafA and the archaeal-type proteasome (Pearce
et al. 2008). The rate of gene duplication events across the
peptidase U72 by type-I divergence was faintly more than
those resulted from type-II divergence. A newmolecular func-
tion of this family member might have evolved due to radical
changes in the segregating sites with a high recombination
rate, as described by Clark et al. (2012).

Conclusions

We conducted a detailed proteomic survey to understand mo-
lecular and functional diversity of unassigned peptidase clan
in the microbial pathogens. The members of this clan are
evolutionarily related, but the sequence and functional diver-
sity are specific to the individual strains. A conserved domain
(peptidase) in the respective families is conserved across the
genera and evolved as distinct substrate specificity for harbor-
ing the full virulence of microbial pathogens. Genetic drift,
amino acid substitutions, and coevolution are major evolu-
tionary constraints imposing on the functional divergence of
this clan in the microbial pathogens occupying a different
pathological niche. The Darwinian positive selection is an
important evolutionary process that determines the
neofunctionalization of highly diverged family members from
a conserved functional core of this clan. The present study
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describes the apparent involvement and associations of mem-
bers of this clan in the molecular pathogenesis and virulence
of clinically important pathogens. As a result, the evolution of
history and origin of this clan provides a new idea for the
development of antimicrobial agents targeting the
understudied proteins. The targeted proteins of this study are
promising targets for antibiotic drug discovery and the devel-
opment of resistance for many classes of clinically used anti-
biotics. Nevertheless, experimental evaluations of the target
proteins are very important to know their structural, function-
al, and biochemical characteristics during the infection
process.
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