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Abstract
Transposable elements constitute a large fraction of plant genomes and represent a powerful marker tool for genetic diversity
studies. Here, the retrotransposon-based marker method inter primer binding sites (iPBS) was used to assess the genetic variation
and intergeneric hybrid dynamics in the family Asteraceae by studying genera Helianthus, Echinaceae, Tagetes, Tithonia and
Verbesina. Two selected iPBS primers (2222 and 2224) detected intergeneric polymorphism in the range 44.8% - 93.3% (mean
70%) and 85.7% - 100% (mean 89.5%) respectively. Moreover, iPBS markers allowed the genetic discrimination at within-
species level between varieties ofH. annuus (35.7% and 19.1%) but also between single cross’s segregating intergeneric hybrids
(28.6% and 40%). The inheritance of iPBS markers and the parental genomes respectively in intergeneric hybrids of H. annuus
has beenmanifested by the non-random elimination ofmarkers mainly of origin of wild species and the preferential inheritance of
markers unique to H. annuus. Such instability evidences genomic reconstruction involving LTR elements. In conclusion, the
iPBS method stands as a reliable approach for the evaluation of genetic diversity of Asteraceae germplasms and perspective for
use in the breeding practice of sunflower and related species.
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Abbreviations
TEs Transposable Elements
IRAP Inter Retrotransposon Amplified Polymorphism
iPBS inter Primer Binding Sites
REMAP Retrotransposon Microsatellite Amplified
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Introduction

Wide (intergeneric and interspecific) hybridizations commonly
have a great potential for crop improvement by widening the

genetic base from which plant breeder can select desirable
traits (Liu et al. 2005). In genus Helianthus, there has been
an increasing interest in the use of wild sunflower relatives -
a valuable source of desirable agronomic traits (Breton et al.
2012; Vassilevska-Ivanova et al. 2013, 2014, 2015, 2018; Liu
et al. 2017; Seiler et al. 2017). However, most of the wild
relative species remain untapped as usable germplasm. The
reason for this is that the genus Helianthus has no close rela-
tives; the pattern of distributions of phylogenetic markers sug-
gested that wide hybridization is not uncommon within the
larger group to which the common sunflower belongs (Seiler
et al. 2017).

Transposable elements (TEs) are well suited as molecular
markers to monitor natural and stress-induced genetic diversity
(Schulman et al. 2004). The reason for this is their ubiquitous
distribution in plant genomes (Schnable et al. 2009; Choulet
et al. 2014) and susceptibility to activation and transposition in
response to stress such as pathogen attacks, wounding, extreme
temperature etc. (Wessler 1996; Grandbastien 1998). In this
line, intergeneric hybridizions often appears as a „genome
shock “capable of triggering changes in gene regulation and
chromosome rearrangements (Adams et al. 2003; Paun et al.
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2007; Morgan et al. 2011) and a substantial part of these ge-
nome alterations are attributed to the mobilization of TEs (Otto
2007; Kawakami et al. 2011).

The genome of sunflower H. annuus is composed of
more than 81% of TEs, mainly represented by long terminal
repeat (LTR)-retrotransposons (Giordani et al. 2014).
Retrotransposition events have been and are probably still
occurring since the origin of this species thus playing a
major role in shaping its DNA landscape (Vukich et al.
2009; Kawakami et al. 2011; Staton et al. 2012).
Furthermore, genome expansion and proliferation of TEs
in the genus Helianthus have been largely influenced by
interspecific hybridization events as shown for hybrids of
H. annuus and annual wild sunflower species H. petiolaris
(Staton et al. 2009; Ungerer et al. 2006, 2009). Therefore,
retrotransposon-based marker methods appear attractive to
be used as a fingerprinting tool in Asteraceae. However,
beside two studies addressing the application of IRAP
(Inter Retrotransposon Amplified Polymorphism) markers
to infer patterns of evolution in the genus Helianthus
(Vukich et al. 2009; Basirnia et al. 2014), comprehensive
information on TE variability between different genera of
the family Asteraceae is still missing particularly in relation
to genome dynamics in intergeneric hybrids. Kalendar et al.
(2010) developed the DNA marker system iPBS (inter prim-
er binding sites) which allows the detection of
polymoprphisms in the insertional pattern of multiple
retrotransposon copies and the method has been recently
used to explore the genetic diversity in various plant species
(Smýkal et al. 2011; Baranek et al. 2012; Andeden et al.
2013; Mehmood et al. 2013; Guo et al. 2014; Baloch et al.
2015a, b; Nemli et al. 2015; Demirel et al. 2018; Yaldiz
et al. 2018).

This study was aimed to explore: 1/ the potential of iPBS
markers for fingerprinting the genetic variability at within-
species and intergeneric level in the family Asteraceae and
2/ to screen patterns of intergeneric hybrid dynamics with
the cultivated Helianthus annuus as a parent.

Materials and methods

Plant material and DNA extraction

Species of five Asteraceae (Compositae) genera – the sun-
flower Helianthus annuus (cultivars Favorit and 1114),
Echinacea purpurea, Tagetes sp., Verbesina encelioides and
Tithonia rotundifolia were assessed by iPBS markers. Also,
five intergeneric hybrids developed after crossing H. annuus
cv 1114 and wild species above were investigated: H. annuus
cv 1114 x E. purpurea (HAxEp), H. annuus cv 1114 x V.
encelioides (HAxVe1 and HAxVe2), H. annuus cv 1114 x T.
rotundifolia (HAxTr), and H. annuus cv 1114 x Tagetes sp.

(HAxTag). The hybrids between the common H. annuus and
related species of Asteraceae family included here were pre-
viously described by Vassilevska-Ivanova et al. (2013, 2014,
2015, 2016). The total genomic DNA of samples was extract-
ed from fresh 6-day-old etiolated leaves using Dneasy Plant
Mini kit (Qiagen).

iPBS-retrotransposon analysis

The iPBS method identifies diverse LTR sequences and di-
rectly visualizes their polymorphism among cultivars
(Kalendar et al. 2010). This method focuses on the PBS re-
gion, which is adjacent to the 5′ LTR and is conserved among
different LTR retrotransposon families. Because the 3′ termi-
nal sequence of tRNA is complementary and binds to the PBS
region to initiate reverse transcription, the latter sequence is
conserved across nearly all LTR retrotransposon families.
Therefore, the primers for the PBS region allow the simulta-
neous detection of almost all types of LTR transposable ele-
ments compared with other transposon-based marker methods
such as IRAP and REMAPwhere transposon-specific primers
have to be used. Four iPBS primers previously described by
Kalendar et al. (2010) were tested for amplification efficiency
(Table 1). Polymerase chain reaction (PCR) was performed in
25 μL of the reaction mixture containing 50 ng of DNA tem-
plate, 1X PCR buffer DreamTaq buffer, 0.25 mM dNTPs,
1 μM of primer for 12 nt primers or 0.6 μM for 18 nt primers,
1 units Taq DNA polymerase (DreamTaq, Fermentas) and
0.04 units Pfu DNA Polymerase (Fermentas). The PCR pro-
gram consisted of: 1 cycle at 95 °C for 3 min; 35 cycles of
95 °C for 15 s, 53–55 °C (depending on the primer) for 60 s,
and 68 °C for 60 s. The reaction was completed by a final
extension at 72 °C for 5 min. Fifteen-micro-liter aliquots of
PCR products were resolved by 1.7% (w/v) agarose gel elec-
trophoresis at 80 V for 7 h in 1X STBE buffer (10X STBE:
0.25 M Tris–H3BO3, 40 mM Na2B4O7, 10 mM EDTA,
pH 8.6) and detected by ethidium bromide staining. Each
PCR reaction was performed in three replicates.

Data analysis

LTR-retrotransposon dynamics between Asteraceae species
was evaluated through the following parameters describing
the abundance and diversity of TEs: number of amplified loci,
band frequencies among segregating loci and percentage of
polymorphism. We also estimated the relative inheritance of
iPBS markers from parents in their corresponding hybrids by
monitoring the number of bands inherited from each parent,
number of bands shared by both parents and number of new
and lost bands (rearranged bands). The distance between sam-
ples was calculated based on the Jaccard coefficient of dissim-
ilarity using the Excel application XLSTAT v. 2014.5.03
(Addinsoft, NY, USA). The iPBS marker binary data were
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resolved into networks trees with the NeighborNet algorithm
(Bryant and Moulton 2004) obtained on Jaccard distances’
parameter implemented in the program SplitsTree 4 v. 4.14.4
(Huson and Bryant 2006).

Results

iPBS banding pattern and genetic diversity
among investigated genera of Asteraceae

The discrimination power of four iPBS primers was assessed
based on the reproducibility of banding patterns, parameters of
band dynamics and the level of generated polymorphism. After
the initial screening, two primers (2222 and 2224) that pro-
duced the largest number of easily scorable and reproducable
bands were chosen for subsequent analysis. The amplification
range was 600–4000 bp (primer 2222) and 550–5000 bp (prim-
er 2224) (Fig. 1). A significant variability in the insertional
pattern of LTR-retrotransposons both between parental species
and among hybrid lines was also observed. The number of
amplified loci varied between different genera with the highest
number scored for both cultivars of the common sunflower

H. annuus cv Favorit (24) and H. annuus cv 1114 (22). The
lowest number of amplified loci was observed for wild species
E. purpurea (17) and Tagetes sp. (14).

The resolution power of iPBS markers allowed the genetic
differentiation of analyzed species as it is illustrated by the
Jaccard coefficients of dissimilarity (Table S1) and the per-
centage of polymorphism (number of polymorphic loci) be-
tween Asteraceae species (Table 2) presented in a pairwise
manner. The iPBS markers allowed to reveal a variability at
within-species level as evident for cultivarsH. annuus cv 1114
and H. annuus cv Favorit. In this line, the degree of the ob-
served polymorphisms between both H. annuus varieties was
35.7% (primer 2222) and 19.1% (primer 2224). Furthermore,
segregating hybrids from one and the same cross - H. annuus
x V. encelioides1 (HAxVe1) and H. annuus x V. encelioides2
(HAxVe2) are distinguished and the respective polymorphism
values between HAxVe1 and HAxVe2 are 28.6% and 40%.
The between-species polymorphism was in the range 44.8% -
93.3% for primer 2222 (mean 70%), and 85.7% - 100% for
primer 2224 (mean 89.5%).

To further visualize the degree of genetic relationships among
the representatives of the Asteraceae family and the intergeneric
hybrids of H. annuus cv 1114, the binary data were used to

Table 1 Oligonucleotide sequences used for the iPBS marker method

Name Sequence Length (bp) Tann Source

2374 CCCAGCAAACCA 12 53.5 Kalendar et al. 2010

2378 GGTCCTCATCCA 12 53.0 Kalendar et al. 2010

2222 ACTTGGATGCCGATACCA 18 53.0 Kalendar et al. 2010

2224 ATCCTGGCAATGGAACCA 18 55.4 Kalendar et al. 2010
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Fig. 1 iPBS fingerprints of species of five Asteraceae genera and their
intergeneric hybrids with the common sunflower H. annuus. The
analyzed samples by primers 2222 (panel a) and 2224 (panel b) are as

follow: 1 –HA 1114, 2 –HA Favorit 3 – E. purpurea, 4 – Tagetes sp., 5 –
T. rotundifolia, 6 – V. encelioides, 7 – HAxTag, 8 – HAxEp, 9 – HAxTr,
10 – HAxVe1, 11 – HAxVe2. M – 1 kb GeneRuler (Fermentas)
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construct a network tree with the NeighborNet algorithm
(Fig. 2). iPBS analysis provided consistent and similar clustering
trees where hybrids and parental species spitted into separate
branches. The common sunflower H. annuus 1114 was signifi-
cantly closer to its hybrids and their genetic similarity is also
supported by the higher number of markers unique to this parent
and transmitted to hybrids (Fig. 3).

Patterns of TE inheritance in intergeneric hybrids
of sunflower Helianthus annuus

We compared the iPBS banding patterns of intergeneric
hybrids with respective parents H. annuus cv 1114 and
wild species Echinacea purpurea, Verbesina encelioides,
Tagetes sp. and Tithonia rotundifolia. The data allowed

Table 2 Percentage of
polymorphism (%) between
representatives of the family
Asteraceae

% polymorphism HA Fav HA 1114 E. purpurea Tagetes sp. T. rotundifolia V. encelioides

HA Fav – 19.1 73.3 91.3 96.0 86.4

HA 1114 35.7 – 80.0 85.7 95.7 82.6

E. purpurea 67.8 65.5 – 90.5 80.0 91.7

Tagetes sp. 93.3 72.4 70.8 – 100.0 100.0

T. rotundifolia 70.2 75.0 60.7 66.7 – 100.0

V. encelioides 48.3 44.8 64.0 64.0 76.5 –
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Fig. 2 Network trees of iPBS
marker data (panel a – primer
2222; panel b – primer 2224),
depicting genetic dissimilarity
(Jaccard coefficient) and
constructed using the algorithm
NeighborNet implemented in the
program SplitsTree 4 v. 4.14.4
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us to estimate the pattern of inheritance of parental iPBS
markers in hybrid plants. In all hybrids, the markers which
are unique for H. annuus cv 1114 (P1) were predominantly
inherited by the hybrids (Fig. 3). In addition, the second
major fraction comprised markers inherited from both par-
ents (biparental inheritance) and this trend was more pro-
nounced when using primer 2222. A characteristic feature
of hybrid genomes is the amplification of new bands that
are not present in both parents. Similarly, there were bands
lost (not transferred to the progeny of each cross) in the
hybrids but present in one or both parents.

The overall pattern of band rearrangement (loss and gain of
new bands) in hybrids in reference to their respective parents
is shown in Table 3. The loss of parental bands in hybrids was
found to be more frequent than the gain of new ones. For both
primers 2222 and 2224, the fraction of rearranged bands in the
hybrid H. annuus cv 1114 x Tagetes sp. (HAxTag) was solely
manifested by lost bands. The genetic distance between par-
ents has been generally assumed to be a factor affecting ge-
netic disbalance in respective hybrids. In our study, the hybrid
H. annuus x T. rotundifolia (HAxTr) displayed the highest
number of lost bands with highest genetic distance detected
between parents.

Discussion

The iPBS method is a high-throughput approach for identifi-
cation of genetic variability related to the insertion/loss of LTR
retrotransposons and/or to DNA sequence variations (nucleo-
tide substitutions or indels) in adjacent regions. To our knowl-
edge, this pilot study is the first attempt to apply iPBS markers
for fingerprinting among-genera diversity within the family
Asteraceaе and to assess genome dynamics in response to
intergeneric hybridizations. The iPBS technique allowed the
amplification of a large number of loci and a substantial poly-
morphism was observed at both intergeneric and within-
species level. The hybrids were found to be genetically closer
to the female parent H. annuus cv 1114 than to the respective
male parent (pollen source) - E. purpurea, Tagetes sp., V.
encelioides and T. rotundifolia. These finding are in good
agreement with previous studies on these hybrids manifesting
phenotype features that are intermediate between both parents
or closer to the cultivated sunflower (Vassilevska-Ivanova
et al. 2015, 2016). High efficiency of genetic discrimination
was observed between single species cultivars but also be-
tween hybrid lines segregating from one and the same cross
(common parental origin). This fact highlights the usefulness
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of the iPBS method for fingerprinting and related genetic
analyses for the purpose of breeding programs involving rep-
resentatives of the family Asteraceae.

According to the “genome shock” hypothesis of Barbara
McClintock (1984), genetic incompatibilities unmasked by hy-
bridization are assumed to induce a programmed response
leading to chromosomal rearrangements, activation of silent
transposable elements, elimination of DNA sequences and epi-
genetic silencing (Barton 2001; Chen 2007; Xiong et al. 2011;
Delgado et al. 2017). Although alterations in gene expression
and cytosine methylation have been previously reported in
wide crosses between intergeneric species in Asteraceae
(Hegarty et al. 2006, 2008; Tate et al. 2006; Wang et al.
2014), patterns of TE dynamics in interegeneric hybrids having
H. annuus as a parent have not been investigated by TEmarker
methods so far. In our study, the hybrids are characterized by a
significant rate of band rearrangements. Although several nov-
el bands were detected, the loss of parental bands is predomi-
nant in intergeneric hybrids. The amplification and removal of
LTR-retrotransposons are one of the earliest responses of the
genome to wide hybridization or allopolyploidy (Shaked et al.
2001). Sequence elimination has been reported in rice (Ma
et al. 2004), wheat (Shaked et al. 2001; Kashkush et al.
2002), Tragopogon spp. (Tate et al. 2006; Koh et al. 2010),
Cucumis sp. (Chen et al. 2007), and Brassica sp. (Song et al.
1995). It is likely that the non-random elimination of sequences
might constitute a way to homogenize the divergent genomes
(Feldman et al. 1997; Comai 2000). This process is supposed
to be highly dependent on the divergence level of parental
genomes. The highest values of lost fragments were observed
for the hybrid H. annuus x T. rotundifolia whose parents pos-
sess the highest genetic distance (Table 3). However, further
studies on a larger collection of hybrid progenies should be
performed in order to make conclusions about the actual pres-
ence of such a trend.

A crucial step in the application of the iPBS method is
the preliminary screening and selection of iPBS primers
that are specific and informative for a particular plant spe-
cies in aspect of the amplification rate and the level of
polymorphism (Kalendar et al. 2010). The fingerprinting
analysis is based on the scoring of fingerprinting bands and

it assumes that bands with the same size correspond to the
same locus. However, similarity in band size does not nec-
essarily indicate identity in sequence content, especially
when interspecific or intergeneric data are compared. The
reason for this is the chance of occurrence of homoplasy
among different genera for dominant marker systems such
as the iPBS method. The use of a larger dataset (larger
number of scored markers) is the way that may reduce this
limitation and minimize the bias in the interpretation of
genetic relationships. Although such a bias may exist to
some extent in our study, we are confident that the use of
iPBS data from primers 2222 and 2224 that generated re-
producible and clear patterns with high number of bands
provides a reliable estimation of the real genetic patterns of
analyzed species and hybrids. Furthermore, the selected
primers are from the size group of 18-mers and it was
previously reported that iPBS primers of this size were
more efficient than 12–13-mer primers (Guo et al. 2014;
Kalendar et al. 2010).

The interspecific and intergeneric hybridizations have di-
versified the genome of the cultivated sunflower H. annuus
and represent a breeding approach to employ wild relatives as
donors of new allele diversity for better biotic and abiotic
stress resistance, plant architecture, oil content and yield. In
this process, the introduction of novel genetic markers sys-
tems is of great importance for sunflower breeders to speed
up the selection process. The present study showed that the
iPBS method, upon optimization, can be efficiently used in
molecular breeding of Helianthus annuus and its wild genera
both for shedding light on genome composition in hybrids but
also to study the interplay between level of parental distances
and expression of agricultural traits. The gathered knowledge
from the present investigation constitutes a platform for fur-
ther studies on genetic impacts of intergeneric hybridizations
that may be important for evolutionary studies and resolving
phylogenetic relationships not only in the genus Helianthus
but also in other genera.
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Table 3 Band rearrangements in intergeneric hybrids of H. annuus and genetic dissimilarity of parents based on the Jaccard coefficient (JC)

Hybrid lines Primer 2222 Primer 2224

JC parents New bands Lost bands JC parents New bands Lost bands

H. annuus x Tagetes sp. 0.76 0 10 0.90 0 15

H. annuus x E. purpurea 0.66 4 11 0.79 2 15

H. annuus x T. rotundifolia 0.78 3 20 0.96 5 17

H. annuus x V. encelioides1 0.55 5 16 0.81 2 10

H. annuus x V. encelioides2 0.55 4 14 0.81 3 14
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