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Abstract Background: Pregnancy is associatedwith considerable changes in the physiological, anatomical and biochemical

attributes in women. These may alter the exposure to xenobiotics between pregnant and non-pregnant women

who receive similar doses, with implications for different susceptibility to environmental pollutants or therapeutic

agents. Physiologically based pharmacokinetic (PBPK)models togetherwith in vitro in vivo extrapolation (IVIVE)

of absorption, distribution, metabolism and excretion (ADME) characteristics may capture the likely changes.

However, such models require comprehensive information on the longitudinal variations of PBPK parameter

values; a set of data that are as yet not available from a singular source.

Aim: The aim of this article was to collect, integrate and analyse the available time-variant parameters that

are needed for the PBPK modelling of xenobiotic kinetics in a healthy pregnant population.

Methods: A structured literature search was carried out on anatomical, physiological and biochemical

parameters likely to change in pregnancy and alter the kinetics of xenobiotics. Collated data were carefully

assessed, integrated and analysed for trends with gestational age. Algorithms were generated to describe the

changes in parameter values with gestational age. These included changes in maternal weight, the individual

organ volumes and blood flows, glomerular filtration rates, and some drug-metabolising enzyme activities.

Results: Articles were identified using relevant keywords, quality appraised and data were extracted by two

investigators. Some parameters showed no change with gestational age and for others robust data were not

available. However, for many parameters significant changes were reported during the course of pregnancy,

e.g. cardiac output, protein binding and expression/activity of metabolizing enzymes. The trend for time-

variant parameters was not consistent (with respect to direction and mono-tonicity). Hence, various

mathematical algorithms were needed to describe individual parameter values.

Conclusion:Despite the limitations identified in the availability of some values, the collected data presented

in this paper provide a potentially useful singular resource for key parameters needed for PBPK modelling

in pregnancy. This facilitates the risk assessment of environmental chemicals and therapeutic drug dose

adjustments in the pregnant population.

Introduction

Pregnancy is associated with a myriad of physiological,

anatomical and biochemical changes that return to baseline at

various rates in the postpartum period. The causative mecha-

nism of these changes is poorly understood and most of them

are believed to be regulated under hormonal control.

A number of these changes have a direct effect on the kinetics

of xenobiotics. These include alterations on the level of cyto-

chrome P450 (CYP) enzyme activity, volume of plasma, cardiac

output and protein binding.[1-4] Many of these changes begin

early in pregnancy, reach their peak during the second trimester,

and then remain relatively constant until delivery.[5-8] The

increase in total body volume is accompanied by retention

ORIGINAL RESEARCH ARTICLE
Clin Pharmacokinet 2012; 51 (6): 365-396

0312-5963/12/0006-0365/$49.95/0

Adis ª 2012 Springer International Publishing AG. All rights reserved.



of 900–1000mEq of sodium and 6–8L of water which is dis-

tributed among the fetus, amniotic fluid, and maternal extra-

cellular and intracellular spaces.[9,10] The impact of these

changes on kinetics depends on both the drug and the route of

administration. These changes are not uniform for various

parameters and their effects on each xenobiotic or drug may

differ depending on absorption, distribution, metabolism and

excretion (ADME) characteristics. Hence, extrapolation of

dose-exposure relationship frompre-pregnant to pregnantwomen

can lead to under- or over-estimation of exposure, with implica-

tions for risk assessment as well as therapeutic dose adjustment.

There is evidence that women continue to self-medicate dur-

ing pregnancy with prescription, over-the-counter and herbal

medications.[11,12] Those with chronic conditions, such as de-

pression, asthma and hypertension, continue to take their reg-

ular prescription drugs, and some may develop acute illnesses

or complications that require medication.[13-16] In such pa-

tients, care must be taken to select the safest drug from the

necessary class of medication as continuous administration of

these drugs at the pre-pregnant dose can adversely affect the

fetus. Physiological alterations in pregnancy are considered

likely to alter the ADME of drugs, and may have implications

for medication dosage. The evidence base for these alterations

and their implications for prescribed drugs is growing, with

numerous published studies focusing on specific aspects of

physiology during pregnancy or on certain groups of med-

ication, as well as a number of review papers presenting com-

posite results, evaluating and summarizing evidence.[2,4,17,18]

With regards to therapeutic agents, the US FDA guidance

has established a basic framework for designing and conducting

pharmacokinetic/pharmacodynamic studies inpregnantwomen.[19]

It has advocated the development of pharmacokinetic models

that account for likely changes in metabolism, blood flow and

excretion with gestational age and considered optimized study

design with respect to duration and statistical power.

Application of physiologically based pharmacokinetic (PBPK)

models in drug development and toxicology has recently re-

ceived much attention.[20-22] Such models map the complex

mechanistic drug movements in the body to a physiologically

realistic compartmental structure, and allow the known phys-

iological and biochemical changes to be incorporated into a

meaningful model to predict ADME. The usefulness of this

approach can be further enhanced by the incorporation of in-

dividual variability arising from the differences in physiology,

biochemistry, genetics and pathophysiological conditions.[22]

Furthermore, incorporating the time vector of any physiolog-

ical change that occurs during advancing pregnancy increases

the applicability of the PBPK model.

There are a number of PBPK models that have investigated

the effect of human pregnancy on drug kinetics.[23-29] However,

to the best of our knowledge, these models do not consider all

the essential elements, most probably due to their narrow focus

on specific compounds or a specific stage of pregnancy. For

example, none of the models included the longitudinal changes

in metabolizing enzymes during gestation. Neither do they con-

sider the inter-individual variability of PBPK parameters. Hence,

these models cannot account for within-individual variability

with gestational age or between-individual variability in phar-

macokinetics. In addition, many parameters related to certain

organs are obtained from selected reports rather than a

systematic review of all available data.

Recently, there has been an increasing interest in this pop-

ulation and much more data are becoming available on the

changes of relevant parameters throughout pregnancy. There-

fore, it seems timely to integrate all available data with the aim

of facilitating the applicability of PBPK models in pregnancy

and improving their performance.

The objectives of this study were to collate essential time-

variant anatomical, physiological and biological parameter

values needed for PBPK models defining pregnancy. These

data were analysed in order to formulate algorithms which

describe the average changes in parameter values and their

variability with gestational age.

Methods

Data Sources

A structured literature search was carried out using

MEDLINE on all anatomical, physiological and biological para-

meters likely to change during pregnancy. The search strategy

was aimed to identify observational cohort studies in which

the required parameters were longitudinally examined dur-

ing pregnancy. Data from the control arm of case-control

studies and randomized controlled trials were also considered

for inclusion. For each parameter, a separate search was con-

ducted, using the key word ‘pregnant’ plus the parameter of

interest, for example ‘blood flow’, ‘plasma volume’, ‘haema-

tocrit’, ‘glomerular filtration’, etc. No language or date restric-

tion was applied but article titles and abstracts were screened

to maintain the focus of the search on human, singleton, low-

risk, normal pregnancies. Because parameters may change

during birth, studies of women during delivery were excluded.

A manual search of reference lists from selected articles and

contact with experts in the field complemented the data col-

lection process. Two researchers quality appraised each study,
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extracted and entered the data into a Microsoft Excel� spread-

sheet independently and this was subsequently double-checked

by a third researcher prior to data modelling.

Inclusion Criteria

Data inclusion criteria were (i) singleton pregnancy; (ii) adult

healthy women with no underlying conditions that are known to

affect the parameters; and (iii) studies on dominantly Caucasian

populations (in case of mixed population studies, the Caucasian

population comprised at least 80% of the overall population).

Combining Data from Different Studies

When a tissue size was expressed by weight, the corre-

sponding volume was calculated using tissue density. In the

majority of cases only mean values (and variability) stratified

for gestational age groups were available. The overall mean

parameter value, X, at a particular gestational age, from dif-

ferent studies was combined using equation 1:

X¼

PJ
j¼ 1

njxj

PJ
j¼ 1

nj
(Eq. 1)

where nj is the number of subjects in the jth study and xj is the

mean value from that study. The overall sum of squares was

calculated according to equation 2:

Overall sum of squares¼
XJ

j¼ 1

ðSDjÞ2 þ ðxjÞ2
� � � n

j

h i
�N �X2

(Eq: 2Þ

where SDj is the standard deviation from the jth study and N is

the number of subjects in all studies (N =
PJ
j¼ 1

nj). Overall SDwas

calculated according to equation 3:

Overall SD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Overall sum of squares

N

r
(Eq. 3)

In turn, geometric mean or median values (assuming log-

normal distributions) were calculated using equations 4–6, as

follows:

To describe s (sigma, which is analogous to the SD but in a

log-scale), the following equation can be used:[30]

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þCV2
� �q

(Eq. 4)

where the coefficient of variation (CV) is calculated by dividing

reported SD by reportedmean value, which are in normal scale.

A geometrical SD (GSD) can be defined as:

GSD¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1þCV2Þ

p
(Eq. 5)

Once s has been determined, the median can be calculated

by determining the exponent of m [mean of ln(x) values] after

using the following equation:[31]

m¼ lnðxjÞ � ð0:5 �s2Þ (Eq. 6)

where the mean value for samples is taken directly from the

report. It should be noted that the exponent of m also represents

geometric mean (i.e. median = em). The CV was used to add

variability around the parameter mean and calculated as fol-

lows (equation 7):

CV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Residual MS

p

X (Eq. 7)

where residual MS is the mean residual sum of squares and X is

the weighted mean. In the absence of usable data from the

literature, the CV values were assumed to be the same as those

for a healthy pre-pregnant population.

Data Analysis

Before data analysis, when a parameter was reported in

different units, these units were converted to a standard unit of

measurement. Data analysis was performed using Microsoft

Excel� 2007. In general, polynomial equations have been used

to describe the longitudinal changes in parameters during

pregnancy. Polynomial equations have been used to charac-

terize age-related changes in body and organ weights from

birth to adolescence in humans.[32]Moreover, only polynomials

were considered to develop the PBPK model for calculation

of organ weights based on sex and total body weight, and

to describe human postnatal growth from birth through to

adulthood for normal[27] and obese individuals of different

ethnicities,[33] and to relate fat-free mass (FFM) to fat mass that

considers demographic covariates.[34]

The choice of the polynomial degree to describe the physi-

ological changes during pregnancy was dependant on the na-

ture of the data to be interpolated. The data can be described

better by fitting and taking into account the impact of covari-

ates. Since the evaluated data are from population rather than

from individual means and the covariates were not always

available from all studies, the selection of polynomial equations

is sufficient for the purpose of describing the trend. If a higher

order of polynomial equation does not improve the fitting (R2)

and/or if it departed from the original data in comparison with

a lower degree, then the lower one was chosen. Other options

were considered where these were not adequately fitting using
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polynomial equations. An example of this is for fetal volume

during pregnancy where the Gompertz equation was used be-

cause negative values were generated using polynomials.

Results

The amount of information varied considerably depending

on the type of parameters, so that while an abundance of in-

formation was available for gestational weight gain, informa-

tion on compartmental blood flow, for instance, was very

limited. Table I summarizes the results of the meta-analysis,

along with regression equations and correlation coefficients.

Maternal Age Distribution at Conception

Data on thematernal age distribution of pregnancy were taken

from the Office for National Statistics (ONS), Conception Sta-

tistics for a total of 887 900 singleton pregnancy in England

and Wales for the year 2008[187] and examined for frequencies at

each age range.Agedistribution,which should be used forMonte-

Carlo sampling when population variability is considered in

PBPK models, is given in figure 1.

Gestational Age Distribution at Birth

In this article, gestational age refers to the full-term gesta-

tional age, which ranges from 37 to 42 weeks of pregnancy

counted from the first day of the last menstrual period, ac-

cording to WHO classification.[188,189] In a group of singleton

pregnancies (n = 12 816 Caucasian British women), the gesta-

tional age at delivery ranged between 23 and 43 weeks, with a

median of 40 weeks.[190] This is similar to the result obtained for

a Swedish population (n = 383 484 singleton, non-caesarean

birth), giving a mean – SD of 40.14 – 1.86 weeks and a medi-

an –SD of 40.29 – 1.86 weeks.[191] Data on gestational age

distribution for a total of 4 710 209 live-born singleton births

were obtained from the UKNational Health ServiceMaternity

Statistics.[192] Figure 2 shows the data and distribution of full-

length gestational age at delivery.

Gestational Weight Gain

The total amount of weight gained in normal-term preg-

nancies varies considerably among women. In its latest guide-

lines (2009), the Institute of Medicine gave a recommended

pregnancy weight gain range for normal weight women as wide

as from 10.0 to 16.7 kg for a singleton pregnancy.[193] Generally,

obtaining an appropriate baseline is a major confounding

factor in studies evaluating weight changes during pregnancy.

Weight gain in multiple pregnancies,[193] adolescent preg-

nancies,[193] pre-eclampsia and hypertensive pregnant women[194]

were found to be higher than that in normal singleton preg-

nancy and, thus, such populationswere excluded from this review.

Underweight and obese pregnant data were excluded from this

review as their weight gain pattern during pregnancy is also

different from weight gain in normal pregnant women.[195-197]

During normal pregnancy, the gestational weight gain is gen-

erally higher in the second and third trimester and can vary

depending on maternal ethnicity and age.[193] Because women

tend to retain weight at the postpartum period,[35,48] it was not

deemed appropriate to use postpartum values as a baseline for

pre-pregnancyweight estimation. The gestational weight gain is

therefore restricted to a normal weight, healthy adult Cauca-

sian pregnant population with uncomplicated singleton preg-

nancies. The data are shown in table 1 of the Supplemental

Digital Content (SDC), http://links.adisonline.com/CPZ/A31.

Meta-analysis of collected data indicated an increase in the

mean total body weight (in kg) [mean– SD (CV)] from 61.1 –
7.5 (15%) in pre-pregnancy state to 65.0 – 11 (17%), 71 – 10
(14%) and 75.2 – 8.4 (11%) by the end of the first, second and

third trimesters, respectively. The collated data show an addi-

tion of about 14 – 5.1 kg (36%) weight by the end of pregnancy.

These changes can be described using equation 8.

Total body weight ðkgÞ ¼ 61:1þ 0:2409 GAþ 0:0038 GA2

with R2 ¼ 0:9263 ðEq: 8Þ
where GA is the gestational age in weeks. A figure of mean

weight gain with the SD at different gestational weeks is given

in the SDC.

Total Body Fat

Estimates of body fat mass gained during human pregnancy

are necessary to assess the distribution of lipophilic com-

pounds. Most of the total body fat mass was deposited during

the second trimester, with little change taking place in the first

and third trimesters.[36] The mechanisms by which maternal fat

mass is regulated during pregnancy is poorly understood;

however, leptin has been suggested as an important regulator of

body fat mass during pregnancy.[198]

Fat gain accounts for about 55.5– 20% of total weight gain.[199]

It has been reported that postpartum mothers still retained

an average of 2.2 kg fat mass over the mean pre-pregnancy

value.[36] Thus, studies using postpartum values as control were

excluded from the analysis. To avoid the impact of other metho-

dological variables, further refinement of the data was done by
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Table I. Anatomical, physiological and biological parameter values and regression equations needed for physiology-based pharmacokinetic models defining

pregnancy, based on meta-analysis of the published data

Parameter (unit) Valuea [pregnancy status or GA] Equation R2 References

TBW (kg) 61.1– 8.9, n= 4116 (15%) [pre-preg]

62.8– 10.1, n =145 (16%) [9wk]

65.0– 11, n = 707 (17%) [13wk]

71– 10, n = 502 (14%) [26wk]

74.0– 11.2, n =734 (15%) [30wk]

75.2– 8.45, n =3484 (14%) [40wk]

TBW= 61.1+ 0.2409 GA+ 0.0038 GA2 0.9263 8,35-47

TFM (kg) 17.14–6.6, n =117 (39%) [pre-preg]

19.09–6.7, n =205 (35%) [13wk]

20.06–6.84, n = 108 (34%) [18wk]

19.80–7.5, n =184 (38%) [25wk]

23.22–10.7, n = 164 (46%) [32wk]

22.6– 7.0, n= 323 (31%) [37wk]

TFM= 17.14+ 0.1305 GA +0.0008 GA2 0.8938 35-37,41,42,47-51

TFFM (kg) 44.5– 5.5, n= 116 (12%) [pre-preg]

44.8– 5.0, n= 134 (11%) [12wk]

48.59–6.2, n =108 (13%) [25wk]

50.68–6.8, n =174 (12%) [37wk]

TFFM= 44.5- 0.0474 GA+ 0.0034 GA2 0.9544 35,41,42,47-49,51

Total body water (L) 31.67–4.6, n =241 (15%) [pre-preg]

35.22–1.65, n = 204 (5%) [12wk]

38.57–6.01, n = 198 (16%) [20wk]

40.14–7.55, n = 90 (19%) [25wk]

42.0– 8.73, n =237 (21%) [32wk]

46.0– 5.5, n= 149 (13%) [40wk]

Total body water=31.67+ 0.275 GA+ 0.0024 GA2 0.9898 35,45,48,51-59

ECW (L) 11.86–2.0, n =82 (17%) [pre-preg]

12.48–2.44, n = 139 (20%) [12wk]

13– 2.0, n =142 (14%) [20wk]

14.59–3.5, n =84 (24%) [35wk]

14.81–3.2, n =32 (21%) [38wk]

ECW = 11.86+ 0.0187 GA+ 0.0016 GA2 0.8687 45,51-54,58,60

ICW (L) 19.81–2.1, n =87 (11%) [pre-preg]

23.3– 5.2, n= 129 (21%) [12wk]

28.6– 4.7, n= 101 (16%) [22wk]

27.63–6.4, n =66 (20%) [30wk]

29.13–3.6, n =27 (11%) [38wk]

ICW = 19.81+ 0.5941 GA- 0.0007 GA2 0.981 45,51-54,58,60

CO (L/h) 301– 65, n= 286 (22%) [pre-preg]

354– 76, n= 143 (22%) [10wk]

386– 75, n= 246 (20%) [20wk]

423.7–72.2, n = 173 (17%) [32wk]

400– 79, n= 78 (20%) [36wk]

391– 79, n= 69 (20%) [38wk]

CO = 301+ 5.916 GA- 0.088 GA2 0.9014 5,8,37,61-67

Plasma volume (L) 2.50– 0.40, n =285 (16%) [pre-preg]

2.67– 0.45, n =136 (17%) [12wk]

3.55– 0.61, n =45 (17%) [24wk]

3.74– 0.50, n =130 (13%) [30wk]

3.67– 0.64, n =106 (17%) [36wk]

3.74– 0.54 , n =205 (14%) [39wk]

Plasma volume= 2.50- 0.0223 GA

+ 0.0042 GA2- 0.00007 GA3

0.9639 8,68-82

RBC volume (L) 1.49– 0.15, n =625 (10%) [pre-preg]

1.55– 0.15, n =539 (10%) [12wk]

1.61– 0.11, n =528 (6%) [20wk]

RBC volume=1.49+ 0.0098 GA 0.9121 8,70,73,74,76,77,82

Continued next page
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Table I. Contd

Parameter (unit) Valuea [pregnancy status or GA] Equation R2 References

1.79– 0.11, n =474 (6%) [24wk]

1.82– 0.10, n =489 (5%) [33wk]

1.84– 0.26, n =543 (15%) [36wk]

1.90– 0.16, n =530 (9%) [40wk]

Hct (%) 39.14–2.51, n =189 (6.4%) [pre-preg]

38.10–3.3, n =486 (8.7%) [10wk]

37.30–3, n = 937 (8%) [17wk]

36.2– 3.2, n= 1059 (9.1%) [23wk]

36.08–5.9, n =248 (16%) [27wk]

35.4– 3.8, n= 1656 (11%) [30wk]

34.98–4.7, n =534 (13%) [36wk]

33.6– 3.0, n= 184 (9%) [39wk]

Hct = 39.1- 0.0544 GA- 0.0021 GA2 0.9541 8,44,45,54,75-77,83-87

Plasma protein (g/L) 69.7– 4.4, n= 150 (6%) [>8wk
postpartum]

68.8– 5.2, n= 249 (8%) [12wk]

65.1– 4.4, n= 540 (7%) [23wk]

63.3– 3.7, n= 1425 (6%) [31wk]

63.7– 4.2, n= 606 (7%) [34.8wk]

64.1– 3.1, n= 43 (5%) [38.4wk]

Plasma protein= 69.7+0.2085 GA

- 0.0305 GA2+ 0.0006 GA3

0.9974 43,84,87-89

Albumin (g/L) 45.8– 3.5, n= 465 (7.6%) [pre-preg]

43.3– 4.1, n= 125 (9%) [10wk]

41.4– 3.0, n= 250 (7%) [17wk]

38.5– 3.8, n= 561 (10%) [30wk]

37.56–3.6, n =193 (10%) [34wk]

31.45–5.3, n =104 (17%) [40wk]

Albumin=45.8- 0.1775 GA - 0.0033 GA2 0.9403 54,71,75,84,86,89-92

AAG (g/L) 0.74– 0.17, n =32 (23%) [pre-preg]

0.73– 1.6, n= 41 (22%) [10wk]

0.58– 0.19, n =69 (33%) [20wk]

0.60– 0.18, n =69 (30%) [30wk]

0.61– 0.18, n =51 (30%) [35wk]

0.60– 0.16, n =67 (27%) [40wk]

AAG= 0.74- 0.0088 GA+ 0.0001 GA2 0.7508 89,92-96

Total lipids (g/L) 6.0 – 1.1, n = 13 (18%) [>4wk
postpartum]

6.0 – 1.0, n = 15 (17%) [9wk]

8.7 – 1.4, n = 22 (15%) [25wk]

9.5 – 1.2, n = 20 (13%) [34wk]

9.9 – 1.4, n = 18 (14%) [40wk]

Total lipids =6 + 0.1001 GA 0.9897 97

Total triglycerides

(mg/dL)
78.54–39, n= 56 (50%) [non-preg]

116– 53, n= 866 (46%) [12wk]

132– 65, n= 45 (49%) [24wk]

228– 83, n= 84 (36%) [36wk]

Total triglycerides=79+ 0.6566 GA+ 0.0925 GA2 0.9558 98-101

Total cholesterol

(mg/dL)
178– 38, n= 56 (12%) [pre-preg]

190– 36, n= 866 (19%) [12wk]

238– 46, n= 45 (20%) [24wk]

273– 45, n= 84 (17%) [36wk]

Total cholesterol= 178+1.1045 GA+ 0.0444 GA2 0.977 98-101

CYP1A2 activity (%) 100, n =25 [pre-preg]

67– 23, n = 25 (37%) [16wk]

CYP1A2 activity=100- 3.5814 GA+ 0.0495 GA2 0.9965 Calculated based on

Tracy et al.[102]

Continued next page
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Table I. Contd

Parameter (unit) Valuea [pregnancy status or GA] Equation R2 References

50– 27, n = 25 (56%) [26wk]

35– 15, n = 25 (50%) [38wk]

CYP2D6 activity (%) 100, n =25 [pre-preg]

129– 59, n= 25 (46%) [16wk]

134– 42, n= 25 (31%) [26wk]

136– 25, n= 25 (18%) [38wk]

CYP2D6 activity (%)= 100+ 2.2695 GA-0.0348 GA2 0.9948 Calculated based on

Tracy et al.[102]

CYP3A4 activity (%) 100, n =25 [pre-preg]

137– 38, n= 25 (28%) [16wk]

118– 38, n= 25 (32%) [26wk]

109– 31, n= 25 (28%) [38wk]

CYP3A4 activity (%)= 100+ 2.9826GA-0.0741GA2 0.7718 Calculated based on

Tracy et al.[102]

GFR (mL/min) 114– 28, n= 67 (25%) [pre-preg]

136– 32, n= 25 (23%) [10wk]

156– 26, n= 71 (16%) [16wk]

160– 26, n= 65 (16%) [26wk]

156– 42, n= 86 (27%) [36wk]

GFR= 114+3.2367 GA- 0.0572 GA2 0.9712 8,103-111

CLCR (mL/min) 98.3– 14.4, n =81 (15%) [pre-preg]

126– 20, n= 36 (16%) [12wk]

155– 28, n= 31 (18%) [26wk]

152– 39, n= 36 (25%) [33wk]

124– 34, n= 45 (28%) [37wk]

CLCR= 98.3+ 3.9107 GA- 0.0789 GA2 0.8193 54,112-114

Serum creatinine

(mg/dL)
0.80– 0.11, n =109 (13%) [pre-preg]

0.69– 0.09, n =40 (13%) [18wk]

0.64– 0.08, n =27 (12%) [2wk]

0.67– 0.08, n =40 (12%) [34wk]

0.66– 0.14, n =53 (21%) [37wk]

Serum creatinine= 0.8- 0.0147 GA+ 0.0003 GA2 0.9543 8,113-115

Effective renal

plasma flow (L/h)
32.3– 6.4, n= 59 (20%) [pre-preg]

44.5– 6.1, n= 27 (14%) [7wk]

48.4– 8.8, n= 44 (18%) [16wk]

47.8– 12.5, n =61 (26%) [26wk]

42.3– 11.2, n =58 (27%) [36wk]

Effective renal plasma flow =32.3+ 1.6576 GA

- 0.0389 GA2

0.9469 103,104,106,109-111,

116

Effective renal blood

flow (L/h)
53.1– 10.4, n =59 (20%) [pre-preg]

72.7– 9.9, n= 27 (14%) [7wk]

77.9– 14.0, n =44 (18%) [16wk]

75.1– 19.7, n =61 (26%) [26wk]

64.4– 17.1, n =58 (27%) [36wk]

Effective renal blood flow= 53+ 2.6616 GA

- 0.0661 GA2

0.9344 Calculated from effective

renal plasma flow

data[103,104,106,109-111,116]

Cerebral blood flow

(L/h/100g)
2.53– 0.38, n =15 (15%) [pre-preg]

2.66– 0.27, n =31 (10%) [10wk]

2.92– 0.28, n =50 (10%) [22.5wk]

3.11– 0.35, n =129 (11%) [34.8wk]

Cerebral blood flow=2.53+ 0.0167 GA 0.9923 117

Internal carotid

artery blood flow

(L/h)

17.64–3.1, n =15 (18%) [pre-preg]

18.78–2.46, n = 31 (13%) [10wk]

21.18–2.44, n = 50 (12%) [22.5wk]

22.93–3.0, n =129 (13%) [34.8wk]

Internal carotid artery blood flow=17.64+ 0.1513 GA 0.9907 117

Weight of the uterus

(g)

80– 35, n = 36 (44%) [pre-preg]

282– 82, n= 17 (29%) [13wk]

314– 90, n= 6 (31%) [18wk]

982 – 237, n = 20 (24%) [40wk]

Weight of the uterus= 80+ 8.2931 GA +0.3546 GA2 0.9956 118-120

Continued next page
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Table I. Contd

Parameter (unit) Valuea [pregnancy status or GA] Equation R2 References

Uterine blood flow

(L/h)
1.71– 0.85, n =82 (52%) [pre-preg]

17.5– 10, n = 161 (57%) [10wk]

28.5– 11.5, n =235 (40%) [22wk]

44.4– 15, n = 269 (33%) [30wk]

49.1– 14, n = 246 (29%) [38wk]

Uterine blood flow = 1.71+0.2068 GA

+ 0.0841 GA2- 0.0015 GA3

0.9905 6,65,121-131

Breasts volume (mL) 985– 308, n = 89 (31%) [pre-preg]

1080– 469, n = 7 (43%) [10wk]

1214– 396, n = 8 (33%) [21wk]

1258– 356, n = 8 (28%) [31wk]

1260– 381, n = 7 (30%) [37wk]

Breasts volume= 985+ 14.244 GA - 0.1869 GA2 0.9684 132-138

Estradiol (ng/mL) 0.062–0.058, n= 355 (94%)

[non-preg]

0.51– 0.45, n =349 (90%) [8wk]

1.91– 2.07, n =982 (108%) [12wk]

3.45– 1.81, n =879 (51%) [16wk]

5.86– 5.60, n =642 (95%) [24wk]

10.69–5.70, n = 837 (52%) [27wk]

13.35–7.0, n =836 (53%) [33wk]

17.2– 6.3, n= 400 (54%) [36wk]

15.65–9.19, n = 525 (59%) [39wk]

Estradiol= 0.06+ 0.0558 GA+ 0.0103 GA2 0.9634 39,43,68,99,110,139-146

Progesterone

(ng/mL)

1.42– 3.34, n = 154 (235%) [non-preg]

24.63–13.17, n= 112 (53%) [8wk]

30.96–16.6, n = 211 (54%) [12wk]

39.66–13.43, n= 433 (34%) [16wk]

53.83–17.41, n= 128 (32%) [20wk]

84.72–35.06, n= 117 (41%) [24wk]

89.83–29.0, n = 21(32%) [30wk]

142.7–40, n= 189 (28%) [33wk]

191– 47, n= 199 (22%) [38wk]

Progesterone= 1.42+3.446 GA - 0.1334 GA2

+ 0.0046 GA3

0.9816 43,68,110,140,141,143,

145-148

Itrauterine volume

(mL)

Zero [pre-preg]

486– 170, n = 5 (35%) [14wk]

990– 167, n = 103 (17%) [20wk]

1834– 281, n = 103 (15%) [25wk]

2689– 349, n = 110 (13%) [30wk]

4157– 573, n = 76 (14%) [38wk]

4524– 720, n = 38 (16%) [40wk]

Intrauterine volume= 0.0 -0.4758�GA

+ 0.5174 GA2+ 0.1424 GA3 -0.0021 GA4

0.9958 149,150

Gestational sac

volume (mL)

Zero [pre-preg]

14– 13, n = 42 (90%) [6wk]

38– 25, n = 48 (66%) [8wk]

102– 43, n= 31 (42%) [10wk]

144– 27, n= 417 (19%) [13.5wk]

Gestational sac volume= 0.0+ 3.9351 GA

- 2.373 GA2+ 0.4176 GA3 -0.0152 GA4

0.927 151-154

Fetal volume (mL) Zero [pre-preg]

0.5 – 0.14, n= 7 (28%) [6wk]

9.4 – 2.9, n = 9 (31%) [10wk]

76– 25, n = 264 (33%) [16wk]

257.66– 33.3, n= 68 (13%) [19wk]

292– 70, n= 10 (24%) [20wk]

728– 176, n = 132 (24%) [25wk]

Fetal volume=
0:01 exp 0:955

0:0702

� �ð1�expð�0:0702 GAÞÞ	 
 Not

applicable

37,155-170

Continued next page
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only selecting studies that used multi-compartment models to

determine fat mass and FFMduring gestation as thesemodels are

reported to be the gold standard for determining body composi-

tion during pregnancy.[200] These data are given in SDC tables 2

and 3. Analysis of the available data shows that:

� The total fat mass in kg [mean – SD (CV)] increases from

17.14 – 6.6 (39%) pre-pregnancy value to 19.09 – 6.7 (35%),

19.80 – 7.5 (38%) and 22.6 – 7.0 (31%) at the gestational

weeks 13, 25 and 37 of pregnancy, respectively.

� The total FFM in kg [mean– SD (CV)] shows no change

from 44.5– 5.5 (12%) pre-pregnancy value to 44.8– 5.0 (11%),

48.59– 6.2 (13%) and 50.68– 6.8 (12%) at 12, 25 and 37 weeks

of gestation.The following equations canbe used to describe fat

mass (equation 9) and FFM (equation 10) during pregnancy:

Total fat mass ðkgÞ ¼ 17:14þ 0:1305 GAþ 0:0008 GA2

with R2 ¼ 0:8938 ðEq: 9Þ

Total FFM ðkgÞ ¼ 44:5� 0:0474 GAþ 0:0034 GA2

with R2 ¼ 0:9544 ðEq: 10Þ

The values 17.14 and 44.5 represent the baseline values of total

fat mass and FFM (in kg), respectively, for pre-pregnant women.

The mean density of FFM was determined to be 1.099 g/cm3 at

week 14 and 1.089 g/cm3 at week 37.[201] At term, the mean FFM

density was determined to range from 1.0895 to 1.0850 g/cm3 for

non-oedematous pregnant women and 1.0830 to 1.0785 g/cm3 if

the women developed generalized oedema.[202] Such changes in

density can affect the total FFMdensity of pregnant women, even

if they have the same pre-pregnancy FFM; however, the accuracy

of themethod used is still uncertain.[200] Plots of fat andFFMgain

at different gestational weeks are given in the SDC.

Total Body Water

Total body water increases gradually with gestational age

but with great inter-individual variability. This increase in total

body water is important in expanding the plasma volume to fill

the increased vascular bed that occurs during normal preg-

nancy.[203] Studies that reported total body water during nor-

mal pregnancy are listed in tables 4 and 5 of the SDC. Data

from pregnant women with generalized oedema were excluded

from this evaluation.

Meta-analysis of the available data shows that the mean –
SD (CV) total body water (L) increases from 31.67 – 4.6 (15%)

Table I. Contd

Parameter (unit) Valuea [pregnancy status or GA] Equation R2 References

1513– 291, n = 1077 (19%) [30wk]

2547– 439, n = 1486 (17%) [35wk]

3439– 439, n = 34 014 (13%) [40wk]

Placenta volume

(mL)

Zero [pre-preg]

42– 15, n = 11 (34%) [9wk]

134– 58, n= 28 (44%) [14wk]

254– 62, n= 115 (24%) [20wk]

460– 173, n = 158 (38%) [30wk]

521– 104, n = 477 (20%) [34wk]

593– 90, n= 1407 (15%) [36wk]

659– 103, n = 11 901 (16%) [40wk]

Placenta volume= 0.0- 0.716 GA

+ 0.9149 GA2- 0.0122 GA3

0.9952 121,149,156,158,162,

165,166,169,171-179

Amniotic fluid

volume (mL)

Zero [pre-preg]

41– 15, n = 19 (36%) [9wk]

74.82–27.62, n= 25 (37%) [12wk]

200– 64, n= 17 (32%) [15wk]

236.4–78.5, n = 22 (33%) [17wk]

359– 106, n = 8 (30%) [20wk]

705.3–85.5, n = 8 (12%) [26wk]

823– 264, n = 16 (32%) [34wk]

933.3–195.9, n= 12 (21%) [38wk]

758– 132, n = 15 (18%) [40wk]

Amniotic fluid volume= 0+ 1.9648 GA- 1.2056
GA2 + 0.2064 GA3- 0.0061 GA4+ 0.00005 GA5

0.9823 158,160,180-186

a Values are expressed as mean–SD (coefficient of variation %).

AAG= a1-acid glycoprotein; CLCR = creatinine clearance; CO= cardiac output; CYP= cytochrome P450; ECW= extracellular water; GA= gestational age;
GFR= glomerular filtration rate; Hct =haematocrit; ICW= intracellular water; n = number of women; pre-preg=pre-pregnancy; TBW= total body weight;

TFFM= total fat-free mass; TFM= total fat mass.
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before pregnancy to 35.22 – 1.65 (5%), 40.14 – 7.55 (19%) and

46.0– 5.5 (13%) at 12, 25 and 40 weeks of pregnancy, respectively.

Extracellular water (L) increases slightly from the pre-

pregnancy value of 11.86 – 2.0 (17%) to 12.48 – 2.44 (20%), 13 –
2.0 (14%), 14.59 – 3.5 (24%) and 14.81 – 3.2 (21%) at 12, 20, 35

and 38 weeks of pregnancy, respectively.

During pregnancy, intracellular water (L) increases from

19.81 – 2.1 (11%) before pregnancy to 23.3 – 5.2 (21%), 28.6 –
4.7 (16%), 27.63 – 6.4 (20%) and 29.13 – 3.6 (11%) at 12, 22, 30

and 38 weeks of gestation, respectively. The following equa-

tions were derived to describe the change in total body water

(equation 11), extracellular water (equation 12) and intracellu-

lar water (equation 13) during pregnancy:

Total body water ðLÞ ¼ 31:67þ 0:275 GAþ 0:0024 GA2

with R2 ¼ 0:9898 ðEq: 11Þ

Extracellular water ðLÞ ¼ 11:86þ 0:0187 GAþ 0:0016 GA2

with R2 ¼ 0:8687 ðEq: 12Þ

Intracellular water ðLÞ ¼ 19:81þ 0:5941 GA� 0:007 GA2

with R2 ¼ 0:981 ðEq: 13Þ
Plots of water gain at different gestational weeks are given in

the SDC.

Cardiovascular System

Several significant cardiovascular changes occur during the

course of pregnancy, including an increase in cardiac output

and plasma volume, and a reduction in vascular resistance in

order to meet the increasing metabolic demands of the mother

and fetus and to tolerate the acute blood loss that occurs with

childbirth. These changes are believed to be under maternal

hormonal control, including progesterone, aldosterone, estradiol

and renin.[8,68,204] The interaction mechanisms of these changes

are complex as these adaptations occur simultaneously, most of

them begin during early pregnancy, and are critical at term. The

unique feature associated with pregnancy is the increasing rise

in cardiac output parallel to a continuous increase of blood

volume and vasodilatation. The mean – SD systemic vascular

resistance (dyne�cm/sec5) decreases from a pre-pregnancy va-

lue of 1461 – 283 to 1124 – 235, 967 – 222, and 1012 – 248 during
the first, second and third trimesters, respectively.[5,37,61,205] The

stroke volume (in mL) increases from a pre-pregnancy value

(mean– SD) of 80 – 11 to 92 – 16, 92 – 15, 97 – 16 and 96 – 16 at
8, 15, 24 and 38 weeks of pregnancy, respectively.[5,37] The heart

rate increases by 10 to 20beats/min starting at 5 weeks’ gestation

and continuing until 32 weeks.[206,207] This change is mediated by

estrogens via increasing myocardial a-receptors.[206,208,209]

Cardiac Output

Cardiac output refers to the volume of blood ejected from

each ventricle of the heart per unit of time.Generally, all studies

reported an increase in cardiac output during normal preg-

nancy with increasing gestational age. The most significant

increase in cardiac output occurs during the first half of preg-

nancy, mainly as the result of an increase in stroke volume.[62]

The increase of cardiac output in the second half of pregnancy

was smaller and mostly attributable to an increased heart

rate.[121] Whether the cardiac output increases steadily until term

or there is a decrease in late pregnancy remains controversial.

Some studies report a steady increase until term,[210-212] whereas

others report a plateau or decrease in the third trimester.[62,63,213]

This discrepancy can be explained by differences in study design

and methodology, including maternal position during the

examination.[64] Cardiac output is usually measured in a supine

position; however, by positioning the mother in such a posi-
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tion in late pregnancy, the uterus seriously impedes venous

return through the vena cava with a consequent fall in cardiac

output.[214,215] Thus, many studies measured cardiac output

by having the subjects lay on their left side.[37,206] Studies

that did account for this phenomenon were included in this re-

view. Information on cardiac output in pregnancy was gathered

from a number of sources and only data measured by pulsed

Doppler while subjects were lying on their left lateral decubitus

position are included in this analysis (see table 6 in the SDC).

Data analysis shows that cardiac output (L/h) begins to rise

gradually from early pregnancy [mean – SD (CV)], with in-

creases from the pre-pregnancy value of 301 – 65 (22%) to 354 –
76 (22%), 386– 75 (20%), 400– 79 (20%) and 391– 79 (20%) at

10, 20, 36 and 38weeks of gestation, respectively. Cardiac output

reaches the peak of 400L/h between 30 and 38 gestational weeks

with the highest value of about 424– 72L/h at 32 weeks of

pregnancy. These changes can be described by equation 14:

Cardiac output ðL=hÞ ¼ 301þ 5:916 GA� 0:088 GA2

with R2 ¼ 0:9014 ðEq: 14Þ
A plot of cardiac output changes at different gestational

weeks is given in the SDC.

Of note, cardiac output increases by 50% during labour and

by 60–80% during the 15th to 20th minutes after delivery and

remains elevated for 48 hours after delivery. It returns gradually

to pre-pregnancy values over 2–12 weeks.[216]

Plasma Volume

Expansion of the plasma volume begins as early as the

fourth week of pregnancy, and increases 10–15% by 6–12 weeks

of gestation with a continuous rises until parturition.[7,69-71]

Collected studies are given in table 7 of the SDC. Data analysis

shows that the average plasma volume (in L) [mean –SD (CV)]

increases from a pre-pregnancy value of 2.50 – 0.40 (16%) to

2.67 – 0.45 (17%), 3.55 – 0.61 (17%), 3.74 – 0.50 (13%), 3.67 –
0.64 (17%) and 3.74 – 0.54 (14%) at 12, 24, 30, 36 and 39 weeks

of pregnancy, respectively. The total gain at term averages

1240mL and results in a plasma volume range from 3200 to

4280mL, which is 34–70% above that found in pre-pregnant

women. Part of this variability can be teased out by accounting

for many covariates such as parity[72] and multiple births.[73] A

possible clinical consequence of this large variability is that it can

result in different concentrations of biomarkers in plasma.[217]

For modelling purposes, equation 15 can be used to describe

the longitudinal change in plasma volume during pregnancy:

Plasma volume ðLÞ ¼ 2:50� 0:0223 GAþ 0:0042 GA2

� 0:00007 GA3 with R2 ¼ 0:9639 ðEq: 15Þ

A plot of plasma volume expansion at different gestational

weeks is given in the SDC.

Red Blood Cell Volume

Plasma volume expansion is accompanied by a lesser in-

crease in red blood cell (RBC) volume[218] to meet the needs of

increased oxygen requirements for the mother and the fetus.

The control of RBC production is complex and believed to

be under the influence of erythropoietin hormone, which in-

creases during pregnancy;[219-221] however, other factors such

as progesterone (which counters the inhibition effect of estro-

gens on erythropoietin), folic acid and iron are of great

significance.[222-225]

Collected data for RBC changes during pregnancy are listed

in table 8 of the SDC. Data analysis shows that during preg-

nancy the volume of RBCs (in L) [mean – SD (CV)] rises from a

pre-pregnancy value of 1.49– 0.15 (10%) to 1.55– 0.15 (10%),

1.61– 0.11 (6%), 1.79 – 0.11 (6%), 1.82 – 0.10 (5%), 1.84 – 0.26
(15%) and 1.90 – 0.16 (9%) at 12, 20, 24, 33, 36 and 40 weeks of

gestation, respectively. Equation 16 can be used to describe the

change in RBCs during pregnancy:

RBC volume ðLÞ ¼ 1:49þ 0:0098 GA with R2 ¼ 0:9121

(Eq: 16Þ
A plot of RBC volumes at different gestational weeks is

given in the SDC.

Haematocrit

The haematocrit value is the percentage of RBCs relative to

plasma volume. In pre-pregnant women haematocrit ranges

from 38% to 45%. Pregnant women show a moderate decrease

in the haematocrit value during gestation, most probably due to

the increasing volume of plasma (haemodilution of pregnancy)

and the fact that the proportion of increasedRBC volume is less

than the increase in plasma volume during normal pregnancy.

Collected values of haematocrit during pregnancy are given in

table 9 of the SDC. Studies that mentioned iron supplements

were excluded.

Meta-analysis of the collected data shows that the haema-

tocrit value (%) [mean– SD (CV)] falls from a pre-pregnancy

value of 39.14– 2.51 (6.4%) to 38.10– 3.3 (8.7%), 37.30– 3 (8%),

36.2 – 3.2 (9.1%), 36.08 – 5.9 (16%), 35.4 – 3.8 (11%), 34.98 – 4.7
(13%) and 33.6 – 3.0 (9%) at 10, 17, 23, 27, 30, 36 and 39 weeks

of gestation, respectively. Equation 17 can be used to describe

the change in haematocrit at any week during pregnancy:

Haematocrit ð%Þ ¼ 39:1� 0:0544 GA� 0:0021 GA2

with R2 ¼ 0:9541 ðEq: 17Þ
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A plot of haematocrit at different gestational weeks is given

in the SDC.

Plasma Protein

Plasma protein levels decrease during pregnancy, whichmay

alter the unbound plasma concentrations of drugs that are

highly protein bound. Collected data for the total plasma

protein concentration in plasma during pregnancy are listed in

table 10 of the SDC.Data analysis showed that the total plasma

protein concentration (g/L), mean – SD (CV), decreases from

69.7– 4.4 (6%) pre-pregnancy to 68.8– 5.2 (8%), 65.1– 4.4 (7%),

63.3 – 3.7 (6%), 63.7 – 4.2 (7%) and 64.1 – 3.1 g/L (5%) at 12, 23,

31, 34.8 and 38.4 weeks of gestation, respectively. Equation 18

can be used to describe the longitudinal decrease of plasma

protein concentration during pregnancy:

Plasma protein ðg=LÞ ¼ 69:7þ 0:2085 GA� 0:0305 GA2

þ 0:0006 GA3 with R2 ¼ 0:997 ðEq: 18Þ
A plot of total plasma protein at different gestational weeks

is given in the SDC.

Albumin

Determination of the albumin level during pregnancy is

of great importance. Most drugs are bound to different ex-

tents to this protein, affecting their disposition and effect. Re-

ported changes in the maternal serum albumin concentration

during pregnancy are given in table 11 of the SDC. Data anal-

ysis showed that the plasma albumin level (g/L), mean – SD
(CV), decreased during pregnancy from the pre-pregnancy

value of 45.8 – 3.5 (7.6%) to 43.3 – 4.1 (9%), 41.4 – 3.0 (7%),

38.5 – 3.8 (10%), 37.56 – 3.6 (10%) and 31.45 – 5.3 (17%) at 10,

17, 30, 34 and 40 weeks of gestation, respectively. Equation 19

can be used to describe the albumin concentration during

pregnancy:

Albumin ðg=LÞ ¼ 45:8� 0:1775 GA� 0:0033 GA2

with R2 ¼ 0:9403 ðEq: 19Þ
A plot of plasma albumin at different gestational weeks is

given in the SDC.

a1-Acid Glycoprotein

The plasma a1-acid glycoprotein (AAG) level (g/L), mean –
SD (CV), decreased during pregnancy from the pre-pregnancy

value of 0.74 – 0.17 (23%) to 0.73 – 1.6 (22%), 0.58 – 0.19 (33%),

0.60 – 0.18 (30%), 0.61 – 0.18 (30%) and 0.60 – 0.16 (27%) at 10,

20, 30, 35 and 40 weeks of gestation, respectively. Equation 20

can be used to describe the change in AAG during pregnancy:

AAG ðg=LÞ ¼ 0:74� 0:0088 GAþ 0:0001 GA2

with R2 ¼ 0:7508 ðEq: 20Þ

Collected data are given in table 12 of the SDC. A plot

of the AAG level at different gestational weeks is given in the

SDC.

Plasma Lipids

During pregnancy serum lipids increase gradually until term.

In addition, phospholipids increased from a pre-pregnancy

average of 229 – 47mg/dL in 24 women to 323 – 42mg/dL at

38 weeks of pregnancy.[98] Plasma total fatty acids are reported

to increase during pregnancy; however, no clear trend was

observed in erythrocyte fatty acids.[226]

Total plasma lipids (g/L) increased during pregnancy from

6.0 – 1.0 (mean –SD) at 9 gestational weeks to 8.7 – 1.4, 9.5 –
1.2 and 9.9 – 1.4 at 25, 34 and 40 weeks of gestation, respect-

ively. The level of plasma lipids then decreased to 6.0 – 1.1 g/L
at 4 weeks postpartum. The total triglyceride concentration

increased from a pre-pregnancy value of 78.54 – 39mg/dL to

116 – 53, 132 – 65 and 228 – 83mg/dL during the first, second

and third trimester, respectively. Total cholesterol has a similar

trend; it increases fromapre-pregnancy value of 178– 38mg/dL to

190– 36, 238– 46 and 273– 45mg/dL during the first, second and

third trimester, respectively.

Collected data regarding total plasma lipids, triglycerides

and cholesterol are given in table 13 of the SDC. The following

equations can be used to describe the change in total plasma

lipids (equation 21), triglycerides (equation 22) and cholesterol

(equation 23) during pregnancy:

Total lipids ðg=LÞ ¼ 6þ 0:1001 GA

with R2 ¼ 0:9897 ðEq: 21Þ

Total triglycerides ðmg=dLÞ ¼ 79þ 0:6566 GAþ 0:0925 GA2

with R2 ¼ 0:9558 ðEq: 22Þ

Total cholesterol ðmg=dLÞ ¼ 178þ 1:1045 GAþ 0:0444 GA2

with R2 ¼ 0:977 ðEq: 23Þ

Plots of plasma lipids, triglycerides and cholesterol levels at

different gestational weeks are given in the SDC.

Gastrointestinal Tract

During pregnancy, the stomach is continuously displaced

upward toward the left side of the diaphragm. In most preg-

nant women, this change leads to displacement of the intra-

abdominal segment of the oesophagus into the thorax and can

partly explain the gastric reflux that is experienced by many

women during pregnancy.[227]
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Gastric pH

No differences in basal gastric pH or basal and peak

acid outputs have been observed during pregnancy when

compared with pre-pregnancy values.[228,229] This is in contrast

with a previous review, where an increase in gastric pH was

reported.[230]

Gastric Emptying and Gastrointestinal Transit Time

Gastric emptying is not altered in healthy women during

pregnancy. Using water[231] and disaccharide solution[232]

as test liquids, no difference in gastric emptying was observed

during pregnancy. After oral administration of paracetamol

(acetaminophen) tablets,[231,233,234] no gastric emptying delay

was observed in pregnant women in the first, second and third

trimester compared with non-pregnant women. These results

are supported by other techniques, where no change in gastric

emptying could be demonstrated during pregnancy using serial

gastric ultrasound examinations.[231,232] This information is in

contrast to a previous review, which reported a reduction in

gastric emptying during pregnancy.[230]

The orocaecal transit time (OCTT) did not change during

the first trimester of pregnancy; however, in the third trimester

OCTT was longer (100min vs 70min).[232] The observed pro-

longation in OCTT should be interpreted with caution as these

women had mild dyspepsia during the first trimester and the

observed range was 50.5–240minutes during the third trimester

and 40.5–240 minutes postpartum.

Bile

Using real-time ultrasonography, the fasting and residual

volumes of the gallbladder were markedly increased during the

second and third trimesters in 33 pregnant women compared

with 11 pre-pregnant women. Gallbladder emptying has been

reported to be incomplete and slower during pregnancy and the

bile content tends to be more concentrated.[235]

Limited information is available on gallbladder empty-

ing times. In eight healthy women, the gallbladder emptying

rate constant was decreased from 0.041 – 0.006min-1 in pre-

pregnant women to 0.022 – 0.003min-1 during pregnancy.[147]

Fasting gallbladder volumes (mL) [mean –SD (CV)] de-

termined by ultrasonograph increased from a pre-pregnancy

(n = 223) value of 20.17 – 8.35 (41%) to 30.75 – 12.75 (41%) in

195 pregnant women at the second trimester and remained re-

latively constant, with a value 29 – 12.9 (45%) in 115 pregnant

women to the end of pregnancy.[147,236-238] The gallbladder ejec-

tion fraction was lower in third trimester pregnant women

(n = 18) than in postpartum women after delivery (n = 18)
[60.56 – 18.8% vs 77.48 – 13.37%].[238]

Liver

Despite the fact that there are marked changes in liver function

during pregnancy,[239-241] no evidence for significant change of liver

morphology could be found. The liver receives about 70% of the

blood from the portal veins and the other 30% is delivered at a

greater velocity and higher pressure from the hepatic arteries.[242]

Liver Blood Flow

Despite numerous literature reports of marked changes in the

cardiovascular system during pregnancy, little is known about

changes in hepatic blood flow and the existing data are contra-

dictory. Munnell and Taylor[243] did not find any difference be-

tweenhepatic blood flows,measuredusing theFickprinciple,with

bromosulphthalein in 15 non-pregnant and 15 pregnant women:

both were between 1400 and 1500mL/min/1.73m2. In another

study, Robson et al.[83] calculated the apparent liver blood flow

from indocyanine green clearance and found no significant

changes during pregnancy. The apparent liver blood flow was

found to account for 24% of cardiac output during pregnancy and

increased to 37% after delivery. In contrast, Clapp et al.[244] used

ultrasonography to estimate portal vein blood flow and found

that it rose significantly during early and mid pregnancy (n= 6) at
standing rest (580– 70 to 790– 120mL/min) and was even higher

at recumbent rest (from 660– 110 to 1090– 120mL/min). The

change in the portal vein blood flow during pregnancy reflects

changes of similar magnitude in the overall splanchnic blood

flow.[244] This is because approximately two-thirds of splanchnic

blood flow is returned to the liver via the portal vein.[242]

Doppler velocimetry of the hepatic vein in healthy women

showed a profound change in hepatic venous pulsatility during

pregnancy and waveforms changed from their normal pulsatile

nature to become flat with increasing gestation,[245,246] most

probably due to a reduction of liver compliance or by a rise in

intra-abdominal pressure.[246]

Based on the available information, and the knowledge

thatDoppler flow studies are subject to high variationbetween and

within individuals,[247,248] it is difficult, at this stage, to describe the

magnitude and significant of changes in maternal hepatic blood

flow. The increase of the portal venous return can explain the

increase of hepatic perfusion observed after 26 weeks of gestation

as thehepatic arterial blood flow remains unchanged.[249] Collected

values on hepatic blood flow are given in table 14 of the SDC.

Metabolic Enzyme Activity

Drug-metabolizing enzymes can be classified into two broad

classes: cytochrome P450 (CYP) enzymes and non-CYP

enzymes, including the uridine diphosphate glucuronosyl-
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transferase (UGT) family. The activity of many of these en-

zymes has been shown to change during pregnancy and can affect

drugs pharmacokinetics and therapy. For example, human preg-

nancy is associated with an increased metabolism of the CYP2D6

substrates metoprolol[250-252] and dextromethorphan.[102,253]

CYP2D6 is a polymorphic gene and these polymorphisms can

alter CYP2D6 activity regardless of pregnancy state.[254] How-

ever, although there are no data to support that the activity of

these variants changes in a variant-specific manner with preg-

nancy, maternal CYP2D6 polymorphisms have been shown to

have the potential to alter fetal exposure to paroxetine.[3]

While the causative mechanism of the observed changes of

metabolizing enzymes has not been identified, accumulated

data suggest that the protein expression of these enzymes are

regulated by the higher level of hormones, mainly estradiol and

progesterone, during pregnancy in a concentration-dependent

manner.[2,4,255,256] The known regulatory pathways involve the

aryl hydrocarbon, constitutive androstane, pregnane X and

estrogen receptors.At this time, for ethical and clinical reasons, it is

not practical or possible to get hepatocytes from healthy pregnant

women or to run a clinical study for drugs where their safety in

pregnancy is not known. Available studies therefore reported

any change in CYP activity as a percentage in relation to the

pre-pregnant population. Examples of changes in these en-

zymes and the controlling hormones are given in table II.

Tracy et al.[102] has reported maternal changes in the

activity of CYP1A2, CYP2D6 and CYP3A4 isoforms dur-

ing pregnancy in 25 healthy women. The activity of CYP1A2

decreased from the pre-pregnancy level (100%) by 32.8 – 22.8%,

48.1 – 27% and 65.2 – 15.3% during the first, second and

third trimester, respectively. The activity of CYP2D6 increased

from the pre-pregnancy level (100%) by 25.6 – 58.3%, 34.8 –
41.4% and 47.8 – 24.7% during the first, second and third

trimester, respectively. Similar to CYP2D6, the activity of

CYP3A4 increased by 35%, 35% and 38% of the pre-pregnancy

level during the first, second and third trimester, respec-

tively. These changes were based on saliva clearance in case

of caffeine and invariant urinary parent/metabolite ratios

for dextromethorphan O- and N-demethylation, which

are not pure markers of enzyme activity.[278,279] Values of

CYP2D6 (dextromethorphan/dextrorphan ratio) and CYP3A4

(dextromethorphan/3-hydroxymorphinan) at each trimester

were corrected for the changes in renal function at the corre-

sponding trimester by dividing by renal function relative

to that at pre-pregnancy. The reciprocal of the quotients is

then used as an index of CYP2D6- and CYP3A4-mediated

formation of dextrorphan and 3-hydroxymorphinan, respect-

ively, and, hence, of the change in relative enzyme activity.

For CYP1A2, no correction was applied since the half-

life but not clearance can be detected from saliva. The percen-

tage changes from the original uncorrected data are given in

figure 3.

The change in the activity of these enzymes (%) during

pregnancy over the pre-pregnancy level, after correction of data

from Tracy et al.,[102] can be described by using the following

equations for CYP1A2 (equation 24), CYP2D6 (equation 25)

and CYP3A4 (equation 26) isoforms:

CYP1A2 activity ð%Þ ¼ 100� 3:5814 GAþ 0:0495 GA2

with R2 ¼ 0:9965 ðEq: 24Þ
CYP2D6 activity ð%Þ ¼ 100þ 2:2695 GA� 0:0348 GA2

with R2 ¼ 0:9948 ðEq: 25Þ
CYP3A4 activity ð%Þ ¼ 100þ 2:9826 GA� 0:0741 GA2

with R2 ¼ 0:7718 ðEq: 26Þ
These profiles are plotted in figure 4. The use of dextro-

methorphan N-demethylation as a marker of CYP3A4 activity

leads to underestimate of the real increase in CYP3A4 activity

during pregnancy. Use of a more sensitive probe such as mid-

azolam indicated a higher increase in CYP3A4 at term.[38]

A wide range of the increase in CYP3A4 activity (50–100%) at

term has been reported.[280]

The activity of other enzymes such as CYP2A6, CYP2C9,

UGT1A1, UGT1A4 and UGT2B7 have been reported to be

higher during pregnancy than pre-pregnancy levels.[4,17,281]

Others such as CYP2C19 and N-acetyltransferase 2 (NAT2)

have been reported to be lower during pregnancy.[4,17,281] Al-

though direction of the change (increase or decrease) in ex-

pression or activity is identified, little is known about the

magnitude of these alterations.

Interestingly, levels of CYP2D6 and CYP1B1 expression in

leukocytes were not significantly changed in 18 pregnant

women between 35 and 37 weeks of gestation. A trend of in-

crease was observed for CYP1B1 expression, but did not reach

significance, most probably due to the observed very large

variability between those individuals.[282] Well designed in vivo

and in vitro studies are required in this area to quantify the

magnitude of induction or suppression of metabolizing en-

zymes during pregnancy as such changes are likely to have

toxicological and therapeutic implications.

Kidney

During normal healthy pregnancy, kidney dimensions in-

crease by approximately 1 cm, and kidney volume increases by

as much as 30%.[283,284] No information could be retrieved re-
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garding any changes in kidney composition, enzyme and

transporter expression during pregnancy in humans.

There aremany physiological parameters that change during

pregnancy in the urinary system such as the increasing renal

blood supply, glomerular filtration rate (GFR) and creatinine

clearance (CLCR). Filtration fraction was significantly reduced

during early pregnancy but rose to a value equivalent to the pre-

pregnancy level during the third trimester.[103] Systemic vaso-

dilation occurs during early pregnancy, which is probably

mediated by progesterone and relaxin.[285,286] The renal col-

lecting system becomes more dilated as early as the first tri-

mester, leading to hydroureteronephrosis and reverts to normal

by 6 weeks postpartum.[287,288]

Glomerular Filtration Rate

The GFR, which describes the flow rate of filtered fluid

through the nephrons, is one of the main physiological para-

meters of renal function. The GFR can be determined by in-

jecting inulin into the plasma. Since inulin is neither reabsorbed

nor secreted by the kidney after glomerular filtration, its rate of

excretion is directly proportional to the rate of filtration of

water and solutes across the glomerular filter. Available data

show that GFR is raised throughout pregnancy and falls in late
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Fig. 3. Percentage changes in cytochrome P450 enzymes from the original

uncorrected data published by Tracy et al.[102] (no correction is needed for

CYP1A2 activity). CYP= cytochrome P450.

Table II. Observed impact of maternal changes in metabolizing enzymes on drug pharmacokinetics

Metabolizing

enzymes

Enzymatic changes during pregnancy

[mediated by]

Controlling hormone Observed pharmacokinetic consequences

CYPs k mRNA expression level of CYP1A2

[AhR]

m Estradiol k CL of CYP1A2 substrates:

Caffeine[257-259]

Theophylline[54,90,260]

m mRNA expression level of CYP2A6

[ER (and PXR) activation]

m Estradiol m CL of CYP2A6 substrates:

Nicotine[261]

m CYP2C9 expression

[CAR and PXR]

Unknown m CL of CYP2C9 substrates:

Phenytoin[262,263]

Glibenclamide (glyburide)[264]

k CYP2C19 expression

[CAR]

Unknown k CL of CYP2C19 substrates:

Proguanil[265,266]

m CYP2D6 expression Unknown m CL of CYP2D6 substrates:

Metoprolol[250-252]

Dextromethorphan[102]

Fluoxetine[267]

Citalopram[268]

Clonidine[269]

m mRNA expression level of CYP3A4

[CAR (and PXR) activation]

m Estradiol m CL of CYP3A4 substrates:

Midazolam[38,270]

Nifedipine[271]

Methadone[272,273]

UGTs m UGT1A1 expression

[PXR activation]

m Progesterone m CL of UGT1A1 substrates:

Labetalol[274]

m UGT1A4 expression

[ERa activation]

m Estradiol m CL of UGT1A4 substrates:

Lamotrigine[275-277]

AhR= aryl hydrocarbon receptor (modified from[2,4,17,256]); CAR= constitutive androstane receptor; CL = clearance; CYP= cytochrome P450; ER = estrogens
receptor; mRNA=messenger RNA; PXR= pregnane X receptor; TBW= total body water; UGT= uridine diphosphate glucuronosyltransferase; k indicates

decreased; m indicates increased.
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pregnancy. This increase in GFR with plasma volume expan-

sion can increase the clearance of renally excreted drugs during

pregnancy as in the case of atenolol.[289]

Available data for GFR measured by inulin clearance in

healthy pregnant women are listed in table 15 of the SDC.Ameta-

analysis of the collected data showed an increase in the average

level of GFR (mL/min) [mean– SD (CV)], from 114 – 28 (25%)

in pre-pregnant women to 136 – 32 (23%), 156 – 26 (16%),

160 – 26 (16%) and 156 – 42 (27%) at 10, 16, 26 and 36 weeks of

gestation, respectively. Equation 27 can be used to describe the

changes in GFR during pregnancy:

GFR ðmL=minÞ ¼ 114þ 3:2367 GA� 0:0572 GA2

with R2 ¼ 0:9712 ðEq: 27Þ
A plot of GFR at different gestational weeks is given in the

SDC.

Creatinine Clearance

CLCR is commonly used as a measure of GFR. However,

because creatinine is also actively secreted by renal tubules to a

small extent, CLCR may overestimate actual GFR. Available

data for CLCR during pregnancy are listed in table 16 of the

SDC. Data analysis showed an enhanced CLCR during preg-

nancy in line with inulin clearance. CLCR (mL/min) [mean – SD
(CV)], increases fromapre-pregnancy value of 98.3– 14.4 (15%) to

126– 20 (16%), 155– 28 (18%), 152– 39 (25%) and 124– 34 (28%)

at 12, 26, 33 and 37 weeks of gestation, respectively. Equation 28

can be used to describe the change in CLCR during normal

pregnancy:

CLCRðmL=minÞ ¼ 98:3þ 3:9107 GA� 0:0789 GA2

with R2 ¼ 0:819 ðEq: 28Þ

A plot of CLCR at different gestational weeks is given in the

SDC.

Serum Creatinine Level

The creatinine level in plasma is a balance between the kid-

ney function and the production rate of creatinine from

breakdown of creatine inmuscle. As a consequence of increased

CLCR during the gestational period, plasma levels of creatinine

are lower than pre-pregnancy levels as muscle mass does not

change substantially. Collected data for serum creatinine dur-

ing pregnancy are presented in table 17 of the SDC. Serum

creatinine (mL/dL) [mean – SD (CV)], decreases from the pre-

pregnancy level of 0.80 – 0.11 (13%) to 0.69 – 0.09 (13%),

0.64 – 0.08 (12%), 0.67 – 0.08 (12%) and 0.66 – 0.14 (21%) at 18,

15, 34 and 37 weeks of gestation, respectively. Equation 29 can

be used to describe the changes in serum creatinine during

normal pregnancy:

Serum creatinine ðmg=dLÞ ¼ 0:8� 0:0147 GAþ 0:0003 GA2

with R2 ¼ 0:9543 ðEq: 29Þ
A plot of the serum creatinine level at different gestational

weeks is given in the SDC.

Effective Renal Plasma Flow

Effective renal plasma flow (ERPF) is measured via para-

aminohippuric acid clearance. ERPF is an indirect measure-

ment of effective renal blood flow (ERBF). Collected data for

ERPF are given in table 18 of the SDC. Data analysis showed

that the ERPF increased during early pregnancy but fell to-

wards term. ERPF increased from a mean – SD [L/h (CV)] pre-

pregnancy value of 32.3 – 6.4 (20%) to 44.5 – 6.1 (14%), 48.4 –
8.8 (18%), 47.8 – 12.5 (26%) and 42.3 – 11.2 (27%) at 7, 16, 26

and 36 weeks of gestation, respectively. It peaks during the

second trimester around 20–25 weeks of gestation with a value

of 50L/h. Equation 30 can be used to describe the change in

ERPF during pregnancy:

ERPF ðL=hÞ ¼ 32:3þ 1:6576 GA� 0:0389 GA2

with R2 ¼ 0:947 ðEq: 30Þ
A plot of ERPF at different gestational weeks is given in the

SDC.

Effective Renal Blood Flow

Limited data have been found on the change of the ERBF

during pregnancy and in 1991 de Swiet[6] published a graph of

average values showing an increase of the renal blood flow from

about 47L/h pre-pregnancy to 65, 77, 73, 69 and 54L/h at 10,

15, 20, 30 and 40 weeks of gestation, respectively.
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380 Abduljalil et al.

Adis ª 2012 Springer International Publishing AG. All rights reserved. Clin Pharmacokinet 2012; 51 (6)



Here, in this analysis, the ERBF data for each gestational

stage of pregnancy were calculated from ERPF assuming the

same distribution as for ERPF and by correcting the data for

mean haematocrit values at the respective gestational week

using equation 31:

ERBF¼ERPF=ð1�HctÞ (Eq: 31Þ
where Hct is haematocrit. Calculation of ERBF resulted in a

trend similar to that observed for the ERPF, showing that

ERBF (L/h) increases from a pre-pregnancy value, mean – SD
(CV), of 53.1 – 10.4 (20%) to 72.7 – 9.9 (14%), 77.9 – 14.0 (18%),

75.1 – 19.7 (26%) and 64.4 – 17.1 (27%) at 7, 16, 26 and 36weeks

of gestation, respectively.

Although the ERBF can be calculated for modelling pur-

poses by using ERPF and applying the corresponding haema-

tocrit value to the gestational week, the following equation

(equation 32) can also be used to describe the change in ERPF

as a function of gestational age during pregnancy:

ERBF ðL=hÞ ¼ 53þ 2:6616 GA� 0:0661 GA2

with R2 ¼ 0:9344 ðEq: 32Þ
A plot of ERBF at different gestational weeks is given in the

SDC.

Brain

Brain Mass

In a recent study, brain size was measured in nine healthy

women using three-dimensional (3D) magnetic resonance im-

aging (MRI)[290] before and after delivery. Interestingly, the

study found that brain size is reduced during pregnancy, with a

maximal reduction at term, with the brain returning to its ori-

ginal size by 6 months after delivery (see table 19 of the SDC).

The ventricular system measured included both lateral ven-

tricles and the third ventricle but not the aqueduct or the fourth

ventricle. The ventricular size showed a corresponding increase

in size during pregnancy and a decrease in size after delivery. It

is difficult at present to draw conclusions regarding these pa-

rameters based on this study, and more data are required to

support this evidence.

Cerebral Blood Flow

During pregnancy, maternal cerebral blood flow (CBF),

measured by the Fick principle with nitrous oxide,[291] was re-

ported to be similar to that found in non-pregnant women.

However, recently, Nevo et al.[117] assessed CBF by measuring

blood flow volume in the internal carotid artery by dual-beam

angle-independent digital Doppler ultrasound.[117] They found

that CBF gradually increased during normal pregnancy (see

table 20 of the SDC). The following equations can be used to

describe the increase in cerebral (equation 33) and internal

carotid artery (ICA) [equation 34] blood flow to the brain

during pregnancy:

CBF ðL=h=100 gÞ ¼ 2:53þ 0:0167 GA

with R2 ¼ 0:9923 ðEq: 33Þ

ICA blood flow ðL=hÞ ¼ 17:64þ 0:1513 GA

with R2 ¼ 0:9907 ðEq: 34Þ

Plots of cerebral and ICA blood flow at different gestational

weeks are given in the SDC.

Uterus

During pregnancy, the uterus undergoes substantial mor-

phological and physiological changes to accommodate and

protect the developing fetus. The weight of the uterus increases

by 10–20 times during pregnancy. With no difference attributable

to the stage of gestation, water and blood constitute 82.3% and

8% of the uterus weight.[118] More recently, following analysis of

data obtained on 3D volume using uterine ultrasonography, it

has been shown that the normal uterine volume varies with

gravidity and parity.[292] Uterine volume (cm3) increased from

55.3 – 25.7 (n = 91) to 66.5 – 29.3 (n = 38) and 103.2 – 33 (n = 81)
in nulli-, primi- and multi-gravid women, respectively. On the

other hand, uterine volume increased from 56.5– 26.3 (n= 112)
to 81.7– 36 (n= 29) and 104.5– 32 (n = 69) cm3 in nulli-, primi-

and multi-parous women, respectively. Unfortunately, these

results were not given in terms of how the uterine volume

changed along the pregnancy period, as reliable information

could not be found about the menstrual cycle from most of the

women in this study.

Uterine Mass

Pregnancy results in a 10-fold increase in uterine wet weight

and this value increases with the number of previous preg-

nancies.[119,120] The mean wet mass of the non-pregnant uterus

varies from about 44 g in the nullipara to over 110 g at parity 5

or over.[119] Hence, each successive pregnancy alters the base-

line value for the pre-pregnancy or ‘normal’ state, leading to an

increase in the baseline variability. A value of 80 g was reported

for a reference adult female.[293] Blood constitutes about 8% of

the weight of the uterus.[118] The available data are given in

table 21 of the SDC, which shows a gap of information for

uterine weight, particularly between 20 and 35 weeks of preg-

nancy; however, a weight gain are assumed during this period.
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Equation 35 best fits the available data:

Weight of the uterus ðgÞ ¼ 80þ 8:2931 GAþ 0:3546 GA2

with R2 ¼ 0:9956 ðEq: 35Þ
A plot of uterine mass at different gestational weeks is given

in the SDC.

Uterine Blood Flow

Previous studies have shown that the uterus receives about

0.5%[65] of cardiac output in pre-pregnant women. This in-

creases during pregnancy to 3.5% at early pregnancy,[122] 4.2%
at 13 weeks of gestation,[65] 5.6% at 22 weeks of pregnancy[121]

and 12% at late pregnancy.[121,122] Collected data about uterine

blood flow during pregnancy are presented in table 22 of the

SDC. The observed variability between studies is due to dif-

ferences in the methodology, mainly positioning and time,

site of sampling, the techniques and analytical algorithm used,

and the differences between individual characteristics. For the

purpose of the current data analysis, when a study measured

uterine blood flow at one side of the common trunk, the other

side is assumed to be the same.

Data analysis showed that themean – SD (CV) uterine blood

flow (L/h) increases from a pre-pregnancy value of 1.71 – 0.85
(52%) to 17.5 – 10 (57%), 28.5 – 11.5 (40%), 44.4 – 15 (33%) and

49.1 – 14 (29%) at 10, 22, 30 and 38 weeks of gestation, re-

spectively. Equation 36 can be used to describe the longitudinal

increase of uterine blood flow during pregnancy:

UBF ðL=hÞ ¼ 1:71þ 0:2068 GAþ 0:0841 GA2 � 0:0015 GA3

with R2 ¼ 0:9905 ðEq: 36Þ
A plot of uterine blood flow at different gestational weeks is

given in the SDC.

Mammary Glands

Mass

As for many other parameters, the mass of mammary glands

in non-pregnant women is very variable.[132,294-296] Variations

in breast volume of up to 36% were found with weekly ultra-

sonic measurements during the course of seven normal men-

strual cycles.[297] Such variability in the baseline makes it

difficult to derive a common picture about the increase due to

pregnancy from the cross-section studied. Using a computer-

ized breast measurement technique, a wide range of 600–

1840mL has been reported for both breasts in eight women

before conception.[132] The absolute increase (mean –SD) was

approximately 145 – 69mLof the breast volume (n = 13 breasts)
at the end of pregnancy.[132] In another study, 10 of 11 left

breasts measured for their volumes during pregnancy using a

water displacement technique exhibited volume increases of

between 60 and 480mL, while the volume of one breast de-

creased by 20mL.[133] It should be pointed out that this indirect

measurement is not precise and is influenced by the individual’s

position.[133] Data obtained using a water displacement tech-

nique were excluded in our analysis. Advanced techniques such

as 3D scan andMRI are now available by which breast volume

can be measured more accurately and precisely to guarantee

objective and exact recording.[134,135] However, although these

methods have been used to describe breast volume in non-

pregnant women, no study could be found using these tech-

niques in pregnancy. Collected data are given in table 23 of the

SDC. Equation 37 can be used to describe the longitudinal

increase of total volume of both breasts during pregnancy:

Breasts volume ðmLÞ ¼ 985þ 14:244 GA� 0:1869 GA2

with R2 ¼ 0:9684 ðEq: 37Þ
A plot of the volume of mammary glands at different ge-

stational weeks is given in the SDC.

Blood Flow

Early studies measured mammary blood flow indirectly during

pregnancy by means of skin temperature increase, as a measure of

blood flow increases to the gland.[298] Burd et al.[299] found that

breast skin temperature rose by 1�C from week 0 to 20 and was

then stable until day 1 postpartum when it rose further. No esti-

mate of changes in relative blood flowwasmade with thismethod.

Thoresen andWesche[136] used a pulsed Doppler ultrasound

velocity meter to measure blood velocities in the mammary

branch of the right lateral thoracic artery in one subject

throughout pregnancy and postpartum. They found that the

blood velocity in the breast artery was 0.01m/s before preg-

nancy and increased 2.5-fold from about 0.07 to 0.16m/s at the
12th and 25th week of pregnancy and then remained steady

until partus. The study also reported a dilation of breast arteries

of up to 40% during pregnancy. Another study[300] demon-

strated a continuous increase in the mean blood flow velocity in

the breast with gestational age from a pre-pregnancy value of

about 0.9 kHz to about 1.4 kHz at the 11th week and 2.5 kHz at

the 28th week of gestation.Most of the increase was reported to

be before the end of the second trimester of pregnancy, after

which it tended towards a plateau until the pregnancy was al-

most full term. Unfortunately, the data were from one woman

only but both breasts were studied. It should be noted that in

both studies, only figures were given and the numbers given

above were extracted (see the Methods section).

Although there is some evidence that mammary gland blood

flow increases during pregnancy, no reliable data could be
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recovered that could conclude that the increase is a function of

the gestational time. Consequently, most of our knowledge is

based upon very limited data from case studies.

Other Changes

There are many changes in other maternal tissues during

pregnancy and these are described below; most have little data

describing them and many have no place in the current PBPK

models.

Respiration

Pregnancy is associated with major mechanical and bio-

chemical changes in the respiratory system.[301] The gradual

enlargement of the uterus leads to changes in the abdominal size

and shape, shifting the diaphragm up to 4 cm above its usual

position.[302,303] The thoracic cage circumference increases by

5–7 cm during pregnancy. These changes begin at the end of the

first trimester and continue throughout the rest of gestation,

reaching a peak at week 37.[302,304] The most pronounced

changes in the pregnant respiratory system include the increase

in tidal volume from 450 to 700mL, progressive decrease

in respiratory reserve volume from 700 to 550mL and decrease

in the residual volume from 1000 to 800mL. The inspiration

capacity increases from 2500mL in non-pregnant women to

2750mL during pregnancy.[305,306] Inspiratory reserve volume,

vital capacity and total lung capacity remain relatively un-

changed.[302,306] Ventilation increased from a median of 9.4L/min

in the pre-pregnancy state to 10.5 L/min by 8–11weeks and then

slowly increased to 12.6 L/min in late pregnancy.[307] The hy-

perventilation of pregnancy has been attributed primarily to a

progesterone effect.[303,308]

Oxygen consumption at rest varies between 249 and

331mL/min in pregnant women and between 191 and

254mL/min in non-pregnant women; it increases during preg-

nancy by 37 (range 30–40) mL/min[307,309-312] to meet the in-

creasing metabolic demands during pregnancy. This increase in

consumption is accounted for by (i) the needs of the fetus

(12mL/min); (ii) the placenta (4mL/min); (iii) increased mater-

nal cardiac output (7mL/min); (iv) ventilation (2mL/min);

(v) the kidneys (7mL/min); and (vi) extra breast and uterine

tissue (5mL/min).[313] The mean –SD basal metabolic rate in-

creases from pregravid value of 5430 – 660 kJ/24 h to 5570 –
640, 5740 – 680, 6860 – 680 and 7180 – 1180 kJ/24 h at 14, 20, 32

and 35 weeks of gestation, respectively.[37,314]

Pulmonary vascular resistance significantly decreases (by

about 34%) from 119 – 47 dyne�cm/sec5 in pre-pregnant

women to 78 – 22 dyne�cm/sec5 during the 36th–38th week of

pregnancy.[61] Mean pulmonary artery pressure is unchanged

during pregnancy.[61]

Sex Hormones

In non-pregnant women, the ovary is the main source of sex

hormones, progesterone and estrogens. Pregnancy is characterized

by about 100-fold elevated levels of circulating estrogens and

progesterone, which increase with advancing gestational age.

By the end of the first trimester, the feto-placental unit becomes

the major site of steroid hormone production and secretion

during pregnancy. Progesterone protects the embryo by pre-

venting hypoxia and by aiding the delivery of both oxygen and

glucose. Between the 7th and 9th gestational week, progester-

one production shifts from the corpus luteum to the pla-

centa.[315,316] Estrogens levels also increase during pregnancy,

including estradiol, estrone, estriol and estetrol.[315] Among

these, only estradiol is reported here. The levels of pregnancy

estradiol are significantly and strongly correlated in successive

pregnancies of the same woman.[39,317] The increasing estradiol

level during pregnancy has been linked to the many changes

that occur throughout gestational time, such as in water and

sodium retention resulting in an expanded plasma volume and

up- and down-regulation of metabolizing enzymes. In addition

to the effect of previous conception on sex hormone con-

centration, plasma levels of both progesterone and estradiol

vary within each healthy woman, with the lowest level dur-

ing the follicular phase and the highest level during the

luteal phase.[315,318,319] For these reasons, it is difficult to justify

which concentration should be used as a basal value; there-

fore, reported values from the three phases regardless of

parity were pooled and the mean was selected as a baseline for

the gestational time-dependent profile. Collected studies for

estradiol (table 24) and progesterone (table 25) are given in

the SDC.

The average estradiol level (ng/mL) [mean –SD (CV)] in-

creases during pregnancy from the pre-pregnancy value of

0.062– 0.058 (94%) to 0.51– 0.45 (90%), 3.45– 1.75 (52%), 6.60–
3.86 (59%), 5.86 – 5.59 (95%), 11.0 – 5.51 (50%), 17.2 – 9.3 (54)

and 15.7 – 9.2 at 8, 16, 21, 24, 27, 36 and 39 gestational weeks,

respectively.

Average progesterone level (ng/mL) [mean– SD (CV)] in-

creases during pregnancy from the pre-pregnancy value of

1.42 – 3.34 (234%) to 24.63 – 13.7 (53%), 39.66 – 13.43 (34%),

84.72 – 35.06 (41%), 89.83 – 29.0 (32%), 142.7 – 40 (28%) and

190.8 – 47.3 (22%) at 8, 16, 24, 30, 33 and 38 gestational weeks,

respectively.

The following equations can be used to describe the longi-

tudinal increase of female estradiol (equation 38) and proges-
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terone (equation 39) during pregnancy:

Estradiol ðng=mLÞ ¼ 0:06þ 0:0558 GAþ 0:0103 GA2

with R2 ¼ 0:9634 ðEq: 38Þ

Progesterone ðng=mLÞ ¼ 1:42þ 3:446 GA� 0:1334 GA2

þ 0:0046 GA3 with R2 ¼ 0:9816 ðEq: 39Þ
Plots of plasma estradiol and progesterone levels at different

gestational weeks are given in the SDC.

Thyroid

Thyroid volume did not change during the follicular (8.8 –
3.2mL) and luteal (9.7 – 3.1mL) phase in 11 healthy non-

pregnantwomen.[320]A clinically detectable up to 3-fold increase in

thyroid size has been found in iodine-deficient areas, causing

what is called ‘goiter of pregnancy’.[321,322]

In iodine-replete areas, thyroid volume, measured by ultra-

sonography, did not change in ten healthy women during

pregnancy. The volume readings (mean – SD) were 10.3 – 5.1,
10.6 – 4.4, 9.6 – 3.8 and 9.4 – 3.0mL before pregnancy and

during the first, second and third trimesters, respectively.[320]

Thyroid volume did not change in pregnant women living in

marginally iodine-deficient areas when they administered io-

dine supplementation for the prevention of goiter.[323] No in-

formation could be found regarding thyroid blood flow during

normal pregnancy. Serum concentrations of free triiodothy-

ronine and free tetraiodothyronine decline slightly during

pregnancy.[37,320]

Peripheral Blood Flow

Skin changes are common during pregnancy, including

vascular and haematological changes, blood flow, temperature,

thickness, pigmentation, alterations in glandular activity, and

mucous membrane changes.[324-326] There is abundant clinical

evidence that blood flow in the skin is increased during preg-

nancy, particularly in the extremities. Increased blood flow to

maternal skin allows dissipation of the heat generated by the

fetus.[327] This can explain the common phenomena that preg-

nant women complain of the heat and feel warm with clammy

hands, most probably due to the increased metabolic rate dur-

ing gestation.[319,328] Most blood flow measurements in the

extremities have been made non-invasively using different

techniques including plethysmographic,[327,329] photoelectric

flow recorder[330] andDoppler flowmetry.[331] Available studies

that gave the blood flow reading in terms of volume/time are

given in table 26 of the SDC. Regardless of high variability in

the obtained measurements, it is obvious from these data that

the blood flow to the hand is 3- to 7-fold higher at term than the

pre-pregnancy value. A small increase in the calf, arm and

forearm blood flow during pregnancy can be visualized from

the collected data.

Products of Pregnancy

The products of conception (placenta, fetus, amniotic fluid)

comprise approximately 35% of the total gestational weight

gain[332] and their longitudinal changes are considered below as

part of PBPK information to model kinetics of xenobiotics

during various stages of pregnancy.

Intrauterine Volume

During the first 20 weeks of pregnancy, the volume of the

amniotic fluid is the major component of intrauterine vol-

ume.[319] All intrauterine components grow rapidly during the

second trimester to reach about 2100 – 500mL by the end of the

second trimester.[149] From the beginning of the third trimester

to term, fetal growth is the major contributor to increased in-

trauterine volume. Collected information about total intrauterine

volume is given in table 27 of the SDC. There is clearly a gap in

these data sets during the first trimester. Due to lack of cer-

tainty, an interpolation was done between time zero and the

time of the first observation at 13 gestational weeks. A lower

growth rate during this early timewas assumed.Decomposition

of the intrauterine volume profile to its sub-components is

covered later in this article. The change in intrauterine (IU)

volume can be described by equation 40:

IU volume ðmLÞ ¼ 0:0� 0:4758 GAþ 0:5174 GA2 þ
0:1424 GA3 � 0:0021 GA4

with R2 ¼ 0:9958 ðEq: 40Þ

A plot of intrauterine volumes at different gestational weeks

is given in the SDC.

Fetus

Accurate predictions of fetal size and age have an important

place in clinical management during antenatal care. The fetus in

humans is called an embryo until about 8 weeks after fertili-

zation, after which it is called a fetus. Before the embryo is

identified, the gestational sac is the only available intrauterine

structure that can be used to determine if an intrauterine

pregnancy exists.[318,333] Using ultrasonography, the gesta-

tional sac can be visualized as early as 4.5 weeks. The growth of

the gestational sac during embryonic life is given in table 28 of

the SDC. The volume growth during the first month of preg-

nancy is very slow and becomes faster during the thirdmonth of
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gestation. During 8–12 gestational weeks, water constitutes

92% of the wet weight.[155]

The mean – SD (CV) gestational sac volume (GSV) [mL] is

about 14 – 13 (90%), 38 – 25 (66%), 102 – 43 (%) and 144 – 27
(19%) at 6, 8, 10 and 13.5 weeks of pregnancy, respectively. The

variability is higher at lower sac volumes, most probably due to

the limitations of the methodology. Based on these data, the

GSV can be described by equation 41:

GSV ðmLÞ ¼ 0:0þ 3:9351 GA� 2:373 GA2 þ 0:4176 GA3

� 0:0152 GA4 with R2 ¼ 0:927 ðEq: 41Þ
A plot of GSV at different gestational weeks is given in the

SDC.

At term the mean fetal density, determined by air displace-

ment, is about 1.030 – 0.030 g/mL.[334] The fetal density is not a

static measurement and varies during the gestational age as the

body composition changes with factors such as fetal fat, water,

muscles and bone contents.[335] Since these covariates were not

reported in each study, and because no single number can be

used throughout the gestational time, a value of 1 g/mL was

assumed here to get the volume from the weight in this paper.

Collected data for fetal growth are given in table 29 of the

SDC. Meta-analysis of these data sets showed that the fetus

grows significantly during the second and third trimester. The

mean–SD (CV) fetal volume (mL) increases from0.5– 0.14 (28%)

to 9.4– 2.9 (31%), 76– 25 (33%), 292– 70 (24%), 728– 176 (24%),

1513– 291 (19%), 2547– 439 (17%) and 3439– 439 (13%) at 6, 10,

16, 20, 25, 30, 35 and 40 weeks of conception, respectively.

The use of polynominal equations did not describe the data

well. The sixth-order polynomial equation performed well from

the 7th to 25th week of gestation, but not on both ends. The

fifth-order polynomial equation predicted quite well from the

26th week to term, but its prediction during the early growth

was worse (2-fold overprediction at the 12th week and more

than 20-fold underprediction in the negative field). The fourth-

order polynomial equation massively overpredicted fetal vol-

ume during the first trimester.

Gompertz and logistic functions were checked for their ap-

propriateness as they have been widely cited and used to des-

cribe fetal growth.[25,336,337] Gompertz function was reported

to be superior to both polynominal and logistic functions to

describe human fetal growth data.[337] These functions were

considered here and their parameters were solved using the

Microsoft Excel� Solver 2007 to solve its parameters. The

Gompertz function gave the best fit among these functions

(figure 5); while the logistic function showed good description

of the data from 18th week of gestation to term, it failed to

describe the early growth during the first trimester. Actually,

more accurate description and interpretation of this data re-

quires fitting a model that takes into account variables such as

fetal sex, maternal parity, height, weight, gestational age and

other sources of variability, mainly intra-individual and inter-

studies variability terms. The impacts of such covariates on

fetal weight have been reported during pregnancy.[156,157,338-340]

For the current description, the Gompertz equation (equa-

tion 42) can be used to describe the longitudinal increase of fetal

volume during pregnancy.

Fetal volume ðmLÞ ¼

0:01 exp
0:955

0:0702

� �
ð1� exp ð� 0:0702 GAÞÞ

 �
ðEq: 42Þ

A plot of mean fetal volumes with SDs at different gesta-

tional weeks is given in the SDC.

Placenta

A major role of the placenta is to transmit nutrient sub-

stances to the fetus, thereby providing essential regulation of

fetal metabolism and growth. In addition to its nutritional

function, it has an endocrine function as it becomes the main

source of progesterone during the second and third trimes-

ters[316] and regulates fetal exposure to maternal intake of

xenobiotics via an anatomical and physiological barrier, the

‘blood-placenta barrier’. This barrier consists of a single layer

of syncytiotrophoblasts and fetal capillary endothelium,[341-343]

both of which express a wide range of proteins, mainly trans-

porters and metabolizing enzymes, that determine the level of

fetal exposure to maternal intake.[344-349]

Typically, the placenta has a discoid shape. It can be iden-

tified as early as 6 weeks gestation by transvaginal evaluation

and by 10 weeks gestation by transabdominal evaluation as
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a rim around the gestational sac.[350] The average placenta

volume/weight ratio is 1.048 – 0.006mL/g determined by the

water displacement method in 30 normal placentas.[171] Of its

total wet weight, a human placenta at term contains about

84.6 – 1.3% water (n = 54), 12 – 0.88% protein (n = 54), 1.3 –
0.32% collagen (n = 16), 1.0 – 0.4% ash (n = 16) and 0.4 – 0.07%
lipid (n = 12).[351] In 46 normal term placentas, the specific

gravity was found to be 0.995.[352] Decomposition of a typical

wet placenta of 658 g at term is 200 g cord, membranes and

drainable blood, 320 g water, 100 g trapped blood, 13 g inert

protein, 22 g metabolic protein and 3 g non-protein solids.[353]

The volume of the placenta is continuously increasing dur-

ing pregnancy, with considerable variability.[171,172] At birth

the cord and both the cord and membrane constitute about 5%
and 16.3% of the total untrimmed placental weight, respect-

ively[354] and receive about 33% of the total feto-placental

blood circuit.[355] Reported placenta size for intrauterine growth-

restricted, large and small for gestational age fetuses were ex-

cluded here. Therefore, placental weight reported for normal

and appropriate for gestational age fetuses was included in this

study. These data are shown in table 30 of the SDC.

Data analysis showed that the volume of the placenta (mL)

increases during pregnancy with a mean value –SD (CV) of

134 – 58 (44%), 254 – 62 (24%), 460 – 173 (38%), 593 – 90 (15%)

and 659 – 103 (16%) at 14, 20, 30, 36 and 40 weeks of concep-

tion, respectively. Equation 43 can be used to describe the

longitudinal increase of placenta volume during pregnancy:

Placenta volume ðmLÞ ¼ 0:0� 0:716 GAþ 0:9149 GA2

� 0:0122 GA3 with R2 ¼ 0:9952 ðEq: 43Þ
A plot of placenta volume at different gestational weeks is

given in the SDC.

Amniotic Fluid Volume

Amniotic fluid volume during pregnancy is a dynamic pro-

cess. In early gestation, the amniotic fluid is likely formed by

active transport by the amnion into the amniotic space and

water is allowed to flow passively.[356] Fetal urine contributes to

the volume of amniotic fluid from 11 weeks of gestation[158,159,357]

and becomes the major source of amniotic fluid production in

the second half of the pregnancy. The fetal urine production

rates were found to be about 7.5, 22.2, 56.1 and 125.1mL/h at

25, 30, 35 and 40 gestational weeks, respectively.[358] Fetal se-

cretion from the lungs and from the oral-nasal cavity con-

tributes to the overall amniotic fluid volume.[356] On the other

hand, fetal swallowing plays a part in the elimination of amnii

as early as 11 weeks gestation and becomes the major source of

elimination at the second half of gestation[356,359] as it is prob-

ably not transferred across the skin in a significant amount in

the third trimester.[159]

The specific gravity of amniotic fluid removed at 14 weeks’

gestation was determined to be 1.007.[160] The composition of

amniotic fluid is similar to that of the fetal extracellular fluid

before 20 weeks of gestation and its volume is closely related to

the fetal weight. After 20–22 weeks of gestation fetal skin be-

comes keratinized and offers no impediment to the movement

of fluid.[159]

Earlier studies that measured amniotic fluid volume in the

first half of gestation have beenmade directly on the contents of

the amniotic sac after therapeutic hysterotomy or hyster-

ectomy.[180,181] During the second half of gestation or in preg-

nancies intended to be continued, a dye dilution method was

used instead of a direct method.[360] More recently the volume

of amniotic fluid has been measured by ultrasonography. Ul-

trasound evaluation of amniotic fluid volume can never re-

present a true ‘quantitative’ method and its actual reliability has

not consistently been proved by scientific evidence.[361]

Collected studies reporting amniotic fluid volumes from

normal outcomes are summarized in table 31 of the SDC.

Unfortunately, only limited data could be found between 21

and 33 weeks of gestation. Analysis of the collected data

showed that the mean –SD (CV) amniotic fluid volume (mL)

increases from 41 – 15 (36%) to 200 – 64 (32%), 359 – 106 (30%),

823 – 264 (32%) and 758 – 132 (18%) at 9, 15, 20, 34 and

40 weeks of gestation, respectively. Equation 44 can be used

to describe the longitudinal increase of amniotic fluid (AF)

volume during pregnancy:

AF volume ðmLÞ ¼ 0þ 1:9648 GA� 1:2056 GA2 þ 0:2064 GA3

� 0:0061 GA4 þ 0:00005 GA5 with R2 ¼ 0:9823 ðEq: 44Þ
A plot of amniotic fluid volume at different gestational

weeks is given in the SDC.

Discussion

The PBPK models offer a systematic approach to assessing

the exposure of pregnant women to various xenobiotics in the

different stages of pregnancy and to discern potential differ-

ences compared with non-pregnant women. However, such

models require substantial data gathering related to the system

(human body) to be combined with compound-related infor-

mation on the drug or xenobiotic prior to PBPK model-

ling being conducted. To our knowledge, no unique source

is currently available to offer the data required for PBPK

models during pregnancy and this shortcoming may lead

to unnecessary repetition of the data gathering exercise.
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Moreover, research reports describing the longitudinal changes

of relevant parameters are limited.

This report summarizes available data in peer-reviewed lit-

erature for many physiological changes in healthy, pre-

dominantly Caucasian, pregnant populations in terms of how

they change from preconception or early pregnancy to the end

of pregnancy. This database can be analysed to derive many

parameters (point estimates and distributions), which are re-

quired to develop deterministic or probabilistic PBPK models

for this population. The developed PBPK models can then be

used for pharmacological and toxicological studies, including

the dose (exposure)-response relationship, dose adjustment and

risk assessment. Moreover, a robust PBPK model based on

correlated Monte Carlo simulation can be built when appro-

priate relationships between the various parameters are estab-

lished using relevant statistical tools.

The starting point for gathering systems data for PBPK

would be the body size and its composition. Measurement of

changes in body composition during pregnancy is confounding

mainly due to the lack of appropriate baseline data and meth-

odology. Body composition can change as early as in the first

trimester[35,37,52,319] and ‘baseline’ measurements obtained at

the postpartum period or early in pregnancy may not rep-

resent the pre-pregnancy composition.[35,36,48] Most commonly,

methods used to quantify the changes in pregnant body com-

position are based on different assumptions. For example, the

two-component model in body composition methods[202,362]

assumes that the densities of fat mass and FFM are constant

during pregnancy and known (i.e. FFM is composed of 73%
water, 20% protein and 7% bone mineral).[363] This model was

modified by van Raaij et al.,[202] based on the average changes

in density and composition of the FFM during pregnancy.

Studies that compared two-, three- and four-component mod-

els of estimating body fat mass during pregnancy[48,364] found

that two-component models varied from underestimating fat

mass by 9% to overestimating fat mass by 22% compared with

the four-component model. Three-component models pro-

vided much more accurate fat mass values, within 1% of the

four-component model. The accuracy of these methods is still

questionable andmore validmethods of quantifying fat mass in

individual women during pregnancy are needed.

An additional hurdle to gathering data observed during the

study was the fact that many studies performed their analysis

after pooling the data into three trimesters, at monthly or

10-weekly intervals. Selection of such intervals can introduce

much distortion of the results. For instance, it can mask a peak,

if any, of a parameter within the studied intervals that occurs at

a given gestational point in another publication. In many pa-

pers, authors reported only the mean value of the parameter of

interest without mentioning the variability around it. On the

other hand, many studies reported the results in terms of gra-

phical figures and extracting the data from these may lead to

technical errors.

Despite all the difficulties described above, the current level

of data collection seems sufficient as a starting point for

building pregnancy PBPK models encompassing longitudinal

changes of physiological and biological values with gestational

age. These applications surely require verification for their

performance against field data (clinical observation on phar-

maceutical drugs or opportunistic data on environmental che-

micals). Such models have to be viewed as live models that are

built on a flexible framework that allows new data to be in-

corporated as it becomes available. Based on the current study,

there are a number of areas where data are lacking; in most

cases due to clinical or ethical reasons and lack of appropriate

methodology. This is particularly marked in parameters, which

are related to early fetal growth, regional distribution of ma-

ternal cardiac output to different tissues and tissue composi-

tion (neutral lipid, phospholipids and protein levels), and are

necessary for estimating volume of distribution and xenobiotic

partition coefficients. In addition, less is known about regional

distribution of blood flow to both maternal and fetal organs

during gestation. Although there is some information regarding

the direction of change in the activity of many metabolizing

enzymes during pregnancy, the magnitude of these changes is

not well described. For those enzymes whose activities were

described,most of these datawere uncorrected for the impact of

other factors such as the change in protein binding and renal

function.

We also identified sets of sparse data that come from cross-

sectional studies and at a particular gestational age, where the

cross-validation of methodology between different approaches

is questionable. Application of non-linear mixed effect analysis

to such a set by accounting for different sources of variability is

warranted. In addition to previous limitations, extrapolation of

experimental methods from a pre-pregnant to a pregnant

population needs to be re-assessed.

It is clear that for many parameters there are limited existing

data, such as activity of metabolizing enzymes, uterine mass,

and blood flow to the mammary glands and liver during

pregnancy. The current evaluation of these data was carried out

based on the collected data presented in the SDC tables. Thus,

the provided mean and variability values for poorly described

parameters may not represent the actual mean or variability

in the real situation. Collected data determined the sort/order of
the derived equations and their coefficients. However, the current
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paper provides up-to-date data and reveals gaps in existing

knowledge, identifying areas where further research is required.

At the moment, pregnant women are excluded during clin-

ical studies and most published results stem from retrospective

reports. Unfortunately, longitudinal studies, where the same

subject acts as a control and a test subject, are very limited in

their purpose and sample size. We aimed to provide a com-

prehensive database for a Caucasian pregnant population. The

equations derived were descriptive in terms of how their para-

meters change during pregnancy. In order to develop a mech-

anistic model, multivariate analysis of pregnant covariates,

means and distribution should be carried out and the results

integrated with the model parameters. Such analysis is required

to achieve biological plausibility of the relationship between

physiological parameters, which is not the scope of the current

paper.

This paper also shows the need to understand the molecular

mechanisms that underlie the temporal, physiological, and

anatomical and biochemical adaptations occurring during

pregnancy. In addition to the divergent methodologies that

have been used, the nature of the underlying signalling mole-

cules, how these molecular mechanisms and signals interact, in

what ways these changes are influenced by individual and

population factors, and whether the adaptations observed

during first pregnancy are memorized and affect subsequent

pregnancies can be identified as a hot topics for further in-

vestigation. When we understand how these molecular changes

can affect drug pharmacokinetics more clearly, we will be able

to build more mechanistic pregnancy PBPK models and im-

prove their predictive capabilities.

Conclusion

The changes in kinetics of xenobiotics or drugs during

pregnancy might stem from a highly complex myriad of factors

that influence various compounds in different ways. However,

capturing variations in the system parameters, which include

alterations in body composition, organ functions and biologi-

cal processes, are a common element in any PBPK model. We

have provided a repository of such information and have

shown that various elements of system parameters relevant

to PBPK in pregnancy follow different temporal trajectories of

change with gestational age. The interaction between these

temporal changes during gestation and specific properties of

the exogenous compounds results in time-dependent differ-

ences in kinetics and, consequently, dynamics of effects that

these compounds may exert; with implications for the suscep-

tibility of pregnant women to the effects of these compounds.
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