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Antimicrobial resistance in aquaculture: a crisis for concern
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Abstract
Emergence of antimicrobial resistance (AMR) in cultured fishes is one of the major challenges faced in aquaculture. The high
prevalence of bacterial infections in fishes leads to frequent use of antibiotics and thus their persistence in the aquatic environ-
ment, which in turn results in the proliferation of antibiotic resistant bacteria. The AMR in aquaculture can be transferred to
clinically important strains of natural environment through horizontal gene transfer, thereby affecting the whole ecosystem. Most
of the cultured fishes, including ornamental possess diverse pathogens exhibiting multiple antibiotic resistance. A thorough
understanding of the gene transfer systems such as plasmids, transposons, integrons and gene cassettes can unravel the com-
plexity of antimicrobial resistance in aquaculture. Continuous monitoring programmes, timely detections of the resistant bacteria
and implementation of proper regulations are necessary to curb the dissemination of AMR in aquaculture. The present review
summarises the antimicrobial use and AMR in cultured fishes, genetic mechanisms involved in the development of resistance,
and the management strategies to restrict the spread of AMR in aquaculture.
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Abbrevations
AMR Antimicrobial Resistance
ARG Antimicrobial Resistant Gene
MGE Mobile genetic elements
HGT Horizontal gene transfer
MIC Minimum inhibitory concentration
MAR Multiple Antibiotic Resistance
ESBL Extended spectrum beta lactamases
CI Chromosomal integrons
MI Mobile integrons
MRI Multidrug resistance integrons
GC Gene cassettes

Introduction

In aquaculture, several bacterial diseases routinely encoun-
tered, which affect successful production, are mainly due to
Gram negative organisms such as Aeromonas hydrophila, A.
salmonicida, Vibrio anguillarum, V. harveyi, Flavobacterium
psychrophilum, Edwardsiellatarda, Citrobacter freundii,
Pseudomonas fluorescens, and Yersinia ruckeri; rarely by
Gram pos i t ive ones such as Strep tococcus and
Staphylococcus; and also by acid fast Mycobacterium sp.
(Lewbart 2001,Sørum 2006). Among these, the most preva-
lent reported bacterial pathogen in freshwater aquaculture is
Aeromonas hydrophila (Igbinosa et al. 2012). The consump-
tion of such infected cultured fishes poses public health con-
cerns including humans (Huss et al. 2000). This incidence
enforces the farmers to use antibiotics frequently in the aqua-
culture system. Concomitant with the rise in antibiotic admin-
istration in aquaculture as a part of therapy and prophylaxis,
there has been an emergence of antimicrobial resistance
(AMR) among the bacterial fish pathogens (FAO 2005).
Many cultured fishes such as carp, salmon, tilapia, catfish
and crustaceans like shrimps worldwide have been reported
to possess antimicrobial resistant pathogens (Watts et al.
2017). Multiple antimicrobial resistance has evident among
the bacteria associated with ornamental fishes also and several

* Prasannan Geetha Preena
Preenabimal@Gmail.Com

1 Present address: Peninsular and Marine Fish Genetic Resources
Centre of ICAR-NBFGR, CMFRI Campus, P.O. Number 1603,
Kochi 682018, India

2 Department of Aquaculture, Kerala University of Fisheries and
Ocean Studies, Panangad, Kochi 682506, India

3 National Centre for Aquatic Animal Health, Cochin University of
Science and Technology, Fine Arts Avenue, Cochin 682016, India

https://doi.org/10.2478/s11756-020-00456-4

/ Published online: 27 February 2020

Biologia (2020) 75:1497–1517

http://crossmark.crossref.org/dialog/?doi=10.2478/s11756-020-00456-4&domain=pdf
http://orcid.org/0000-0001-9119-6851
mailto:Preenabimal@Gmail.Com


of them are zoonotic that may infect the fish handlers (Weir
et al. 2012). Continuous use of antibiotics for alleviating bac-
terial diseases in aquaculture has led to “pseudo-durability”
and their omnipresence in the environment, which has caused
the development of selective pressure on the microbial com-
munity (Gao et al. 2012). Antimicrobial resistant bacteria
formed under the selective pressure can develop to an envi-
ronmental reservoir of antibiotic resistant genes. Aquaculture
systems and fish farms have been observed as the ‘hotspots for
AMR genes’ and hence the assessment of resistome, the AMR
gene collection in aquaculture, is an important topic of re-
search worldwide (Watts et al. 2017). Recently, Brunton
et al. (2019) performed a detailed survey on the identification
of hotspots for antimicrobial resistance, emergence and selec-
tion in aquaculture systems through system thinking ap-
proach. The transfer of antimicrobial resistant pathogens from
aquaculture environment to natural aquatic environment could
leads to the emergence of antimicrobial resistance in wild
fishes and the related food products. This has been considered
with due seriousness as it impacts human health due to their
direct consumption and near impossible management mea-
sures (Cizek et al. 2010). Rhodes et al. (2000) suggested that
aquaculture and hospital environments could act as the single
interactive environment because of the transfer of resistance
gene carrying plasmids between fish and human pathogens.
This wider dissemination of determinants from aquatic farms
to human should be the main concern during the technological
crossover between different kinds of fish farms (Cizek et al.
2010). The flow of AMR genes from aquatic pathogens to
humans may not be continuous, but some intermediaries such
as environmental bacteria might be involved (Buschmann
et al. 2012). Since most of the antimicrobials used in aquacul-
ture are those used in human medicines, the application of
antimicrobials in aquaculture severely impacts the develop-
ment of AMR in other ecological niches mainly human envi-
ronment (Heuer et al. 2009). Around 51 antibiotics which are
recommended in aquaculture are of important to human med-
icine and about six classes of those antibiotics are recorded as
critically important antimicrobials in World Health
Organisation’s (WHO) list (Done et al. 2015). Increased fre-
quency of severe infections and treatment failures had report-
ed in humans due to the consequences of transfer of antimi-
crobial resistance from aquaculture to human through the con-
sumption of aquaculture products (Kruse and Sørum 1994;
Akinbowale et al. 2006).

Mobile genetic elements (MGE) such as plasmids,
transposons and integrons with gene cassettes play crucial
roles in the spreading of resistance determinants among
bacteria (Gao et al. 2012). Horizontal gene transfer through
these MGEs and clonal selection due to antimicrobial se-
lective pressure are the main factors behind the antimicro-
bial resistance in bacterial populations (Schmidt et al.
2001a). The antibiogram profile and the associated

resistance genes of fish pathogens vary with the particular
aquatic environment (Piotrowska and Popowska 2014). In
this context, various advanced molecular tools can be
exploited to unravel the genetic complexity of antimicro-
bial resistant determinants associated with the pathogens.

Considering the impact of antimicrobial resistance to the
global consumer health, previous reviews were oriented to-
wards the survey of antibiotic uses in aquaculture and AMR
reports on various fish farms, ornamental fishes and fish prod-
ucts from different countries (Alderman and Hastings 1998;
Cabello 2006; Weir et al. 2012; Romero et al. 2012; Cabello
et al. 2013; Santos and Ramos 2018), concern of AMR in
global shrimp industry (Thornber et al. 2019), molecular
mechanisms responsible for the antibiotic resistance (Stalder
et al. 2012; Gao et al. 2012) and the alternatives to antibiotics
for the prevention/treatment of bacterial diseases in fishes
(Defoirdt et al. 2011), feed additives as immunostimulants in
aquaculture (Dawood et al. 2017). Rico et al. (2017) under-
took a challenging effort to study the risks of developing an-
timicrobial resistance in intensive aquaculture production
through probabilistic approach. Though reviews are available
on the selected aspects, there is a dearth of exhaustive analysis
on this issue of paramount importance. The present review is a
comprehensive and an elaborative study addressing different
aspects of antimicrobial resistance starting from the antimicro-
bial uses in aquaculture, emergence of antimicrobial resistance
in cultured and ornamental fishes, diversity of the associated
zoonotic pathogens, genetic mechanisms involved in the anti-
biotic resistance to the alternative strategies such as the vacci-
nation, application of natural pharmaceuticals, probiotics,
phage therapy etc. to overcome the menace. In the present
scenario, this review stands separately addressing multiple
affairs that may shed light on the complexity of the particular
concern for future studies.

Application of antimicrobials and sources
of antimicrobial resistance in aquaculture

Around 73% of the major aquaculture producing countries were
reported to use oxytetracycline, florfenicol and sulphadiazine and
55% applied erythromycin, amoxicillin, sulphadimethoxine, and
enrofloxacin as reported by Lulijwa et al. (2019). They have also
noticed that China and Vietnam are major consumers of antibi-
otics users while India, Korea, Bangladesh, Philippines and
Thailand are infrequent consumers. Recently, application of huge
quantities of veterinary antibiotics and the antibiotic contamina-
tion followed by the emergence of antibiotic resistance in China’s
aquaculture industry was discussed in detail by Mo et al. (2017).
Defoirdt et al. (2011) stated that around 600 metric tons of anti-
biotics were applied in shrimp aquaculture farms in Thailand,
which remind the possibility of rapid development of AMR.
Oxytetracycline, florfenicol, sulphonamides, erythromycin and
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sarafloxacin are some of the authorized antibiotics for use in
aquaculture and chloramphenicol, enrofloxacin, spectinomycin,
and rifampin are the banned antibiotics for animals intended for
food production (FAO 2005). Later it is reported that tetracy-
clines, sulphonamides and quinolones are the most popular anti-
biotics, although betalactams and macrolides are occasionally
used, in aquaculture due to the economic gains (FAO/OIE/
WHO 2006). While florfenicol, oxytetracycline and
Sulfadimethoxine/ormetoprim are the FDA approved antibi-
otics in aquaculture (https://www.fda.gov/animalveterinary/
developmentapprovalprocess/aquaculture/ucm132954.htm).
Although not allowed in aquaculture because of its adverse
effects to human health, evidence of chloramphenicol residues
in fishery products from South East Asia (Sørum 2006) and
chloramphenicol resistance among the aeromonads (Weir et al.
2012) rise major threat to the aquatic ecosystem. Lulijwa et al.
(2019) commented that there is an overall increase in the usage of
antibiotics in Asian aquaculture production.

In Italy, the current legislation permits the use of various
antibiotics such as, tetracycline, oxytetracycline, amoxycillin,
flumequine, sulfadiazide in combination with trimethoprim
etc. in fish farms (Labella et al. 2013). But there is a substantial
reduction in the application of antibiotics in Japanese and
Norwegian aquaculture industry (Lulijwa et al. 2019).
Norway and Chile allowed the use of oxytetracycline,
florfenicol and quinolones in salmon aquaculture (Lozano
et al. 2018; Cabello et al. 2013). In addition, Chile also
permited the aquacultural use of erythromycin, amoxicillin,
furazolidone, gentamycin and chloramphenicol (Cabello
et al. 2013) and later the authorities announced a list of around
13 antibiotics (Liu et al. 2017). Very recently the current status
of antimicrobial resistance development as a result of inten-
sive use of antibiotics in Chilean Salmon fish farms has been
updated, which forced the investigation of link between the
bacteria harbouring the farms and human and fish pathogens
(Miranda et al. 2018). Developed countries such as USA and
Canada authorized the use of limited drugs such as oxytetra-
cycline, florfenicol and Sulfa/trimethoprim for specific fishes
such as catfish and salmonids and could be broadly used to
treat infections in aquaculture (Dawood et al. 2017; Chuah
et al. 2016). Of these, oxytetracycline is the most commonly
used antibiotic in USA and also in Denmark (Singh et al.
2009). While oxytetracycline, oxolinic acid, amoxicillin and
co-trimazine were earlier reported as the licenced antimicro-
bial drugs for treating fish diseases in UK (Alderman and
Hastings 1998). Several countries like South Africa and
Australia have no legistlation or standardised guidelines to
follow the usage of antimicrobials in aquaculture
(Akinbowale et al. 2006; Jacobs and Chenia 2007). Since
most of the recommended antimicrobials such as oxytetracy-
cline and amoxicillin used in aquaculture are equally impor-
tant for humans, there exists a significant link between terres-
trial and aquatic resistomes (Watts et al. 2017). It is also

recently repoted by Topp et al. (2018) that the excess use of
antibiotics in USA, Japan and European aquaculture systems
had been strictly regulated and restricted to minimum ap-
proved therapeutics. A detailed review on the current status
of antibiotic use in aquaculture of different countries, their
policies and regulation, environmental health concerns were
discussed by Lulijwa et al. (2019). Various antibiotics ap-
proved for use in aquaculture in different countries are listed
in Table. 1.

The unrestricted prophylactic use of antibiotics as growth
promoters and to treat bacterial infections leads to the persis-
tence of antibiotics in aquatic environment. The administra-
tion of antimicrobials in aquaculture is mainly medicated
through feed or immersion and by direct application in the
water (Heuer et al. 2009). Uningested food and fish feces
could retain the antimicrobial residues depending on the bio-
degradability, initial concentration and physical and chemical
characteristics (Burridge et al. 2010). This results in their se-
lective pressure for prolonged periods and thereby emerging
antimicrobial resistant determinants and the fluctuating antibi-
otic environment forces the bacteria to adapt and thus get
selected for survival through multiple mechanisms (Baquero
et al. 1998). The selection leads to the alterations of biodiver-
sity of aquatic environment by substituting resistant commu-
nities in place of susceptible ones or the genetic fluctuations in
susceptible ones which give rise to the antimicrobial resistant
types (Cabello et al. 2013). The major disadvantage of the
selection pressure is that, once resistance got acquired, the
determinants could be retained within the community even
in the absence of responsible antibiotics (Chiew et al. 1998).
This enhances the risk of wider dissemination of resistance
determinants (Jacobs and Chenia 2007). Reconnaissance of
significant quantities of around 47 antibiotic residues among
tilapia, shrimp, trout and salmon farms from around 11 coun-
tries such as China, US, Mexico, Canada, Scotland, Thailand
etc. indicated the possibility of rapid emergence of antibiotic
resistance worldwide (Done and Halden 2015). Zhu et al.
(2017) noticed the positive correlation of concentration of
tetracycline and macrolides with the abundance of total
AMR genes in an estuarine sediment. Meanwhile even in
the absence of selection pressure, AMR genes like tetracycline
resistant genes persist in aquaculture farms, thereby highlight-
ing the genetic transfer of AMR genes from the other niches
(Tamminen et al. 2011).

In addition to the direct application of antibiotics in the
aquaculture systems, integrated fish farming systems also play
a major role in the transfer of AMR globally. Watts et al.
(2017) reported the spread of AMR through such integrated
farming systems mainly in Asia and Africa. In Thailand, a
sudden rise of AMR from 5% to 100% was noticed among
Acinetobacter spp. towards oxytetracycline and sulfamethox-
azole in integrated chicken-fish farms (Petersen et al. 2002).
Integrated fish farming increased the risks of developing
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multiple antibiotic resistant bacteria such asEnterococcus spp.
and Aeromonas in the intestine of cultured fishes (Petersen
and Dalsgaard 2003). Massive catfish industries mainly con-
tributed the development of AMR associated with catfish pro-
duction (Sarter et al. 2007). Various other studies also con-
firmed the prevalence of AMR genes in integrated agriculture/
aquaculture systems (Neela et al. 2014).

Application of antibiotics in the cultured open systems
such as pond increases the risk of persistence and distribution
of AMR genes in the system due to the absence of frequent
water exchange and extended time for bacterial adaptation
(Neela et al. 2014). Flumequine treatment in pond water and
rainbow trout farms showed that aeromonad pathogens on the
gut and skin of treated fishes and biofilms became multi drug
resistant against streptomycin, sulfamethoxazole, quinolones
and fluoroquinolones, oxytetracycline, florfenicol, chloram-
phenicol, and trimethoprim, which increases the transfer of
relevant genes to wider aquatic environments during harvest
time (Naviner et al. 2011). The distribution of AMR bacteria
in closed systems such as RASs is very little known and the
presence of AMR pathogens could be described by using in-
fected fish stocks (Saavedra et al. 2010). This necessitates the
continuous monitoring and surveillance of unique antibiotic
resistant determinants of fish species belonging to different
aquaculture systems.

In addition to the development of antimicrobial resis-
tance in aquaculture, natural aquatic environment also acts
as reservoir of antibiotic resistant pathogens. The physico-
chemical parameters of water also influences the increased
antibiotic insusceptibilty among the aquatic bacteria
(Pathak et al. 1993). Unlike the direct application in the
cultured systems, the selection of antibiotic resistant organ-
isms in the natural aquatic environment is mainly due to
the natural production of antibiotics within the system,
runoff waste products of antibiotic treated animals/human,
terrestrial land run-off, entry of animal feeds and crops,
effluent discharges and from the domestic sewage contain-
ing antibiotics (Witte 1998; Kumar et al. 2017). Sewage

effluents act as the major contributor of antibiotic resistant
enteric pathogens among the marine wild life species,
which was confirmed by comparing the fishes from pollut-
ed and unpolluted sites by Al-Bahry et al. (2009). Thus the
natural production and lateral entry of these antibiotics
could exert a selective pressure that promote the emer-
gence and spread of antibiotic resistance in natural aquatic
environment. Wild freshwater species from higher and
lower anthropogenic activities involving reservoirs were
compared for the presence of antibiotic resistant genes re-
cently by Marti et al. (2018). They detected sulphonamide,
quinolone and erythromycin resistance genes in brown
trout and ebro barbel from reservoirs with higher anthro-
pogenic activities while only beta lactam group resistance
genes in common carp from the reservoirs with lower an-
thropogenic activities thereby highlighting the influence of
recreational activities on the establishment of AMR genes
in the natural aquatic environment. This implies that the
antibiotic resistant wild fishes can be taken as the bio-
indicator of pollution in natural marine and freshwater en-
vironment. As a part of management, the run of wastes like
domestic sewages and agricultural and industrial effluents
should undergo treatments before the disposal so as to
minimize the entry of AMR pathogens to the systems and
reduce the extent of transfer of resistant genes through
horizontal transfer to other aquatic environment. A map
showing the reported percentage of occurrence of antimi-
crobial resistance in various countries are given in Fig. 1.

Antimicrobial resistance in gram negative
bacteria

Among the Gram negative fish pathogens, aeromonads could
be considered as the indicator bacteria for characterizing the
occurrence and establishment of antimicrobial resistance in
fish farms (Cizek et al. 2010). They are well known to cause
infections in humans also and hence play as a significant

Fig. 1 Map showing the reported
percentage of occurrence of
antimicrobial resistance in various
countries
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zoonotic pathogen in aquaculture (Ko et al. 2000). The first
reported fish pathogen which showed antimicrobial resistance
was Aeromonas salmonicida, against sulphathiazol and tetra-
cycline (Snieszko and Bullock 1957). Schmidt et al. (2001b)
detected the multi drug resistant phenotypes of aeromonads
from Danish rainbow trouts. Aeromonas salmonicida and
A. hydrophila isolates associated with tilapia, trout and koi
from South African aquaculture systems exhibited higher re-
sistance level to different kinds of antimicrobial agents as
compared to A. encheleia, A.popoffii, A. veronii, A. media
and A. ichtiosoma isolates (Jacobs and Chenia 2007). It is
not surprising because in the earlier period onwards, huge
amounts of antibiotics such as oxytetracycline, trimethoprim
and quinolones have been reportedly used to treat furunculosis
(A. salmonicida causing disease) infected salmonids as in
Norwegian fish farming (Grave et al. 1996).

Another zoonotic fish pathogen, Vibrio has also been re-
ported to exhibit multiple antibiotic resistance (Labella et al.
2013). During an outbreak of vibriosis in freshwater fish ayu,
in 1973, majority of Vibrio anguillarum isolates were found to
possess transferrable R plasmids showing resistance to
sulphonamides, chloramphenicol, tetracycline and streptomy-
cin (Aoki et al. 1974). Vibrio and Aeromonas are the most
reported antimicrobial resistant organisms identified in vari-
ous fishes such as catfish, tilapia and koi carp (Ashiru et al.
2011) and most of the antibiotic resistance studies were car-
ried out on these pathogens due to their unusual biofilm for-
mation and antibiotic resistance (Odeyemi and Ahmad 2017).
The virulent pathogens such as V.harveyi and V. aestuarianus
associated with gilthead sea bream of Italian mariculture were
insusceptible to around 10 antibiotics (Scarano et al. 2014).

Edwardsiellosis is one of the severe diseases infecting
fishes which is caused by Edwardsiella tarda, which is
having zoonotic importance (Novotny et al. 2004).
E. tarda from Japanese flounder possessed multiple antibi-
otic resistance genes that resist tetracycline, streptomycin
and kanamycin, which are maintained within potential vir-
ulence genes of a single large pCK41 plasmid (Yu et al.
2012). Another highly significant zoonotic fish pathogen
and the causative agent of mycobacteriosis in marine and
freshwater fishes, Mycobacterium showed significant re-
sistance against the multiple antibiotics. For example,
Mycobacterium peregrinum recovered from ornamental
fishes were found to be completely insusceptible to the
majority of tested antibiotics such as antituberculosis drug,
isoniazid, rifampicin, co-trimoxazol, clofazimine, strepto-
mycin and erythromycin (Guz et al. 2013), highlighting the
potential of this zoonotic pathogen as a threat to the public.
Sing et al. (2016) recovered multiple drug resistant zoonot-
ic pathogen, Salmonella with higher multiple antibiotic
resistance (MAR) index from African catfishes belonging
to different fish farms, which highlighted the exposure of
cultured catfishes to several antibiotics.

Flavobacterium columnare, causative agent of popular
columnaris disease, isolated from ornamental fish and wild
catfish exhibited multidrug resistance towards chloramphen-
icol, nitrofuran, ampicillin, oxytetracycline, flumequine,
enrofloxacin and oxolinic acid, which highlighted the
unprudent use of antimicrobials among ornamental fishes
and the extend of spread of AMR to the natural aquatic
environment (Declercq et al. 2013). Bacterial cold water
disease (BCWD) causing F. psychrophilum isolated from
salmonids of Ontario fish farming industry was found to
show decreased susceptibility towards florfenicol, oxytetra-
cycline, trimethoprim–sulfamethoxazole and ormetoprim–
sulfadimethoxine (Hesami et al. 2010). Huang et al. (2014)
suggested that enteric red-mouth disease causing Yersinia
ruckeri was also capable of developing mutations so as to
acquire antibiotic resistance. Highly invasive and cytotoxic
Pseudomonas aeruginosa from diseased cultured gilthead
sea bream was found to exhibit multiple antibiotic resistance
against tetracycline, ampicillin and erythromycin (Lamari
et al. 2017). Recently, Ruzauskas et al. (2018) recovered
multidrug resistant gram negative isolates including
Pseudomonas, Chryseobacterium, Aeromonas and
Enterobacteriaceae prevalent in cultured fishes.

Antimicrobial resistance in gram positive
bacteria

Gram positive organisms such as Streptococcus and
Staphylococcus are reported as zoonotically significant fish
pathogens (Novotny et al. 2004). Multiple antibiotic resistant
Staphylococcus aureus was found to be associated with
Australian aquaculture farms eventhough there were no anti-
biotics registered for use in Australian aquaculture
(Akinbowale et al. 2006). Generally it is known that tetracy-
cline and macrolide resistance is the worldwide threat among
Streptococci (Botrel et al. 2010). Nguyen et al. (2017) recently
reported the antibiotic resistance in Gram positive fish patho-
gen, Streptococcus dysgalactiae against the very common tet-
racycline and macrolide drugs in cobia, mullet and loach from
Taiwan and Japan aquaculture farms.

Several non-pathogens and beneficial bacteria associ-
ated with commensal bacteria in fishes were also found
to possess AMR genes, revealed through Real Time
qPCR (Duran and Marshall 2005). Hence there is possi-
bility of transfer of resistant genes from non pathogens to
pathogens through conjugation, thereby spreading the an-
tibiotic resistance worldwide. Diverse fishes, associated
pathogens and their resistant antibiotics are listed in
Table 2 and a pie chart showing the percentage of anti-
microbial resistance exhibited by different pathogens are
shown in Fig. 2.
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Table 2 Antimicrobial resistant fish pathogens associated with cultured fishes

Sl.no Organism Resistant antibiotics Source Reference

Cultured fishes
1 Aeromonas hydrophila and

Plesiomonas shigelloides
Tetracycline, oxytetracycline,

chloramphenicol, kanamycin,
ampicillin, and nitrofurantoin

Cultured catfish and
aquaculture pond, United
States

McPhearson et al. (1991)

2 Aeromonas sp Multiple antibiotics Gold fish and Koi,
United States

Dixon and Issvoran (1993)

3 Vibrio harveyi Erythtromycin,gentamycin, ampicillin,
polymyxin B, oxytetracycline,
novobiocin, rifampicin,
chlorotetracycline, streptomycin,
ceprofloxacin, penicillinG,
furazolidone, nalidixic acid,
neomycin

Diseased penaeid
cultured shrimps

Abraham et al. (1997)

4 Aeromonas, Flavobacterium
psychrophilum and
Yersinia ruckeri

Multiple antibiotics Rainbow trout farms,
Denmark

Schmidt et al. (2000)

5 Aeromonas sp Oxytetracycline and
sulphadiazine/trimethoprim

Rainbow trout farms,
Denmark

Schmidt et al. (2001a)

6 Vibrio harveyi Oxytetracycline, oxolinic acid,
chloramphenicol, furazolidone

Pond cultured shrimps,
Philippines

Tendencia and Pena (2001)

7 Vibrio sp oxytetracycline Cultured yellowtail
fishes, Japan

Nonaka and Suzuki (2002)

8 Moraxella Tetracycline Salmon fish farms, Chile Miranda et al. (2003)
9 Photobacterium, Vibrio,

Pseudomonas, Alteromonas,
Citrobacter, and Salmonella spp.

Tetracycline Cultured Fish farms, Japan Furushita et al. (2003)

10 Vibrio vulnificus and Vibrio
alginolyticus

Multiple antibiotics Mussels, Italy Ripabelli et al. (2003)

11 Vibrio sp., Lactococcus garviege,
Photobacterium damsela
subsp. piscicida

Tetracycline Marine aquaculture site,
japan and Korea

Kim et al. (2004)

12 Acinetobacter Tetracycline freshwater trout
farms, Denmark

Agerso and
Guardabassi (2005)

13 Aeromonas sp Ampicillin, oxytetracycline,
amoxycillin, novobiocin

Farm raised water
fishes, India

John and Hatha (2012)

14 Vibrio spp. and Aeromonas spp Ampicillin, amoxycillin, cephalexin
erythromycin oxytetracycline,
tetracycline, nalidixic acid
sulfonamides chloramphenicol,
florfenicol, ceftiofur, cephalothin,
cefoperazone, oxolinic acid,
gentamicin, kanamycin
and trimethoprim

Farmed fish and crustaceans,
Australia

Akinbowale et al. (2007)

15 Aeromonas salmonicida and
A. hydrophila

Tetracycline and amoxycillin Tilapia, trout and koi, South
African aquaculture
systems

Jacobs and Chenia (2007)

16 Photobacterium damselae Kanamycin, chloramphenicol,
tetracycline, and sulfonamide

Cultured fishes, Japan and
United States

Kim et al. (2008)

17 Vibrio splendidus, Vibrio tasmaniensis,
Pseudoalteromonas marina, Mucus
bacterium, Pseudoalteromonas
haloplanktis

Oxytetracycline, streptomycin,
chloramphenicol,ampicillin,
nalidixic acid

Abalone and turbot from
mariculture farms, China

Dang et al. (2007)

18 Acinetobacter sp Tetracycline and sulphonamides Thailand fish farms Agersø and Petersen (2007)
19 Edwardsiella tarda Chloramphenicol trout from mariculture farms,

China
Xiao et al. (2009)

20 Aeromonas sp Tetracyclines, fluoroquinolones
and betalactams

Ornamental fishes
and carriage water, United
Kingdom

Verner-Jeffreys et al. (2009)

21 Enterobacteriaceae and
Flavobacterium

Oxytetracycline Freshwater
carp aquaculture
system, India

Singh et al. (2009)

22 Flavobacterium psychrophilum Florfenicol, oxytetracycline,
trimethoprim–sulfamethoxazole and
ormetoprim–sulfadimethoxine

Salmonids, Ontario fish
farming aquaculture

Hesami et al. (2010)

23 Aeromonas veronii Multiple antibiotics Cichlid Oscar, India Sreedharan et al. (2011)
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Incidence of antimicrobial resistance
in cultured fin fishes and shell fishes

Compared to the fishes in the natural ecosystem, antimi-
crobial resistance studies are mainly focused on the cul-
tured fishes, as the right knowledge about the antibiotic
resistance of pathogens in the cultured system will facili-
tates the formulation of a proper preventive strategy. For
example, an increased incidence of antimicrobial resistant
Aeromonas hydrophila and Plesiomonas shigelloides has
been observed in the cultured catfish than the riverine

catfishes, indicated a higher level of resistant bacteria in
the cultured system (McPhearson et al. 1991).

Freshwater aquaculture

Farm raised freshwater fishes like Ctenopharyngodon idella,
Labeo rohita and Catla catla were found to carry intestine
associated aeomonads which exhibited antibiotic resistance to-
wards ampicillin, oxytetracycline, amoxicillin and novobiocin
(Hatha et al. 2005). Most of the efflux pumps involved in ele-
vating the multiple resistance to ampicillin, tetracycline,

Table 2 (continued)

Sl.no Organism Resistant antibiotics Source Reference

24 Vibrio sp Ampicillin and tetracycline Marine shrimps, Brazil Reboucas et al. (2011)
25 Enterobacteriaceae Tetracyclines Chinese Fish farms Su et al. (2011)
26 Edwardsiella tarda Tetracycline, streptomycin

and kanamycin
Japanese Flounder Yu et al. (2012)

27 Flavobacterium psychrophilum Quinolones Atlantic salmon and
brown trout, Norway

Shah et al. (2012)

28 Vibrio sp Tetracycline,quinolones Salmon aquaculture, Chile Buschmann et al. (2012)
29 Arthrobacter sp Quinolones, tetracycline
30 Sporosarcina sp Quinolones, tetracycline,

florfenicol, aminoglycosides
31 Acinetobacter sp TetracyclineS Salmon fish farms,

South Africa
Chenia and Vietze (2012)

32 Aeromonas hydrophila Quinolones,
sulphonamides,tetracycline,

Tropical ornamental fish,
Czech Republic

Dobiasova et al. (2014)

33 Aeromonas sobria Quinoloness,sulphonamides,
tetracycline, aminoglycosides

34 Aeromonas sobria Quinoloness, sulphonamides,
tetracycline

Cold water koi carp,
Czech Republic

35 Aeromonas hydrophila Quinolones, aminoglycosides
36 Aeromonas dhakensis TetracyclinE and erythromycin Freshwater ornamental fish,

SriLanka
Jagoda et al. (2014)

37 Aeromonas sp β lactam antibiotics Cultured Rainbow
trouts, Mexico

Vega-Sanchez et al. (2014)

38 Arthrobacter bergeri Streptomycin,sulphonamide
39 Bacillus aryabhattai

Exiguobacterium sibiricum
Marinobacter litoralis
Psychrobacter pulmonis
Stenotrophomonas maltophilia
Thalassospiro xiamenensis

Tetracycline and sulphonamides Salmon aquaculture, Chile Shah et al. (2014)

40 Agarivorans albus,
Vibrio kanaloae

Streptomycin

41 Aeromonas veronii and A. aquariorum Tetracycline and ampicillin Shrimps in low salinity pond,
Thailand

Yano et al. (2015)

42 Aeromonas hydrophila,
A. allosaccharophila, A. veronii,
A. sobria, A.caviae and A. media

Quinolones Korean yellow swordtails
and South African
freshwater fishes

Chenia (2016)

43 Aeromonas sp Multiple antibiotics Chinese aquaculture farms Deng et al. (2016)
44 Pseudomonas aeruginosa Tetracycline, ampicillin

and erythromycin
Diseased cultured gilthead

sea bream, Africa
Lamari et al. (2017)

45 Streptococcus dysgalactiae Macrolide and tetracycline Cobia, mullet and loach from
Taiwan and Japan
aquaculture farms

Nguyen et al. (2017)

46 Pseudomonas, Chryseobacterium,
Enteroba cteriaceae,
and Aeromonas

β lactams Aquacultured fish, Europe Ruzauskas et al. (2018)
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nalidixic acid, chloramphenicol, rifampicin, quinolones and
chloramphenicol were characterised in Gram negative bacteria
from the farmed catfishes (Sarter et al. 2007). Singh et al.
(2009) recovered the highly virulent oxytetracycline resistant
Enterobacteriaceae and Flavobacterium with increased mini-
mum inhibitory concentration (MIC) from freshwater carp
aquaculture system.

All the above studies pointed out the excess use of antibi-
otics resulting in severe antimicrobial resistance in aquacul-
ture systems. In addition, it is also suggested that increased
levels of nutrients in the system could lead to the higher fre-
quency of antibiotic resistance (Vaughan et al. 1996). As an
exception, multi-drug resistant enteric pathogens were report-
ed in European eel farms devoid of frequent drug therapy and
disease outbreaks (Alcaide et al. 2005). This might be due to
the usage of organic manures from the commercial poultry
farms, where tetracyclines and sulphonamide antibiotics were
extensively used (Turkson 2008). Like wise, multiple antibi-
otic resistance (MAR) was noticed in freshwater fishes be-
longing to ponds with negligible therapeutic applications
(Shah et al. 2012). Similarly, MAR pathogens such as
Salmonella, Shigella, Pseudomonas and E.coli were recov-
ered from freshwater fishes such as catfishes and tilapia,
which were not treated with any antibiotics (Agoba et al.
2017). The authors suggested the occurrence of already ac-
quired resistance genes persisted in the cultured environment
and not because of any direct application of antibiotics.

Mariculture

The reports on antimicrobial resistance in fishes of mariculture
systems are found to be limited. Vibrio splendidus and
Pseudoalteromonas act as the major reservoir of multidrug
resistance determinants in abalone and turbots mariculture
farms, China (Dang et al. 2007). Edwardsiella tarda, respon-
sible for the major outbreak of septicaemia in trout,
Scophthalmus maximus from mariculture farm, exhibited
strong resistance to chloramphenicol due to the presence of
resistant determinant, cat III (Xiao et al. 2009). Fish feed
could also act as a major reservoir of antimicrobial resistant

genes in mariculture environment (Han et al. 2017).
Oxytetracycline resistant isolates were recovered from fish
feeds used in carp farms, indicating the role of fish feeds in
the introduction of resistant bacterial pathogens into the farm-
ing system (Singh et al. 2009).

Ornamental fish culture

Bacterial infections in ornamental fishes lead to major die-offs
and fish destructions over the past decade contributing to ex-
tensive economic losses (Lewbart 2001). Very earlier period
onwards multi drug resistant aeromonads were detected in
ornamental fishes such as domestic goldfish and koi carp
(Dixon and Issvoran 1993). Preena et al. (2019a, 2019b) very
recently detected multi drug resistant pathogens such as
Aeromonas, Pseudomonas, Acinetobacter etc. associated with
infected guppy fishes and Edwardsiella tarda, Lactococcus,
Aeromonas, Comamonas, Pseudomonas etc. with koi carp
and gold fish. Multiple antibiotic resistant Serratia
marcescens was isolated from guppy for the first time by
Dharmaratnam et al. (2017) and a multi drug resistant
Proteus hauseri from infected ornamental fish, Koi carp by
Kumar et al. (2015). A commercially valuable pet fish, cichlid
oscar, was found to be infected with multi drug resistant
A.veronii, which was reported for the first time by
Sreedharan et al. (2011). Dias et al. (2012) noticed higher level
of AMR (80%) in ornamental fish associated Aeromonas
hydrophila, A.veronii, A.caviae, A.media, A.aquariorum,
A.jandaei and A.culicicola towards around 30 tested antibi-
otics (Dias et al. 2012). Higher resistance of aeromonads
(A.caviae, A.sobria and A.hydrophila) observed in cultured
ornamental fishes such as gold fish, carp, red sword tail, oscar
and sucker to nalidixic acid highlighted the excess use of those
antibiotics in th farm (John and Hatha 2012). The occurrence
of highly virulent antimicrobial resistant gene (ARG) carrying
aeromonads among the ornamental fishes in freshwater cul-
ture system pose higher threats to the humanswho are in direct
contact with the fishes (Sreedharan et al. 2012). Further sig-
nificant tetracycline and erythromycin resistant diverse
aeromonads including A.dhakensiswere identified in freshwa-
ter ornamental fishes (Jagoda et al. 2014). Multi drug resistant
aeromonads infected goldfish was found to be susceptible to
herpes virus infection, which implies the proneness of antimi-
crobial resistant pathogen bearing fishes to viral infections
(Sahoo et al. 2016).

All these reports of antibiotic resistance in ornamental fish-
es indicated the indiscriminate use of antibiotics in the aquar-
ium. Although there is a dearth of information regarding the
MAR bacteria in the aquariums, their close associations dur-
ing handling and transportation with human could pose great
health concerns. This could be exemplified by the spread of
Salmonella Java infections from the tropical ornamental fish
aquarium to human infants (Musto et al. 2006). In addition,
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Fig. 2 Pie chart showing the percentage distribution of fish pathogens
exhibiting antimicrobial resistance
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AMR bacteria can transmit their corresponding ARG through
HGT to other aquatic microbes. Verner-Jeffreys et al. (2009)
observed that ornamental fish and its carriage warm water
serve as the major container of multi resistant genes. This
might be due to the release of those resistant gene carrying
isolates in to the surrounding water through fish excreta,
which may further transfer their genes to other bacteria
(Agoba et al. 2017). Hence the ornamental fish industry
should also take appropriate measures to curb the dissemina-
tion of resistance in the system.

Shellfish culture

There are early reports on the occurrence of antimicrobial
resistant bacteria among the shellfishes, especially in the
shrimps, where Abraham et al. (1997) reported that Vibrio
harveyi from diseased cultured shrimp exhibited a broad range
of multiple antibiotic resistance against erythromycin,
gentamycin, ampicillin, polymyxin B, oxytetracycline, rifam-
picin, chlorotetracycline, streptomycin, ciprofloxacin, furazol-
idone, nalidixic acid and neomycin. Vibrio harveyi isolated
from pond cultured shrimps also exhibited multiple antibiotic
resistance towards oxytetracycline, oxolinic acid, chloram-
phenicol and furazolidone, indicating the abuse of antibiotics
in open shrimp culture systems (Tendencia and Pena 2001).
Ripabelli et al. (2003) identified the multi drug resistant
V.vulnificus and V.alginolyticus from the mussels, Mytilus
galloprovincialis and Kang et al. (2016) recovered multi drig
resistant V.alginolyticus from oysters. High incidence of resis-
tance to ampicillin and tetracycline classes was exhibited by
cultivated marine shrimp (Litopenaeus vannamei) associated
Vibrio isolates in Brazil (Reboucas et al. 2011). The distribu-
tion of tetracycline and ampicillin resistant Aeromonas veronii
and A. aquariorum was observed in shrimps even at low sa-
linity ponds (Yano et al. 2015). All the observed data indicates
the establishment of AMR in freshwater, brackish and marine
cultured shrimps, highlighting the role of crustaceans in dis-
semination of antibiotic resistance besides the fin fishes.

Molecular mechanism of antimicrobial
resistance and the associated genes

Antimicrobial resistance mechanism differ in various ways
among bacteria, which include antibiotic detoxification, inhibi-
tion of antibiotic deposition inside the cells, target protection
and substitution (Bennett 2008). Bacterial conjugative plas-
mids, transposable elements and integron systems are the three
significant gene transfer systems responsible for gene acquisi-
tion and thereby spreading the antibiotic resistance determi-
nants (Stokes and Gillings 2011). Antibiotic resistance genes
such as tet, sul, qnr, ere etc. are assembled on the major scaffold
of bacterial plasmid, by means of transposition (transposable

elements) and site-specific recombination events (integron and
gene cassettes) (Bennett 2008). There are several reports of
plasmid mediated and integron associated antibiotic resistance
genes in fish pathogens, and their dissemination in aquaculture
had been documented by various researchers.

Mobile genetic elements in spread of antimicrobial
resistance associated with fishes

Plasmid mediated resistance

Plasmids, the extrachromosomal mobile genetic element con-
stitute various genes which confer resistance to various antibi-
otics and toxic heavy metals (Partridge et al. 2009). Early re-
ports are available on the plasmidmediated antibiotic resistance
among various fish pathogens (Dixon et al. 1990). Vibrio
anguillarum, Pseudomonas fluorescens, Aeromonas
hydrophila, A. salmonicida, Pasteurella piscicida, Yersinia
ruckeri, Edwardsiella tarda are the well known bacterial fish
pathogens carrying transferrable R plasmids and thereby
exhibiting plasmid mediated antimicrobial resistance
(Alderman and Hastings 1998). Incompatible plasmids like
IncA/C carrying antibiotic resistance genes gained more atten-
tion in North American aquaculture pathogens (Pan et al.
2008). Verner-Jeffreys et al. (2009) observed the blaTEM21, dfr,-
sul1 qacE2, tetA, tetD, tetE, floR genes along with various
aminoglycoside resistant genes embedded within the incompat-
ible IncA/C host range plasmids of cultured ornamental fishes.

Tetracycline resistance

It was demonstrated in many studies that the aquatic fish farm-
ing environment act as the reservoir of tranferable tetracycline
genes (Jacobs and Chenia 2007). Excessive tetracycline resis-
tance genes have evolved due to the coexistence of tetracycline
producingmicroflora in the environmental niche (Schmidt et al.
2001b). For example, tetracycline resistance genes tetA-G have
been detected in fish pathogens belonging to fish species of
different geographical locations (Miranda et al. 2003). Various
tetracycline resistance genes such as tetC, tetM and tetA in-
volved in efflux mechanisms of resistance and ribosomal pro-
tection were also detected among the pathogens associated with
rainbow trout farms (Ndi and Barton 2011).

Oxytetracycline is the most frequently given antibiotic dur-
ing the disease outbreaks in aquaculture (Jacobs and Chenia
2007). A novel oxytetracycline resistance gene, tet 34 was
identified in a Vibrio strain from cultured yellowtail by
Nonaka and Suzuki (2002). Acinetobacter strain resolved
from freshwater trout farms was found to possess another
novel tetracycline resistance determinant, tet39, located on
transferable plasmid (Agerso and Guardabassi 2005).
Nonaka et al. (2007) and Agersø et al. (2007) detected tetM
harbouring Vibrio strains and tet E carrying Aeromonas strains

1506 Biologia (2020) 75:1497–1517



respectively from various fish farms, all of which can be trans-
ferred through HGT. Several studies reported the coexistence
of tetracycline and sulphonamide resistance genes that com-
plicated the treatments. For example, tet39 together with sul2
genes located on the plasmids of Acinetobacterwere observed
in the Thailand fish farms (Agersø and Petersen 2007). Later
Su et al. (2011) noticed the co-occurrence of tetA and tetC
with sul2 among the majority strains of Enterobacteriaceae
from Chinese fish farms.

Quinolone resistance

Han et al. (2012) described qnrs5, a qnrs variant for the first
time and analysed QRDR derived from a motile aeromonad
associated with diseased fish and water. Aeromonas acts as the
major vehicle for transmitting those mobile genetic elements
through HGT in aquaculture (Poirel et al. 2012). The basic
mechanism behind the quinolone resistance is the incidence
of mutations in DNA gyrase and DNA topoisomerase along
with the plasmid mediated resistance and that of fluoroquino-
lone resistance due to the QRDR (quinolone resistance-
determining region) based mutation (Hooper and Jacoby
2015). Recently, Chenia (2016) detected a high incidence of
plasmid borne qnr alleles, responsible for high level of
fluoroquinone resistance, in Aeromonas isolates of South
African freshwater fish.

While Cattoir andNordmann (2009) reported thatwater borne
Vibrionaceae could also act as reservoir of qnr determinants.
Lunn et al. (2010) commented that plasmid-mediated transfer-
able quinolone resistance (PMQR) determinants (qnrA, qnrB
and qnrS) were mainly found in Enterobacteriaceae as compared
to Aeromonadaceae and Vibrionaceae. Simultaneous occurrence
of various protective mechanisms responsible for resistance were
observed among the strains derived from Chile fish farms
(Buschmann et al. 2012). Such mechanisms include the produc-
tion of qnr proteins (topoisomerase protection) and aminoglyco-
side transferases and QepA mediated efflux mechanisms
(Miranda et al. 2013).

Li (2005) stated that most of the qnr plasmids are integron
associated and capable of showing multiple resistance to other
antimicrobials like aminoglycosides and beta lactams.
Prolonged use of quinolones in fish farms resulted in the ele-
vated mutations of gyrA gene in fish pathogens like
Flavobacterium psychrophilum, Yersinia ruckeri and
V. anguillarum, which leads to hyper drug resistance (Izumi
et al. 2007; Shah et al. 2012). Because of the high frequency
of multiple plasmid mediated qnr genes in marine bacteria, it
was hypothesised that some of the PMQR genes were originat-
ed from aquatic source (Jacoby and Hooper 2013). The occur-
rence of a single mutation in the gyrA gene of fish pathogens
such as Aeromonas salmonicida, Photobacterium damselae
and Edwardsiella tarda resulted in resistance to oxolinic acid
(Miranda et al. 2013). Another point to be noted is the

abundance of quinolone resistance genes in the aquaculture
system as compared to non aquaculture sites (Tomova et al.
2015).

Beta lactam resistance

It is reported that beta lactam antibiotic resistance is mainly
associated with the production of beta lactamases (Alderman
and Hastings 1998). Vibrio cholerae, V.vulnificus and
V.aestuarianus are the major aquaculture pathogens that pos-
sess β-lactam resistant genes (Wang et al. 2006). The in-
creased expression of chromosomal ampC beta lactamase
gene results in strong resistance to β-lactam antibiotics such
as amoxicillin, cefoxitin, ampicillin and a low level resistance
to cephalosporins (Slama et al. 2010). Even the fecal matter of
Gilthead seabream was found to be enriched with beta
lactamase resistance genes (blaSHV-12 and blaTEM-52) along
with sul1–3, cmlA, aadA and tetA (Sousa et al. 2011). The
extended spectrum beta-lactamases (ESBL) are widely dis-
tributed among the aeromonads, Alderman and Hastings
(1998) reported the presence of such three beta-lactamases
in A. salmonicida. The expression of ESBL denoted the resis-
tance capability of fish pathogens to even third and fourth
generation cephalosporin groups that make it difficult to con-
trol (Verner-Jeffreys et al. 2009). Extended spectrum beta
lactamase genes such as blaTEM, blaSHV, blaCphA and blaOXA-
B were noticed in Aeromonas isolates from cultured rainbow
trouts by Vega-Sanchez et al. (2014) and this indicates the
severity of the emergence of new generation antibiotic resis-
tant fish pathogens.

Macrolide resistance

Macrolide resistance is also a serious problem in aquatic fish
farms, where target ribosome-site modification, production of
macrolide inhibiting enzymes and synthesis of drug efflux
proteins are the major mechanisms behind the phenomenon
(Nguyen et al. 2017). Erythromycin, a class of macrolide,
along with gentamicin, kanamycin, chloramphenicol, ampicil-
lin and oxytetracycline resistance were detected in both Gram
positive and Gram negative pathogens associated with crusta-
ceans, farmed fish and crabs (Akinbowale et al. 2006).

Phenicol resistance

The use of phenicols such as chloramphenicol is limited in
aquaculture in mid 1990s due to its toxicity, however a fluo-
rinated derivative, florfenicol became popular in aquaculture
due to its effectiveness against wide fish pathogens (Michel
et al. 2003). Vibrio damsela is the first reported florfenicol
resistant fish pathogen in Japanese aquaculture (Kim et al.
1993). Chloramphenicol resistance mainly occur due to the
drug inhibition mediated by chloramphenicol acetyl
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transferases (cat). Those protein encoding cat genes exist in
limited sources, but spread among aquatic organisms even in
the absence of high selection pressure (Yoo et al. 2003).
Hence, elucidating the structural arrangements of cat genes
in multiple drug resistant fish pathogens would be valuable
so as to determine the origin of those genes. Efflux pump
mechanism and production of enzymes such as RNA methyl
transferases (cfr gene coding) and specific hydrolases are the
other reasons behind the resistance towards the licenced
phenicol drugs (Tao et al. 2012). The resistance capability of
Chryseobacterium isolates from diseased fishes and aquatic
habitats, against phenicols, was inhibited in the presence of
efflux pump inhibitor, phenyl-arginin-β-naphthylamide,
thereby highlighting the involvement of efflux mechanism in
their resistance (Michel et al. 2005).

Transposon mediated resistance

Most of the antibiotic resistance genes on R plasmids reside on
transposons, help in the rapid spread of genetic determinants
(Alekshun and Levy 2007). Resistance transposons could be
generally defined as the jumping gene system since these ele-
ments can be transferred intra or inter molecularly and various
resistance genes in association with IS elements could be incor-
porated within the element (Bennett 2005). The major fish path-
ogen, A. salmonicida was found to possess transposon, Tn5393
on a conjugative R plasmid, carrying various streptomycin,
sulphonamide and tetracycline resistance genes (Labee-Lund
and Sorum 2001). Transposon bearing tetracycline and kanamy-
cin resistance determinants were observed earlier on a fish path-
ogen Pasteurella piscicida by Kim and Aoki (1993).
Transposons, Tn 1721 and Tn5706 in Acinetobacter and
Moraxella strains play a vital role in the wider dissemination of
tetA genes and tetH genes in salmon fish farms (Chenia and
Vietze 2012). Transposon-like elements in clinical pathogens,
Salmonella and other Enterobacteriaceae recovered from
United States and Asia were found to be identical to the gene
cassettes possessing sugE, blaCMY − 2 and blc found in
Aeromonas salmonicida of Atlantic salmon farms (Huang et al.
2015). This again confirms the incidence of intensive spreading
of antimicrobial resitance determinants across the world.

Integrons and gene cassettes associated resistance

Among the Gram negative bacteria, integrons play a signifi-
cant role in the wider dissemination of antimicrobial resistance
in aquaculture (Gao et al. 2012). This phylogenetically diverse
integron/gene cassette system is meant for adaptation rather
than simply confined to antibiotic resistance (Labbate et al.
2009). The relative abundance of these integrons usually in-
creased with the exposure of excess antibiotics and other en-
vironmental stresses such as heavy metal contamination
(Rosewarne et al. 2010). The genetic structure of integron

has a peculiar characteristics to acquire, excise and express
genes embedded within the gene cassettes (GCs), and are
commonly harboured on mobile genetic elements such as
plasmids and transposons, which facilitates the spread of de-
terminants through horizontal gene transfer and transposition
within the community (Stalder et al. 2012).

Integrons mainly are of two types; chromosomal and mo-
bile. Chromosomal integrons (CI), otherwise super integrons,
could carry around 200 cassettes, possessing various proteins
of unknown functions (Stalder et al. 2012). The resistant genes
present on the chromosomal integrons could also be trans-
ferred to the mobile ones, which may lead to the evolution
and a wider spread (Rahube and Yost 2010). Mobile integrons
(MIs) also known as resistant integrons (RIs)/multidrug resis-
tance integrons (MRIs), located on mobile genetic elements
carry lesser GCs, which mainly encode antibiotic resistance
determinants and are responsible for wider dissemination
(Stalder et al. 2012). Mobile integrons are of a major concern
as they are the responsible entities for the gene transfer. Of
these MIs, class 1, 2 and 3 integrons are the commonly detect-
ed ones and class 1 integrons are usually associated with trans-
posons, which encompass mainly 5′ conserved (int 1 gene,
promoters, attI and attC), 3′ conserved (qacED1 and sul1
genes) and variable regions (gene cassettes) (Gao et al. 2012).

Transposon, Tn7 associated class 2 integrons are the second
popular integrons, usually consisting GC arrays such as dfrA1,
sat2, aadA1 and orfX, which were reported to confer resistance
to trimethoprim, streptothrycin, streptomycin and spectinomy-
cin (Hansson et al. 2002). Jacobs and Chenia (2007) success-
fully amplified the class 2 integrons coding gene from
Aeromonas isolate of South African aquaculture system, but
failed to detect the associated resistance gene cassettes.
However, the prevalence of class 2 integrons in aquatic ecosys-
tems is found to be very low (Luo et al. 2010). Only a few class
3 integrons were described so far, while the aquatic ecosystem
constitutes major pool of these systems (Stalder et al. 2012).

Gene cassettes (GCs), the non replicative mobile elements
are usually inserted within the integron through recombination
and could express genes responsible for antibiotic resistance
using the Pc promoter (Stalder et al. 2012). Labee-Lund and
Sorum (2001) stated the possibility of occurrence of single
gene cassette only on integrons from pathogens of aquaculture
origin, which was corroborated with the studies of Ndi and
Barton (2011). Later, Partridge et al. (2009) reported more
than 130 gene cassettes that conferred resistance to antimicro-
bials such as trimethoprim (dfr), beta lactams(blaCARB-2,
blaOXA, blaP1), chloramphenicol (catB), macrolides, amino-
glycosides (aad, aac), erythromycin (ereA) foscomycin, quin-
olones, rifampicin (arr), lincosamides and quarternary ammo-
nium compounds (qac). This information reveals the implica-
tion of another major route of resistance gene transfer besides
the plasmid mediated resistance genes. The major molecular
mechanism behind the antibiotic resistance is the SOS
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response (a global regulatory network) which gets activated
on exposure to antimicrobials and other environmental stress-
es and further induces integrase expression thereby leading to
GCs recombination events (Cambray et al. 2011).

The class 1 integrons and their gene cassette arrays can be
considered as the important targets to characterise the antimi-
crobial determinants and to study the wider dissemination of
AR factors in aquaculture. Presence of integron associated an-
tibiotic resistance genes can be detected through the PCR am-
plification and sequencing of conserved and variable regions of
mobile integrons (Schmidt et al. 2001a). Several studies had
been undertaken to analyse the distribution of integrons in fish
farming environments. Tilapia, koi and trout cultures derived
Aeromonas isolates from South Africa were found to possess
class 1integrons with gene cassettes dhfr1, oxa2a, ant(3”)Ia,
aac(6’)Ia (Jacobs and Chenia 2007). Around 50% of the path-
ogenic isolates recovered from freshwater fish farms possessed
antibiotic resistance bearing class 1 integrons (Schmidt et al.
2001a; Verner-Jeffreys et al. 2009). Genetic analysis of
Aeromonas isolates from various fishes, ornamental fish and
shrimps of Chinese aquaculture revealed multi drug resistant
genes, such as blaCTX-M-3,blaTEM-1, drfA12-orfF-aadA2,
drfA12-orfF, dfrA17, aac(6′)-II-blaOXA-21-cat3, tetA, catB3
and arr-3 carrying gene cassettes (Deng et al. 2016).

As already discussed, in addition to gene cassette associated
resistance, MIs containing plasmids/transposons also harbour
additional resistance genes (Li et al. 2010). Thus the coselection
of plasmid/transposon associated resistance and gene cassette
bearing MIs leads to the development of multidrug resistant
phenotypes. The potential of multi drug resistant bacteria to
distribute the resistance genes in the aquaculture systems and
to the human pathogens through the mobile genetic elements
are very high (Smith et al. 1994). The multi drug resistance
could be designated as ‘superbug’ phenomenon, elevates the
overall resistance power and unfortunately this combinatorial
resistance acquired through mobile genetic elements are diffi-
cult to get eliminated from the system (Enne et al. 2001).
Plasmid mediated quinolone and aminoglycoside resistant
genes in addition to integrons were observed on Aeromonas
isolates from tropical ornamental fish and cold water koi carps
(Dobiasova et al. 2014). However, it is not always necessary for
the integrons to carry antibiotic resistance encoding gene cas-
settes and those without gene cassettes could be denoted as
“empty integrons” (Schmidt et al. 2001a). Hence the presence
of specific antibiotic resistance genes (plasmid encoded) needs
to be analysed besides identifying the integrase genes alone.

Management measures and alternative
strategies

As recommended by Food and Agriculture Organization
(FAO) and World Health Organization (WHO), it is highly

essential to develop and implement valid measurement
methods at national and international levels to evaluate
and detect the resistant pathogens and associated genes so
as to control the spread of AMR in aquaculture (WHO
2006). According to FAO action plan on AMR 2016–
2020, implementation of effective policies such as proper
regulations and enforcement, acquiring information on the
field of disease diagnosis, risk assessment, disease control
and management, capacity building on every aspect of
aquaculture production chain, prudent use of antimicro-
bials for the prevention of disease outbreaks and effective
biosecurity practices are necessary (www.fao.org/cofi/
3079806222458cbe49b16e15c7743d3b642c04) .
Accordingly, it is imperative to keep the aquatic system clean,
safe and disease free so as to prevent the development of
bacterial infections, minimise antibiotic uses and furtherance
of resistance. A proper multistage monitoring of antibiotic
resistance is inevitable during every outbreak of diseases.
Through understanding the details behind the resistance
mechanism, effective modifications and appropriate
selection and application of antibiotics in the respective fish
farms can be executed. The antibiotic residues persisted in
aquatic environment due to their over dosage and excess
feed, can be removed by appropriate adsorption methods,
filtration, biological processes, sedimentation and
flocculation (Homem and Santos 2011).

Effective alternative strategies have to be put forward in the
aquaculture industry thereby regulating the dependence on
antibiotics and the emergence of antibiotic resistance.
Preventive measures such as vaccination are being used in
aquaculture for controlling the disease onset. Oral fish vac-
cines are effective against many aquatic diseases through the
production of humoral antibodies (Newaj-Fyzul and Austin
2015). The oral vaccine developed using the porin gene of
V. anguillarum was found to protect sea bass (Kumar et al.
2008). Chitosan nano particles incorporated DNA vaccine
using OMP K gene of Vibrio parahaemolyticus was effective
for black sea bream (Li et al. 2013). However, vaccines cor-
responding to all kinds of fish diseases are not available
worldwide. For example, vast amounts of quinolones were
applied to treat those infections in Chile since because of the
absence of effective vaccines against Piscirickettsia salmonis,
(Cabello 2004). This indicates the perpetual use of antibiotics
under special circumstances.

In addition to vaccines, probiotics are also increasingly
used in the control of aquatic diseases by conferring health
benefits. Probiotics have the evident potential to antagonize
the pathogens such as Vibrio harveyi, a major threat in aqua-
culture, via attaching the intestinal mucus (Chabrillon et al.
2005). Bacillus amyloliquefaciens , B. coagulans ,
Brevibacillus brevi are some of the other reported probiotic
bacteria effective against fish pathogens such as
A. hydrophila , Edwardsiella tarda , V. harveyi V.
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parahaemolyticus and V. anguillarum (Newaj-Fyzul and
Austin 2015). Bacteriocins like antimicrobial peptides are
found to be another promising natural alternative to antibiotics
(Marshall and Arenas 2003). Marine bacteriocins such as
divercins and pisciocins produced by Carnobacterium associ-
ated with fish intestine and those produced by lactic acid bac-
teria and autochthonous bacteria were effective for treating
bacterial infections in aquaculture (Desriac et al. 2010).

Immunostimulants like β-1,3 glucans are the other compo-
nents effective against various aquatic diseases like vibriosis,
enteric redmouth, aeromonadiasis, pasteurellosis and Hitra
disease (Ngamkala et al. 2010). Another immunostimulant,
LPS also has been reported to increase the bactericidal activ-
ities in common carp and to reduce mortality of aeromonad
infected rainbow trout (Nya and Austin 2010; Kadowaki et al.
2013). Broad-host range phages can also be applied in aqua-
culture to counteract bacterial infections in fishes. Phages
were successfully applied in aquaculture, because of the un-
availability of appropriate vaccines, to protect salmonids from
rainbow trout fry syndrome (RTFS) causing Flavobacterium
psychrophilum (Castillo et al. 2012). However, bacteriophage
resistance mechanisms were also noticed in fish pathogens
such as F.psychrophilum (Castillo et al. 2015).

Immunomodulation, protection from bacterial diseases, in-
hibition of infections are offered by traditional medicinal plant
products also. Seaweeds such as Ceramium rubrum,
Gracilaria cornea and Asparagopsis armata also act as anti-
microbial compounds against fish pathogens such as Vibrio
anguillarum and Pseudomonas anguilliseptica (Bansemir
et al. 2006). The immunity of spotted snakeheads towards
Aeromonas hydrophila infections was found to be increased
and mortality rate reduced through the application of Solanum
nigrum (Rajendiran et al. 2008). Harikrishnan et al. (2012)
reported that when kudzu vine fed to Epinephelus bruneus,
an enhanced protection was observed against Vibrio harveyi.
Another Chinese medicinal herb, Ku Shen was found to be
effective in Tilapia when challenged with Streptococcus
agalactia (Wu et al. 2013). Extracts of mango, peppermint,
turmeric, jasmine, neem etc. are also the other promising al-
ternatives to treat bacterial infections caused by aeromonads
and vibrios in aquatic species (Newaj-Fyzul and Austin 2015).
Photodynamic therapy ia an alternative to be applied to inac-
tivate microbial actions in fish farming plants (Almeida et al.
2009). Quorom sensing inhibition compounds such as halo-
genated furanones, frommarine algae, can be administered for
disrupting biofilm forming aquaculture pathogens such as
Vibrio anguillarum, Aeromonas hydrophila, A. salmonicida,
Edwardsiella tarda and Yersinia ruckeri (Defoirdt et al. 2011).
Metal based nanoparticles having both antibacterial and anti-
fungal activities were also successfully applied against the fish
pathogens in aquaculture (Swain et al. 2014). Recently a com-
bined thiamphenicol/florfenicol was successfully applied
against aeromoniosis without lowering their efficacy

(Assane et al. 2019). Thus the combination of different anti-
microbials could reduce the application of antibiotics without
reducing their therapeutic effect; this could combat the high
intense antimicrobial resistance.

Larsson et al. (2018) reported that further researches are
immediately needed to recognize the dimensions of AMR in
various environmental systems and the four major areas seri-
ously quoted were: the source of antibiotics and the resistant
bacteria; the role of environmental system in the evolution of
resistance; consequences of exposure of antibiotic resistant
bacteria to the global health system; and the effectiveness of
various technologies to alleviate the AMR issue. Hence, as
discussed in the present review, future studies are highly in-
evitable in the aquaculture system also for the sustainable
ecosystem. Thrust areas should be the source of antimicrobials
(direct /indirect application); role of different aquaculture/non
aquaculture systems in spreading AMR; molecular mecha-
nisms of AMR bacteria to combat the antibiotic effect; and
various management measures and substitute methods to con-
trol the threats. One health approach could be taken as one of
the serious remedies to overcome the everlasting AMR men-
ace. It is interestingly stated by Cavalli et al. (2015) that aqua-
culture could be maintained under “one health umbrella”
through one health concept. For the great success of this con-
cept, it is inevitable to break the interdisciplinary barriers that
separates animal and human medicines from the evolutionary,
ecological and environmental sciences (Destoumieux-Garzón
et al. 2018). Thus the initiative of “one health” implies a global
strategy which indicates the development of transdisciplinary
and holistic approach, where integrated concepts can be taken
up for the good health of human, animals and the whole
ecosystem.

Conclusion

Effective aquaculture operations, safe management practices,
appropriate stocking programmes and proper hygienic condi-
tions can control the introduction of bacterial pathogens, inci-
dence of bacterial infections and thereby the use of antimicro-
bials. Continuous monitoring programmes following proper
guidelines, and effective policies have to be implemented to
overcome the threat of antimicrobial resistance. Assessment
offish mortality, evaluation of antibiotic residues, identifica-
tion of responsible pathogens and determination of their anti-
microbial susceptibilities should be performed frequently as
part of the monitoring programme. Detection of antimicrobial
resistant genes encompassing the gene transfer systems, such
as integrons and gene cassettes, through molecular methods is
crucial in the treatment improvisation thus preventing the
wider spread of antibiotic resistance. Hindrance in the emer-
gence of antimicrobial resistance in aquaculture can restrict

1510 Biologia (2020) 75:1497–1517



the flow of AMR genes to the natural environment and its
progress as a public health hazard.
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