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Abstract
In plant cells, potassium (K+) is abundantly present and is dominant cation plays a vital role in maintaining physiological and
morphological characteristics of plants. Many membrane integrated channels and transporters specific to K+ are involved in
maintaining the potassium concentration within plants via membrane electrical activities. Elemental homologues to K+ compete
with it for entry inside plants; among those, cesium is very common radionuclide. Once cesium enters into the plant cell, it can
cause phytotoxicity. Therefore, it is desirable to understand complete pathway and mechanisms of cesium uptake in the plants, in
order to assess consequences from accidental release of radioactive substance. This review focuses on mechanism of K+ ion
uptake through channels/transporter and involvement of these channels/transporter in cesium uptake in plant cells.
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Introduction

Radioactivematerials may enter the environment accidentally or
by different human activities. Various industrial, mining, nuclear
wastes may create further hazards to the environment due to the
use of several artificial radioactive isotopes. These isotopes have
been having adverse impact, when activity concentrations and
related dose rates strongly exceed those of naturally occurring
radioactive compounds (Nikitin et al. 2012; Foulkes et al. 2017;
Kovler 2017). Among radioactive elements, cesium (137Cs; T1/
2 = 30.17 years), is a common radionuclide, used in various
activities (Zhu and Smolders 2000; TermiziRamli et al. 2005;
Hu et al. 2010; Chen et al. 2016). Further, 137Cs is the chem-
ical homologue of the essential elements K (potassium)
which is usually taken up by the plants from soil and getting
entry into the food chain (Chen et al. 2005a; Gupta et al.

2017; Stuenkel 2017). The mechanism of entering radionu-
clides inside plants varies on several edaphic and genetic fac-
tors, like, plant species, interaction with the element, chemistry,
soil conditions, concentration and mobility of radioactive com-
pounds in the contaminated matrix etc. (Gupta and Walther
2014; Gupta et al. 2016, 2017; Walther and Gupta 2015).

Plant cells are having a diverse group of channels and
transporters for flow of different ions across the membranes.
In respond to stimulations like, change in light intensity, tem-
perature, specific chemicals (like hormones) or depolarising
agents (like potassium, glutamate etc.), plasma membrane
shows modified activities in their ion channels/transporters
(Cuin et al. 2018). Ion channels are common to different cell
types of plants that represents differentially polarized plasma
membrane (−110 to −150 mV) and vacuole membrane (weak-
ly polarized- 0 to −30 mV) interdependent on trans cytoplas-
mic potential of approximately −100 mV (Hedrich 2012;
Wang et al. 2016) (Fig. 1).

In turgor-driven processes, potassium (K+) ion is the major
cationic osmoticum that play a pivotal role in many metabolic
activities and plant survival (e.g. phototropism, stomatal
movement, gravitropism and cell elongation etc.), Dreyer
and Uozumi 2011; Dreyer et al. 2017; Hafsi et al. 2017. The
concentration of potassium in normal soil is 10–100 μM,
which is much less (about 3–4 orders of magnitude) than
plants (Dreyer and Uozumi 2011). The plant uptake potassium
inside through endothermal process by lowering entropy
where, biological membranes are selectively permeable to
ion transport through electrochemical potential generation,
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Singh and Reddy (2017). Approximately 100 mM potassium
concentrations are required for enzyme activation and protein
synthesis within cellular compartments (like cytosol, nucleus,
stroma of the choloroplast, mitochondria matrix) Dreyer and
Uozumi (2011). Epstein et al. (1963), studying on K+-starved
barley plant roots (Hordeum vulgare) initially reported that
potassium uptake mechanisms can be differentiated into
high-affinity (at low concentrations) and low-affinity (at high
concentrations) transports. Later, it was revealed that, a family
of transporters (namely, transporters of KUP/HAK/KT fami-
ly) is primarily involved with high-affinity K+ uptake (Santa-
María et al. 1997). Chen et al. (2005b) studied K+/Na+ fluxes
using radioactive chemical homologue to understand the
mechanism of radionuclide uptake in plants. Depending on
applied voltages or interaction between ligands and regulators
(also by stress or hormones) causing transformation in protein
structure, helps the essential ions to move in or out of the cell
(Almeida et al. 2017; Wang and Wu 2017). The minimum K+

concentration required for channel activation termed as critical
concentration varies between different channels (Geiger et al.
2009). The high affinity K+(HAK) transporters involved in
co-transportation of K+/H+ ion and is responsible for uptake
of K+ at −180 mVmembrane potential (Grabov 2007; Nieves-
Cordones et al. 2016a). The specificity of ion channel and ion
passing turnover in unit time depends on size of pore and
amino acids at active site (Nieves-Cordones et al. 2016a).

It is important aspects for researchers working in this
field to understand the pathways of uptake mechanisms
of radioactive element, in order to evaluate significances
for release of radioactive substances inadvertently. This
review focuses on K+ ion uptake in plants through
channels/transporter and connection of these channels/
transporter in cesium uptake.

Potassium transporters and channels

The activity of ion channels is followed by the ionic currents
mediated through membrane voltage, where, on the basis of
gating mechanism, these channels can be grouped into: li-
gand-gated, voltage-gated, stretch-activated and light-
activated (Riedelsberger et al. 2015). The voltage-gated chan-
nels exhibit electrical signal transmission via membrane de-
polarization and also transmit signal during changes in mem-
brane potential. All these channels simultaneously play an
important role in maintaining membrane voltage, which is
required for ionic balance and nutritional ion fluxes (Basu
and Haswell 2017). In plants, on the basis of K+ conductance,
K+ channels were described as inward (KIRC) and outward
(KORC) rectifying potassium channels (Hirsch et al. 1998;
Riedelsberger et al. 2015). The outward rectifying potassium
channels control turgor regulation, cation release into xylem
etc. (Roberts and Tester 1995; Liu and Luan 1998), while
KIRC channels pull K+ ions during cell expansion, growth
processes, organ movements and stomatal openings
(Maathuis and Sanders 1996; Maathuis et al. 1997).
Schroeder et al. (1984) first reported K+ channels in guard cell
protoplast through Patch-Clamp method. Later more K+ chan-
nels were discovered such as Shaker channels, two-pore K
(TPK) channels and a single IRK-like K channel (Hedrich
2012). Also, K+ channels determinants AKT1 & KAT1 were
first reported inmodel plantArabidopsis thaliana at molecular
level (Anderson et al. 1992; Sentenac et al. 1992) which was
structurally analogous to Drosophila Shaker channel (Jan and
Jan 1997). Among various transmembrane transport compo-
nents of potassium, HKT/Ktr/Trk and KT/HAK/KUP trans-
porters are most popular, along with potassium channels.
HKT (high affinity K+ uptake transporter, HKT/Ktr/Trk)

Fig. 1 Elucidating common ion
transporters, channels and
pumps those are involved with
Na and other ion transportations
from root to shoot (NHX.
vacuolar Na+/H+ antiporter;
HAK. high affinity K+

transporter; HKT. high affinity
K+ uptake transporter) (After
Hedrich 2012; Sassi et al. 2012)
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which share both structural likenesses and differences at key
positions with K+ channels in plants (Hanelt et al. 2010;
Corratge-Faillie et al. 2010; Uozumi and Dreyer 2011).
Reports suggest that, HKT/Ktr/Trk gene (AtHKT1;1) in A.
thaliana helps in enhancing salt tolerance by extracting sodi-
um ions from xylem vessels (Uozumi and Schroeder 2010;
Dreyer and Uozumi 2011).

Santa-María et al. (1997) demonstrated that, cDNA of
high-affinity K+ uptake system of barley root (HvHAK1, that
belongs to a multigene family) showed sequence homology to
K+ transporters of Schwanniomyces occidentalis and
Escherichia coli. Pyo et al. (2010), working with high-
affinity K+ uptake into roots of Arabidopsis thaliana by two
transmembrane proteins high-affinity AtHAK5 and inward-
rectifier, showed that, these two transporters are very impor-
tant for plant growth after germination and establishment of
seedling. Rubio et al. (2010) showed that, AKT1 participates
in the low-affinity K+ range, while, both AtHAK5 and AKT1
are involved with the high-affinity K+ transportation and,
AtHAK5 facilitating K+ uptake at concentrations less than
0.01 mM. Ruiz-Lau et al. (2016) cloned High-affinity K+

(HAK) transporter of Capsicum chinense Jacq (CcHAK1),
reporting its close relation with Capsicum annuum CaHAK1
and Solanum lycopersicum LeHAK5. Membrane voltage reg-
ulates (proton driven) the process of opening and closing of
most K+ channels (termed gating) (Papazian et al. 1987;
Gierth et al. 2005). Electrical gradient and/or the proton mo-
tive forces established by H +ATPases play critical role in the
high-affinity K+ uptake, that maintain cytosolic concentration
of potassium by the movement of ion from low level to high
level (Dreyer and Uozumi 2011). These K+ channel maintain
balance of specific ion i.e. K+/Na+(sodium) and it is not only
selective for the ions but differ over other potential competing
ions (Nakamura and Gaber 2009; Assaha et al. 2017).
Although, AtHAK5 gene regulation related to K+ uptake is a
complex phenomenon, however, it was evident that, K+ dep-
rivation upregulates the AtHAK5 gene, and repressed by pres-
ence of Na+ &/or NH+

4 (Rubio et al. 2008; Aleman et al.
2009). However, Xu et al. (2006) pointed out that, LKS1 gene
overexpression helped in greater K+ uptake and tolerance to
low K+ concentrations, that acted through its encoded protein
kinase CIPK23 (also activated by calcineurin B-like CBL1
and CBL9), which directly phosphorylated K+ transporter
AKT1. Li et al. (2006) demonstrated that, Ca components
contribute in signalling response for regulating turgor
pressure and low-K. Ca2+ not only augment K+ uptake
through K+ channel activation, but also, the orchestrated
functions of Ca2+-CBL-CIPK pathway helps in plants the
K+ transportation as per the external availability of the
element (Li et al. 2006).

Low K+ upregulates expression of K+/Na+ transporter
HvHKT2;1 enhancing translocation of Na+ to barley leaves,
which suggests that HKTcontributes towards Na+ transport as

well (Mian et al. 2011). HAK/KUP/KT type transporters (as
for example, AtHAK5) belongs to the amino acid-
polyamineorganocation (APC) superfamily and linked with
K transportation from bacteria, fungi, to plants (Li et al.
2018). These transporters are having assorted role in K uptake
and translocation, regulation of osmotic potential and salt tol-
erance, controlling root morphology and shoot phenotype (Li
et al. 2018). Responding to external K+ concentrations, gene
expression of HAK/KUP/KT are regulated by at least six pos-
itive or negative regulators, and phosphorylation through
CIPK-CBL complex (Li et al. 2006, 2018). Shaker-like K+

channels and associates are recognized voltage sensitive trans-
porter in plants (Dreyer and Blatt 2009). KT/KUP/HAK trans-
porters along with shaker-type K+ channels, involved in both
high- and low-affinity K+ uptake, play a crucial role in K+

homeostasis in plant cells (Vallejo et al. 2005). Depending
on the structural prediction, HKT transporters could function
as ion channels forming a specific ion-selective pore, having
different properties (Cao et al. 2011; Yamaguchi et al. 2013;
Benito et al. 2014). It means that transporters can electrically
(from the point of ion electric current-voltage IV curve) be-
have in a way similar to ion channels and the reversal potential
of ion current mediated by transporters can shift following ion
concentrations inside and outside the cell. K+ transport activ-
ity is also facilitated by the family of cation/H+ antiporters
(CHXs) and Na+/H+ antiporters (NHXs) (Chanroj et al.
2011; Dreyer and Uozumi 2011; Lu et al. 2011). Although
it’s difficult to distinguish clearly, however, transporters con-
tribute to the high affinity K+ uptake, while K+ channels are
involved with transporting the low affinity components
(Dreyer and Uozumi 2011).

The inward and outward flows of K+ are based on hyper-
polarization and depolarization respectively. Based on volt-
age, selectivity and sensitivity to mediators, transport compo-
nents facilitate most of the K+ currents defined in the plasma
membrane of plant cells (Very and Sentenac 2002; Cherel
2004). On the basis of functional level, K+ channels are dis-
tributed into four groups: (a) inward-rectifying (Kin) channels
(b) silent (K silent) channel subunits (c) weakly rectifying
(Kweak) channels and (d) outward-rectifying (Kout) channel
subunits (Sentenac et al. 1992; Ache et al. 2000; Reintanz et
al. 2002; Hedrich 2012). The lower level of extracellular K+

influence channel modifications to inactivate the system of
transportation. Upon K+ reduction, channel-mediated K+ ef-
flux, i.e. K+ leakage from the cell, is reduced in the case of
(Inward rectifying K+ channels) AKT1. The AKT1 of
Arabidopsis root cells also showed an enhanced sensitivity
in preventing K+ loss when outward environment was having
less K+ (Geiger et al. 2009). These processes allow root epi-
dermal cells to uptake K+ through AKT1/AtKC1 complexes,
extremely reducing loss of cytosolic K+ toward potassium-
depleted soils. Besides K+ uptake channels, K+ releasing
channels also make use of a pore-intrinsic K+ sensor

Biologia (2018) 73:885–896 887



(Gajdanowicz et al. 2009). Because of its involvement in gat-
ing machinery of these channels, the K+ sensor property is
more evident (Gajdanowicz et al. 2009). The key feature of
the K+ sensitivity in these channels, increase K+ at outside
environment acts to suppress channel opening in a voltage-
dependent manner. As a result, the channels only open at
voltage positive to the K+ equilibrium voltage and so ensure
K+ efflux regardless of the extracellular K+ concentration
(Szczerba et al. 2009; Hedrich 2012). This ability to adapt
channel gating to the prevailing K+ concentration guarantees
that the channels open only when the driving force for net K+

flux is directed outward, thus ensuring stomatal closure
through the K+ efflux (Zhang et al. 2014). K+ uptake and
t rans loca t ion a lso depend upon other essen t ia l
macronutrients present in the environment. Ródenas et al.
(2017) working on Arabidopsis and tomato, found that, dep-
rivation PO4

3−, NO3
−, and SO4

2− leads to less low-affinity K+

uptake and translocation, which is controlled at gene level by
downregulating obtaining of other nutrients. The genes,
namely AKT1 and SKOR in Arabidopsis and LKT1 and
SlSKOR in tomato, which are liable for low-affinity K+

uptake and translocation respectively, play important roles
in the process of transcriptional repression and regulation
(Ródenas et al. 2017).

Cesium uptake and accumulation: possible
mechanisms

Cesium (Cs) belongs to group I alkali metal and is available in
only one stable isotope (133Cs) (Davis 1963), its concentration
naturally ranging up to 25 μg−1 in dry soil. And, radiocesium
(commonly occurring 137Cs, 134Cs and the long lived 135Cs),
which are produced during nuclear fission (135, 137) and
neutron activation (134) in atomic reactors is the second
heaviest alkali metal of groups I metals. However, there is
no identified physiological role of Cs in plants but when ex-
ceeds the limit it hampers the plant development (Kanter et al.
2010; Olondo et al. 2017). Furthermore, only a certain fraction
of Cs+ is available for plant uptake and this fraction decreases
with time due to immobilization effects of clay particles in
soil. Radiocesium paved way inside human food chain
through the pathway of plants nutrient uptake from the soil
(Shaw et al. 1992). Cesium enters through roots and is
transported to shoots and upper parts of the plants. Cesium
has higher degree of resemblance with other alkali metals and
especially with K+ which belongs to the same alkali I metal
group (Pacheco-Arjona et al. 2011). Thus, Cs+ acts as a K+

analogue and exerts phytotoxicity (White and Broadley 2000;
Chatterjee et al. 2017). In a detailed review on Cs transloca-
tion in plants from environment, Burger and Lichtscheidl
(2018) demonstrated that, like K, Cs uptake by plants also
differs in presence of different elements, which may be

explored for the Cs bioremediation potential of plants.
Studies suggests that the K+ transporter not only transports
K but also other ions in the order K > Cs > Rb > Na > NH4

(Schachtman and Schroeder 1994; Sanches et al. 2008).
For the maintenance of K+ homeostasis, K+ movement

across the plasma membrane and utilization of vacuolar K+

reserve is the regulatory step (Gupta and Walther 2016).
Unlike other radioactive elements like Rb+ and Th+, Cs+ has
weaker correlation with K+ because of which the probability
of Cs+ uptake is somewhat different from K+ (Kanter et al.
2010). It is established that the functioning of K+ transporters
are governed by the K+ level and pH, and the relation between
K+ and Na+ uptake is also well known. In terrestrial plants, it
has been discovered that calcium (Ca2+) act as stimulant in K+

and Cs+ uptake. There is a competitive interaction between K+

and Cs+ uptake which was observed in some grasses and
agricultural plants having increased K+ concentration with
declined Cs uptake (Gupta and Walther 2016; Voronina et al.
2018).Waegeneers et al. (2009) observed decreased Cs uptake
in the dominancy of K+ concentration in soil. Application of K
rich fertilizer reduced Cs entry up to 80% with respect to
control inside barley grain and straw (Rosén and Vinichuk
2014). Root cells are laced with different mechanisms for
transportation of K+ across the plasma membrane. Initial
physiological studies demonstrated competition between K+

and Cs+ for intake inside excised roots, which gave clue of
similar molecular mechanism for influx of these cations to
root cells. Molecular studies showed that some transporters
demonstrated poor differentiation between K+, Cs+ and Na+

has decreased K+ uptake through them. It also seems that these
transporters could carry K+ coupled with the entrance of pro-
tons, which has been generally considered the mechanism for
the high-affinity of K+ transports in plants (Gupta andWalther
2016). A recent study showed that SNARE proteins Sec22p
specifically involved in Cs+ accumulation in yeast and plants
(Draxl et al. 2013). Ishikawa et al. (2017) working with the
low-cesium rice mutant 1 (lcs1), reported that a mutation in
serine/threonine-protein kinase encoding gene OsSOS2
was responsible for reduced Cs level, even in low K+ con-
ditions. The transcript levels of several K+ and Na+ trans-
porter genes, such as OsHAK1, OsHAK5, OsHKT2;1,
OsAKT1, were down-regulated considerably in lcs1 grown
at low K+/Na+, which was the cause of low Cs uptake in
lcs1 (Ishikawa et al. 2017).

The inward-rectifying K+ (KIR), outward-rectifying K+

(KOR) and voltage-insensitive cation (VIC) channels can pen-
etrate Cs+. Entry of cation through KIR channels is possibly
inhibited by extracellular Cs+ under particular ionic conditions
in the soil. Mattsson and Lidén (1975) observed large differ-
ence of concentration between 137Cs and K+ in the forest moss
Pleurozium schreberi in which Cs+ concentration was found
higher even in senescence parts. Broadley et al. (2001) also
confirmed that KIR channel in root does not contribute
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significantly in Cs+ uptake. A permeation model highlighted
that Cs+ enters through plant roots via voltage insensitive cat-
ion (VIC) channel in plasma membrane and K1 uptake per-
meases (KUPs) (White and Broadley 2000). In A. thaliana,
the members of the KUP family have high affinity K1 trans-
porter (HAK5) and KUP9 are highlighted to be engaged in
Cs+ uptake (Qi et al. 2008; Kobayashi et al. 2010). This indi-
cated the ability of plants to absorb and accumulate high levels
of Cs1, high enough to hinder normal growth (Turekian and
Wedepohl 1961). Smolders and Shaw (1995) observed that
wheat grown in Cs+ spiked nutrient solution showed ten times
more Cs+ in plant tissue than in nutrient solution. At lower K+

concentration, Cs+ is taken up by K+ uptake system of the root
(Zhu and Shaw 2000). A recent study indicated HKT1 as Na+/
K+ cotransporter (Suzuki et al. 2016). Collander (1941) ob-
served that the pace of Cs+ uptake was quick as that of K+ or
Rb+ (Rubidium) when these cations were supplemented in
nutrient medium at a concentration of 0.1 mM. Ayub et al.
(2008) experimentally found out that the increase of K+ level
in the experimental medium reduced Cs+ uptake in Cynodon
sp., which affirm the fact of dual transportation of both cations
by the similar transport systems. In environmental matrix, Cs+

detection in plants is low where Cs+ concentration is smaller
than K+ in soil. However, the studied plants can add Cs inside
if its range in soil matrix increases. If the Cs+ concentration
exceeds than K+, Cs inhibits K+ uptake through various K+

channels and transporters (Fu and Luan 1998; Hille 2001). In
K+ deprivation condition Cs+ influx raised, indicating the sig-
nificance of inside and outside K+ status (Zhu and Smolders
2000). The uptake of K+ through AtKUP was inhibited by the
inhibitors of K+ channel blockers such as TEA, Cs+, and Ba2+

(Fu and Luan 1998; Straltsova et al. 2015). While, KORC (K
outward rectifying conductance) channels show a substantial
conductance for Na+ but little permeability for Li+ and Cs+.
This indicates that KORC channels can also act as a `barrier’
protecting the shoot from harmful Cs+ or Li+ ions (Maathuis et
al. 1997). Prorok et al. (2016), studying on radish (Raphanus
sativus L.) grown in Chernobyl area and reported that, Cs and
K uptake was positively correlated and 137Cs uptake against K
selectivity amplified significantly with decreasing Cs and K,
whereby, plants 137Cs concentration increased rapidly. When
plants become K deficient, it manages by augmenting abun-
dance of constitutively expressed, inward rectifying K+ chan-
nels (KIRC) and K+/H+-symporters at the root cells, while Cs
is presumed to get entry into the root cells via cation channel
like, NSCC (non-specific cation channels) and importantly,
K+/H+-symporters (where plants lacking adequate K inside)
abundance significantly regulate K deficiency (Prorok et al.
2016). Again, studying on transfer of 137Cs to plants after the
accident of Fukushima Dai-ichi Nuclear Power Plant, Sugiura
et al. (2016) reported that woody plants exhibited high values
of concentration ratios at stems and/or leaves as 137Cs tends to
get deposited in the fresh developing tissues. Further, plants of

Amaranthaceae, Polygonaceae, and Chenopodiaceae taxa,
known for Cs accumulation, did not show any significant
ab i l i t y, wh i l e , dec i duous t r e e s Cheng iopanax
sciadophylloides and Acer crataegifolium and perennial plant
Houttuynia cordata showed potentiality for phytoremediation
of Cs (Sugiura et al. 2016).

However, the concern of uptake of radiocesium in food
items is enormous. Due to their inherent ability, plants take
up Cs+ from low concentrations. Rice (Oryza sativa L.) plants
are vulnerable in this issue, where, production of rice is also
being affected. Among several strategies, biotechnological
approaches to reduce accumulation of Cs+ in rice continue to
provide interesting studies. Nieves-Cordones et al. (2017)
working on the Cs+ permeable K+ transporter OsHAK1 in
rice, developed CRISPR-Cas system that considerably help
in reducing Cs+ uptake in rice plants grown in 137Cs contam-
inated Fukushima soil. OsHAK1 is less competent to distin-
guish among Cs+ and K+ and active transport mechanism is
followed for Cs+ transportation from very low external con-
centrations (Nieves-Cordones et al. 2017). Similar observa-
tions were also reported by Rai et al. (2017), who were work-
ing with transporter OsHAK1 transport systems. These au-
thors described that knockout OsHAK1 reduces the Cs uptake
without hampering the plants growth, recommending new
lines of rice for cultivating in Cs+ contaminated areas (Rai et
al. 2017). Genies et al. (2017), in similar observations, sug-
gested that, nonselective cation channels may be involved
both in Cs uptake under K-sufficient and insufficient
concentrations and AtHAK5 did not show effects on Cs
uptake, where, external Cs concentration was more than
100 μM. Mohamed et al. (2018) reported that even micromo-
lar concentrations of Cs affects root elongation in rice plant
advocating Cs triggered root modification. Transportation of
Cs+ into plants body may cause K+ deficiency. In tomato
(Solanum lycopersicum L.), Ródenas et al. (2018) recently
reported that, K+ deficit in the plants’ body may happen due
to high concentrations of Cs+, however, that does not affect
any induction of either high-affinity K+ transporter
SlHAK5gene or high-affinity K+ uptake. At higher concentra-
tions, Cs+ uptake may take place using a non-selective cation
channel through Ca2+ mediated pathway; however, at lower
concentrations, high-affinity uptake, resembling K+ uptake is
evident having insensitivity to Ca2+ and Ba2+ and sensitivity
to NH4

+ (Ródenas et al. 2018).

Ion channels and cell signaling

It is apparent that regulation of many ion channels and trans-
porters are dependent on cell signalling through G-proteins,
second messengers and phosphorylation/dephosphorylation
processes (Carraretto et al. 2016). The anchoring of ligand
with its specific receptors results into conformational changes
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in channel proteins. During signal transduction cascades the
second messengers regulates the metabolism of the cell with
respect to environmental conditions. The commonly reported
ligands for K+ channels are calcium (Ca2+), hydrogen ion
(H+), nucleotides, proteins and plant hormones (Unwin
1989). Both inward and outward membrane bound K+ chan-
nels act by direct binding of ligands like H+, Ca2+ or indirectly
via membrane-bound regulators (Blatt et al. 1999;
Czempinski et al. 1999). During abiotic stressors induced phy-
totoxicity, generation of ROS (reactive oxygen species) is in-
volved in regulation of ion channels in plant membrane. For
example, Kout (Outward rectifying K channel) channel is the
direct target of generated ROS. One of the Kout channels i.e.
SKOR (Stellar K+ outward rectifier) protein contain sites spe-
cific to H2O2 which act depending on membrane depolariza-
tion (Dreyer and Uozumi 2011). In active SKOR channels,
hydrogen peroxide involves in positive feedback mechanism
(Dreyer and Uozumi 2011). Similarly, Gated Outwardly rec-
tifying K+ channels i.e. GORK (Kout channel) expressed in
guard cells resemble that of SKOR. Guard cells regulate sto-
matal opening by osmotic swelling and wince due to different
environmental factors. This is controlled by fluxes of ions and
organic compounds across the membrane, where, K+ acts as
prior solutes. Voltage-gated K+ channels directly influence
guard cell volume regulation. The mechanism of stomatal
opening or closure in guard cells is operated by signal trans-
duction pathways comprising various protein phosphatases
and kinases (Kim et al. 2010). A study by Sano et al. (2007)
found that that K+ is essential for proper functioning of cell
cycle progression during the transition from G1 to S phase.
Jan and Jan (1997) reported receptor for hormones and trans-
mitters involved in regulating ion channels such as G protein-
gated and cGMP-gated K+ Channels, voltage- gated K+ in
animal tissue.

Ion transporters in different plant species

The HKT transporter was first reported in wheat through
cDNA library construction (Schachtman and Schroeder
1994). In barley and Arabidopsis, the presence of K+ trans-
porter gene i.e.HvHAK1 and AtKUP3 respectively in root was
identified indicating enhanced uptake of K+ in the plants
(Santa-María et al. 1997; Kim et al. 1998). In wheat roots,
genes HKT1 and LCT1 mediate K+ uptake in root part
(Chrispeels et al. 1999). In barley, gene for K+/Na+ transporter
is HvHKT2;1 which is upregulated at lower K+. The overex-
pression of HvHKT2 increases Na+ uptake in the xylem sap
which directly leads to enhanced uptake of Na+ by leaves, also
related to barley potential for salt tolerance (Mian et al. 2011).
From this, it can be concluded that high affinity K+ trans-
porters HKT type are also having Na+ transport ability and
thus add to general cation homeostasis in plants (Fig. 2).
Recent study by Zhang et al. (2011) reported a KAT1-like
channel in melon having extraordinary property of K+/Na+

permeation blocking. The two main systems for K uptake by
root in different species are mostly described in high affinity
HAK5- like transporter and inward-rectifier AKT1 like chan-
nel (Nieves-Cordones et al. 2016b). Han et al. (2016) demon-
strated significance of KT/HAK/KUP transporter KUP7 in K+

uptake and translocation in A. thaliana.

Ion transport components in plants
and cellular transport mechanism

Potassium channels are mostly studied in plasma membranes
and vacuole membranes of various plant cell types (Schroeder
and Hedrich 1989; Hedrich and Becker 1994). The K+ chan-
nel KAT1 is expressed in guard cells are sensitive to external

Fig. 2 K+/Na+ transport is
facilitated by K-Na ion pump,
where Na is transported from
cytoplasm to extracellular fluid
using ATP as energy source and
in turn, K is transported inward
towards the cytoplasm. a
Showing attachment of Na to the
transporter and in (b) Na is being
delivered to the extracellular
fluid; where in (c) K is inwardly
transported
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K+ in the millimolar level, on the other hand AKT1 which is
expressed in root epidermis cells is affected by lower potassi-
um concentrations. The compartmentalization of K+ in vacu-
oles represents the largest K+ rich zone in plant cells; however,
the concentration of vacuolar K+ varies in the range between
10 and 200 mM depending on the K+ availability and tissue
type (Walker et al. 1996; Wang and Wu 2013). In an experi-
ment related to K+ uptake in a solution with initial concentra-
tion of about 50 μM K+ observed decline in the K+ concen-
tration in the solution, from which it was concluded that the
plantlet roots were capable of absorbing external K+; which
also depend on K+ starvation time of that part. The location of
K+ transporter are predicted to be present on plasma mem-
brane which was recently confirmed by Dreyer and Uozumi
(2011) who found genes of K+ transporter, expressed on plas-
ma membrane of xylem parenchyma, which is found to in-
volve in removing sodium ion from xylem vessels. In the
tonoplast of higher plants there are three distinct kinds of
voltage-sensitive potassium channels (FV, fast activating;
SV, slow activating; and VK, strongly K selective). The plas-
ma membrane accommodates all Shaker-like channels
(Hedrich et al. 2012). SKOR and GORK protein are having
shaker-like voltage- dependent gating (Ache et al. 2000).
GORK is found in guard cells and root hairs and SKOR is
localized in the xylem parenchyma cells, where it is involved
in solute loading with the xylem network (Ivashikina et al.
2001; Hosy et al. 2003).

The onset of plant Kin channels, such as KAT1, KAT2, or
AKT1, occur at hyperpolarized membrane potentials (around
80 to 100 mV), and gating of these channels is not influenced
by potassium concentrations at both sides of the membrane. In
contrary, Kout channels, such as GORK and SKOR, turn on at
depolarized membrane potentials, and gating is dependent on
extracellular concentration, allowing channel opening positive
of the equilibrium potential of K. K in channels are activated
by hyperpolarizing potentials while K out are activated by
membrane depolarization. Both Kin and Kout channels serve
in keeping balance in membrane voltage to avoid them from
becoming too negative or positive, respectively. Such a role of
voltage-gated K+ channels in stabilizing membrane voltages is
universal among all eukaryotes (Maathuis et al. 1997).

High affinity K+ uptake

Detailed study at molecular level differentiated K+

transporting proteins into high and low affinity uptake com-
ponents which were also confirmed practically in plants.
Based on the K+ uptake ability, transporters underlie within
high affinity K+ uptake component, while K+ channels usually
belongs to low affinity component. However, in exceptions,
the channels also contribute in high affinity K+ uptake. A
study in pepper (Capsicum annum) roots has affirmed the

belonging of HAK1 transporters to high-affinity K+ uptake
component (Martínez-Cordero et al. 2004, 2005). When there
is K+ deprivation, the pepper plants expresses high-affinity K+

uptake through transporter CaHAK1 in their roots. Another
feature of high affinity K+ uptake is its sensitivity to NH4

+

which was observed in Arabidopsis (Spalding et al. 1999),
barley (Santa-Marı́a et al. 2000) and pepper (Martínez-
Cordero et al. 2005). However, the NH4

+ insensitive K+ trans-
port component has also been reported in Arabidopsis which
is carried out by inward-rectifier K+ channel AtAKT1, de-
scribing the probability of involvement of channels in high-
affinity K+ uptake in a range of K+ concentrations (Hirsch et
al. 1998; Spalding et al. 1999; Gierth and Maser 2007). In
some plants like rice and tomato (LeHAK5), NH4

+ are respon-
sible for promoting gene expression of high-affinity K+ trans-
porters (Nieves-Cordones et al. 2007, 2014). In 1994, the first
high affinity K+ uptake transporter i.e. HKT was discovered
through wheat cDNA library (Schachtman and Schroeder
1994). Other genes for high-affinity K+ transporters that are
found in roots are reported in A. thaliana (AtKUP1, AtKUP2,
AtKUP3 and AtKUP4) and barley (HvHAK1). They belong to
large gene families. Within above gene, AtKUP1 and
HvHAK1 transporters are mainly expressed in root part
(Santa-María et al. 1997; Fu and Luan 1998; Nieves-
Cordones et al. 2014; Véry et al. 2014), and its localization
is assumed to be on plasma membrane. The opening of KIR
channels depends uponmembrane hyperpolarization which in
open state allows K+ influx to root cells. The KIR channel has
been well studied in the roots of different plant species.
Various form of KIR channel have been identified, many of
them differ minutely in conductance, gating kinetics and phar-
macology. HKT (high affinity K+ transporters) are equivocal-
ly involved in Na+ transport across membrane (Nieves-
Cordones et al. 2016b). AtHAK5 was identifies as efficient
high affinity transporter which functions even at lower K+

concentrations below 10 μM (Aleman et al. 2011).

Genes involved in K+ transport

The first identified genes encoding K+ channels KAT1 in
plants was functionally an inward rectifying K+ channel
(Schachtman et al. 1992). Successively, other genes encoding
inward K- rectifiers were reported for Shaker-type channels,
KAT1 from the A. thaliana and its homolog KST1 from the
Solanum tuberosum (Hedrich 2012; Muller et al. 1995;
Nakamura et al. 1995). The first gene related to potassium
channels i.e. KAT1 and AKT1 (Arabidopsis K- transporter
1) was cloned in yeast cell deprived of K+ system (Anderson
et al. 1992; Sentenac et al. 1992). Later, complete genome
sequencing of Arabidopsis, poplar and rice give a break-
through in vivid understanding of molecular diversity of plant
potassium channel genes (Ward et al. 2009). In A. thaliana,
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nine genes coding for shaker-like K+ channels and six genes
related with structurally separate potassium channel sub-
groups were discovered (Ward et al. 2009). The study of
Buschmann et al. (2000) in wheat confirmed the importance
of K+ channels in K+ uptake. During experimentation, he ob-
served that absence of K+ leads to an increase in the AKT1
gene transcript in wheat plants, which support the facts that
AKT1 inward-rectifier K+ channel could be involved in K+

transport into Arabidopsis from low K+ concentration envi-
ronment (Buschmann et al. 2000). Several genes related to
KIR channels have been cloned and expressed in root parts
are AKT1 gene (A. thaliana) and its homologues in Brassica
napus (Lagarde et al. 1996), and SKT1 (potato) (Zimmermann
et al. 1998), AtKC1 (Dreyer et al. 1997) and KAT1 (Kochian
and Lucas 1993; Nakamura et al. 1995). Ammonia also affect
the activity of K+ transporter, as its presence may reduce the
expression of HAK/KUP/KT transporters in rice, as also ob-
served in Arabidopsis and pepper plants (Martínez-Cordero et
al. 2005). The genome of A. thaliana comprise of a single
copy of an HKT/Ktr/rk gene (AtHKT1;1) which is expressed
in the plasma membrane of xylem parenchyma cells that func-
tions in removing Na+ from xylem vessels a tolerance strategy
against salt stress (Uozumi et al. 2000; SunarpiHorie et al.
2005; Horie et al. 2007; Uozumi and Schroeder 2010).

Conclusions and future prospects

The diverse form of K+ transporters and channels play an
important role in maintaining K and ionic concentration
within cells. K+ channels are controlled by many post-
translational processes and still studies are going on in
determining the regulatory steps involved in the pathway.
One of the most characterized K+ channels in plants is
Shaker-type transport proteins. However, Cs is structural-
ly identical to essential element like K, and therefore,
enters into the plants body through the K+ channels/trans-
porter. This radioactive element exerts adverse impact by
ceasing normal functioning of plants which may lead to
death. The uptake of radionuclide is positively correlated
with K, where K concentration is low. Although plants try
to augment K deficiency through constitutively express-
ing K+/H+-symporters and inward rectifying K+ channels
(KIRC) at the root cells, the fact that can further be
utilised in research and development by application of
appropriate K rich fertilizer. This also further be extended
to develop strategies to reduce radionuclide entry into the
food chain. Thus, multi-disciplinary studies on radioactive
compounds related to its behaviour in environment and
translocation pathways inside plants may throw light on
anthropogenic utilities, waste management and natural re-
mediation (phytoremediation) practices appropriately.
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