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Abstract Osteoporosis is a chronic progressive disorder and is regarded as an important worldwide health issue.

The development of novel treatments and the comparison of the effects of novel and existing treatments in

osteoporosis are complicated by the difficulties of establishing drug effects on disease progression, as

reflected in the slowly changing primary biomarker, bone mineral density. In recent years, research has

considerably improved our understanding of the pathophysiology of osteoporosis. Specifically, various

biomarkers have been identified that reflect bone physiology at the cellular level. These biomarkers mirror
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the dynamics of bone formation and degradation on a shorter timescale than bone mineral density as a

composite measure. These markers can therefore, in principle, be used to characterize the underlying reg-

ulatory system and to quantify drug effects in osteoporosis.

Recently, the concept of disease system analysis has been proposed as a novel approach to characterize, in

a strictly quantitative manner, drug effects on disease progression. This approach integrates physiology,

disease progression and drug treatment in a comprehensive mechanism-based model, using dynamic in-

formation on a network of biomarkers. This review focuses on the use of disease system analysis for the

characterization of drug effects on osteoporosis. It is concluded that, although the development of fully

mechanistic disease system models may be practically impossible, parsimonious – but mechanism-based –

disease system models may ultimately be used to adequately predict the long-term effects of drug treatment

on clinical outcomes.

Osteoporosis is a progressive disease, with fractures of the

spine, hip or wrist as primary clinical manifestations. Most

often, osteoporosis is diagnosed only after a fracture, and it is

therefore referred to as a ‘silent’ disease. It is regarded as an

important worldwide health issue because of the associated

morbidity, mortality and costs resulting from a cumulative in-

crease in fracture incidence and fracture risk associated with an

increased life expectancy.[1-6] When considering prevalence,

lifetime risk and socioeconomical impact, osteoporosis is

placed alongside or even above other diseases such as breast

cancer, cardiovascular disease and diabetes mellitus.[1,7,8]

The development of new treatments is challenging, as the

trials needed to establish the prevention and treatment of os-

teoporosis require the inclusion of large numbers of patients

and are long in duration. The former is due to statistical aspects

of establishing antifracture benefit, and the latter is due to the

slow progression of the disease, as reflected in the primary

biomarker – bone mineral density (BMD) – required for re-

gistration. The biomarkers that change more rapidly – bone

turnover markers (BTMs) – are considered secondary end-

points and are therefore not accepted by regulators as surrogate

endpoints.

In the meantime, there is extensive knowledge about the

physiology of bone and the underlying mechanisms of osteo-

porosis. Specifically, biomarkers reflecting different aspects

and levels of bone physiology and the disease are at hand that

enable comprehensive description of bone physiology and os-

teoporosis. Based on biomarker data and conceptual mathe-

matical frameworks in the literature, the investigation of bone

disease can be taken a step further. By combining the in-

formation from different sources within a disease system ana-

lysis (DSA) approach, while accepting that not all processes or

information can or must be included, the observable results

(e.g. marker responses) of the underlying disease system can be

characterized. By identifying and capturing the essential time-

and rate-limiting steps and the regulatory interactions within

the system that can be supported by the available marker data,

the important aspects of bone physiology are preserved. This

perception forms the starting point for development of

mechanism-based models of the disease, which integrate the

pertinent information regarding bone physiology and osteo-

porosis into the description of the effects of current and up-

coming treatments earlier and more adequately.

In this review, we discuss the pertinent information on the

biology of bone physiology, bone disease (osteoporosis) and

(drug) treatment. We emphasize the importance of these com-

ponents in the transition from ‘simple’ models to comprehen-

sive mechanism-based disease progression models utilizing the

recently proposed concept of DSA.[9] In the end, the integration

of these components can lead to an accurate prediction of the

long-term clinical outcome fractures, from short- to medium-

term observations. As there are many multifaceted aspects to

this subject, the various components are discussed, with the

intention being to highlight the wealth of information and to

outline a novel approach to advance the understanding of

osteoporosis and its treatments.

1. Introduction to Bone Physiology

1.1 Bone Structure

The skeletal system represents a major constituent of the

human body and comprises the specialized connective tissues

bone and cartilage. Bone is a dynamic organ, of which the

composition is approximately 30% organic and 70% inorganic.

The organic part, or the extracellular matrix of bone tissue,

primarily holds type I collagen fibres, making up about 90% of

its composition (osteoid matrix), in addition to proteoglycans

and noncollagenous proteins. This combined protein matrix

forms 98%of the organic constituentswithin bone. The remaining
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2% is made up of bone cells, growth factors and cytokines,

which play a vital role in bone homeostasis. The inorganic part

of the bone tissue contains, for the most part, crystals of

hydroxyapatite, an insoluble salt of calcium and phosphorus,

which precipitates on the protein matrix, together forming the

bone tissue.[10-15]

Two types of bone are distinguished, based on their struc-

tural, mechanical and metabolic function: cortical and trabe-

cular. Cortical bone, making up around 80% of the skeleton

by mass, forms the outer shell of bones. It consists of layers of

bone (lamellae), which are organized around central canals in

which blood vessels, nerves, connective tissue and lymphatic

vessels are found (the Haversian system, also referred to as the

osteon). Trabecular bone, representing only 20% of the skeletal

mass but 80% of the bone surface, is found in the distal ends

of long bones, in short bones, in the inner surfaces of flat bones

and in irregular bones (e.g. vertebrae). Trabecular bone consists

of an interconnected structure within which bone marrow is

found.

As cortical bone is dense and compact calcified tissue, it has

a high resistance to bending and torsion, and therefore provides

mechanical strength and protection of vital internal organs and

bone marrow. Furthermore, it forms the basis for muscle at-

tachment, supporting locomotion. Trabecular bone is less

dense and is composed of thin trabeculae forming a robust, 3-D

framework with elastic properties, contributing to mechanical

support, particularly in bones such as the vertebrae. Trabecular

bone, in contrast to cortical bone, has a high turnover rate and

therefore has a major function in metabolic processes by ser-

ving as a reservoir of calcium and phosphate for the main-

tenance of mineral homeostasis. Cortical bone has such

metabolic function only in the situation of severe or prolonged

mineral deficits.[10-15]

1.2 Bone Physiology

1.2.1 Bone Modelling and Remodelling

Bone modelling and remodelling are the main processes by

which bone tissue continuously adapts and renews in reaction

tometabolic and biomechanical stimuli. Bonemodelling relates

to the process of bone growth and adaptation, and controls the

size, structure, quantity and shape of the skeletal structure. In

this modelling state, the processes of resorption and formation

of bone occur at different locations as bone grows and adapts.

During the first two decades of life, it accounts for growth, and

in the adult skeleton, it accounts for the healing of fractured

bone and the increase in bone mass in reaction to biomecha-

nical stress, such as extensive exercise.[13]

Bone remodelling refers to the process of bone renewal. In

this process, new bone formation equals old bone resorption.

Thereby, the action of bone cells is coupled, regulating the

quality and the mechanical integrity of the skeleton during

adult life.[13] The process of bone remodelling is the main

controlling mechanism of calcium and phosphorus homeo-

stasis. The bone cells that are active in remodelling (i.e. os-

teoblasts and osteoclasts) are temporally and spatially coupled,

and closely collaborate within basic multicellular units

(BMUs).[16] Bone modelling differs from remodelling in the

sense that the bone cells responsible for bone formation and

resorption can even be completely uncoupled in their acti-

vity.[17,18] Generally, if the removal of bone exceeds its forma-

tion, this results in the breakdown of bone. On the other hand,

when the formation of bone structurally exceeds its removal,

an increase in the bone mass is observed.

1.2.2 Bone Cells and Remodelling Stages

During a remodelling cycle, the turnover of bone ismanaged by

a sequential process of the bone cells within a BMUunder the con-

trol of various mechanical, systemic and local factors.[10,13,15,19-22]

Osteoclasts are the bone cells responsible for bone removal,

whereas osteoblasts form bone. Figure 1 presents the various

phases during bone remodelling and includes the bone cells in-

volved during the different stages of the remodelling process.

The remodelling cycle begins with activation of a quiescent

bone surface through a cascade of signals to osteoclastic

Lining cells

Haematopoietic
stem cell

Mesenchymal
stem cell

Osteoblastic
stromal cell

Osteoblast
precursor

Osteoclast Osteoblasts

Osteocytes

 

Fig. 1. The bone remodelling cycle within the context of the basic multi-

cellular unit depicted on a trabecular bone surface. Bone lining cells and

osteoblastic stromal cells are involved in the activation phase of the osteo-

clastic cells and the initiation of a remodelling cycle. The arrows depict the

collaborative pathways of the various cells. The osteoclasts remove bone

during the resorption phase and arise from haematopoietic precursor cells.

During the reversal phase, the bone surface is prepared for bone formation.

Osteoclastic cells and regulatory factors signal the mesenchymal precursor

cells to proliferate and differentiate into osteoblasts. These osteoblasts

subsequently form bone matrix and finally become enclosed in bone to de-

velop into osteocytes or transform into bone lining cells. (Adapted from

Raisz,[19] with permission.)
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precursors, which may be mediated by cells of the osteoblastic

lineage. Bone-lining cells disappear from the bone surface, and

haematopoietic precursor cells migrate to the exposed miner-

alized area and form osteoclasts that remove bone. During this

resorption phase, the protein and mineral components of bone

and various local paracrine and autocrine regulatory factors are

released. This phase is followed by a reversal phase in which the

bone surface is prepared for bone formation. Regulatory factors

signal mesenchymal precursor cells to differentiate into osteo-

blasts, which are responsible for the production and maturation

of the osteoid matrix. In this phase, osteoblasts synthesize and

deposit collagen, and the initial mineralization of the formed

osteoid matrix equals this collagen deposition. In a next step, the

production of collagen decreases, and the secondary full miner-

alization of the matrix takes place.[10] In addition, the osteoblasts

produce various regulatory factors, which are partly stored in the

newly created bone for the future, to be released during sub-

sequent remodelling cycles. Behind the osteoclasts that progress

forward and continue the resorption of bone, new osteoblast

teams are recruited to fill the site of resorption. The osteoclasts

therefore consist of cells of different ages, and the successive

groups of osteoblasts that build the bone are of the same age.[23]

The resorption and reversal phases are relatively fast – in the

order of weeks – compared with the slower process of formation,

which can take several months.[10,13,15,19-22]

At the end of the formation phase, osteoblasts (i) enter

apoptosis; (ii) become enclosed in the bone matrix, forming

osteocytes; or (iii) stay on the bone surface to become bone-

lining cells.[10,13,19-22] The osteocytes form a complex network

within bone that probably functions as a mechanosensor, en-

abling a metabolic response to mechanical stimuli, or a lack

thereof, by specifically recruiting osteoclasts to sites that need

modelling or remodelling.[10,13,15,19-22,24]

It should be noted that, although the activation-resorption-

formation cycle is similar for both types of bone, the organization

of the BMU differs between trabecular and cortical bone. In

cortical bone, the front (cutting cone) of the BMU forms a cy-

lindrical canal by digging a tunnel (forward in the Haversian ca-

nal) through the bone, which is followed by osteoblasts that fill

this tunnel (closing cone). For trabecular bone, the BMU pro-

gresses across the trabecular surface by digging a trench rather

than a tunnel, and osteoblasts fill the resorption cavity. It has been

shown that a BMUon a trabecular surface can be regarded as the

lower half of a BMU within cortical bone. In cortical bone, an

osteon is formed; in trabecular bone, a hemi-osteon is formed.The

lifespan of a BMU is about 2–8 months.[10,25] (For an overview of

the BMUand its progression on the trabecular surface or through

cortical bone, see Parfitt.[23]) The remodelling process renews

approximately 10% of bone each year, and the entire skeleton is

renewed in approximately 7–10 years. Trabecular bone is meta-

bolically more active and is remodelled at a higher rate (25% per

year) than cortical bone (3% per year).[26] The higher turnover of

trabecular bone is likely due to the fact that there is a large bone

surface area, which is also in close contact with the bone marrow

in which regulatory factors are present, whereas cortical bone is

located more distantly from these factors.[10,26-29]

1.2.3 Signalling Pathway and Regulation of Remodelling:

Mechanical, Systemic and Local Factors

Cumulative evidence shows that the osteoprotegerin

(OPG)/receptor activator of NF-kB ligand (RANKL)/receptor
activator of NF-kB (RANK) system is the major regulatory

system in which the coordination of osteoclastogenesis and bone

remodelling converges.[15,30-32] Figure 2 gives a schematic re-

presentation of this OPG/RANKL/RANK system. Cells of the

osteoblastic lineage activate a remodelling cycle and initiate os-

teoclastogenesis, although the specific factors responsible for the

activation have not yet been fully elucidated.Osteoblasts produce

macrophage colony-stimulating factor (M-CSF, stimulating the

c-fms receptor on osteoclasts) and bone marrow stromal cells,

and osteoblasts express RANKL (a cytokine of the tumour ne-

crosis factor family) on their surface, which binds to the RANK

receptor on the surface of osteoclastic progenitors and osteoclasts.

M-CSF and RANKL are both essential and sufficient for osteo-

clastogenesis, with RANKL being the primary driver of osteo-

clastogenesis, activation and survival of the osteoclast, and

Inactive
osteoclast

Haematopoietic
stem cell

Cytokines
PTH
Vitamin D
Calcitonin
PGE

Stromal cell/
osteoblast

Osteoclast
progenitor Preosteoclast

Active osteoclast

c-fms
M-CSF

OPG

RANKRANKL

Fig. 2. Osteoclastogenesis as a result of the osteoprotegerin (OPG)/
receptor activator of NF-kB ligand (RANKL)/receptor activator of NF-kB
(RANK) system. Cells of the osteoblastic lineage initiate bone remodelling by

contact with osteoclastic progenitors. Macrophage colony-stimulating factor

(M-CSF) stimulates the c-fms receptor on osteoclasts. The preosteoclasts

then present RANK, which is stimulated by RANKL, leading to proliferation

and activation of osteoclasts. This interaction is blocked by OPG. Osteo-

clastogenesis is influenced by various systemic hormones and local factors

such as cytokines, parathyroid hormone (PTH), vitamin D, calcitonin and

prostaglandin E (PGE). (Adapted from Raisz,[19] with permission.)
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M-CSF being one of the potentiating factors.[33] Osteoblastic cells

additionally secrete the soluble receptor OPG, which counteracts

the differentiation and activation of osteoclasts by acting as a

decoy receptor for RANKL. A decoy receptor recognizes and

binds its ligandwith high affinity and specificity but is structurally

incapable of signalling.[34] The OPG/RANKL/RANK system is a

fundamental system requiring the input of systemic hormones and

local factors that regulate the expression of RANKL, RANK,

OPG andM-CSF, which ultimately promotes the differentiation,

migration and activation of osteoclasts.[15,20,30-32,35-38] In turn,

osteoclastic activity regulates the differentiation and activation of

osteoblastic cells through a variety of paracrine pathways, which

include transforming growth factor-b, bone morphogenetic pro-

teins, 1,25-dihydroxyvitamin D or calcitriol [1,25-(OH)2D], ma-

trix metalloproteinases and bone lining cells. Overexpression

of OPG or depletion of RANKL has been shown to induce os-

teopetrosis, and the reverse has been shown to induce osteoporosis

in mice.[19,36,38] The finding of this OPG/RANKL/RANK me-

chanism has put a focus on the osteoblastic RANKL as a major

set-point of osteoclastic formation, and the RANKL to OPG

ratio as a gateway of osteoclastic activity.

Despite the crucial role of OPG/RANKL/RANK system in

bone turnover, attempts to assess its status in patients have been

relatively unsuccessful. This can be explainedby a combination of

technical difficulties with the current assays and discrepancies

between serum concentrations and expression of RANKL and

OPG in bone itself.[37] The latter may be caused by the technical

difficulties with the assays but may also be related to the lack of

specificity of these cytokines for bone, as they are also expressed

in other tissues. (SeeHofbauer et al.,[30] Lerner,[31] Kearns et al.[32]

and Vega et al.[35] for extensive overviews of the current under-

standing and limitations regarding the OPG/RANKL/RANK

system.) In conclusion, at present it is difficult, if not impossible,

to assess the RANKL and OPG status in patients without in-

vasive procedures such as bone biopsies.

As discussed, mechanical strain, systemic hormones and

local factors exert an interrelated direct and/or indirect influ-
ence on the balance between RANKL and OPG in this specific

regulatory mechanism underlying bone turnover. Osteocytes

are thought to convert mechanical stimuli into metabolic re-

sponses, thereby organizing bone turnover under mechanical

strain and immobilization.[13,22,30] Being descended from os-

teoblasts, they have similar paracrine capabilities. Increased

mechanical strain inhibits RANKL and upregulates OPG,

which decreases osteoclastic activity and therefore increases

bone mass indirectly through the osteocytes.[10]

Various systemic hormones have an effect on bone turnover,

which is mediated by local factors and probably converges

at the level of RANKL and OPG. The primary systemic hor-

mones include parathyroid hormone (PTH) as an important

regulator of calcium homeostasis by stimulating bone resorp-

tion; the hormonally active metabolite of vitamin D, i.e.

1,25-(OH)2D; calcitonin with anabolic properties; thyroid

hormones and glucocorticoids, which exert stimulatory and

inhibitory effects on bone turnover; and estrogen, which con-

trols osteoclast formation. Basically, PTH rapidly influences

calcium concentrations through an increase in renal calcium

reabsorption. Secondly, by increasing the transformation of

25-OH-vitamin D to its active metabolite, it indirectly leads to

an increase in calcium concentrations.[10,13,15,39,40] (More ela-

borate discussions of the intriguingly complex action of PTH

are available in the literature.[15,41-43])

Among the local paracrine and autocrine effectors are

local cytokines and growth factors, which can act either as

stimulators or as inhibitors of bone resorption or bone for-

mation. Importantly, some of these factors act independently

of the cytokines RANKL and OPG, and are necessary factors

in the recruitment and differentiation of osteoblastic and

osteoclastic cells. A subset of examples include members of

the transforming growth factor-b family, tumour necrosis

factor-a, various interleukins (e.g. interleukin-1, -4, -6, -7, -13,
-17), insulin-like growth factors I and II, prostaglandin E2 and

M-CSF.[15,19,31,32,40,44-47]

Clearly, the current description of the OPG/RANKL/RANK

system is limited, and the importance and functioning of the

various systemic hormones and local factors in relation to bone

physiology ismore complex. (For amore extensive outline on this

multifaceted signalling pathway, including the mechanical, sys-

temic and local factors, overviews have been presented by Seibel

et al.,[15]Weitzmann andPacifici,[20] Hofbauer et al.,[30] Lerner,[31]

Kearns et al.,[32] Tanaka et al.,[36,48] Rogers and Eastell[37,49] and

Hofbauer et al.[50-52])

Capturing these characteristics of the interaction between

bone cells and including regulatory mechanisms in conceptual

and mathematical frameworks have enhanced the under-

standing of the importance of these underlying systems in the

description of bone physiology.[25,53-56]

2. Measuring Different Levels in the Dynamics

of Bone Physiology

2.1 Bone Mineral Density (BMD) and Bone Turnover

Markers (BTMs)

BMDpresents the amount of bonemass (amount ofminerals)

per unit area or volume and provides a static measurement of
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skeletal status as it changes slowly over a period of months to

years. Various methods are used to measure BMD at different

skeletal sites, such as ultrasound, radiographic absorptiometry,

dual photon absorptiometry, quantitative computed tomo-

graphy (QCT), quantitative ultrasound and dual energy x-ray

absorptiometry (DXA).[2,4,7,57] The gold standard for BMD

measurements is DXA, which presents the bone mineral con-

tent per area (g/cm2). The spine (predominantly trabecular), hip

(mixed trabecular/cortical) and wrist (predominantly cortical)

are measured, as they represent the clinically most relevant

areas for fractures.[4,57] A fracture of the hip is the site asso-

ciated with the greatest morbidity, mortality and cost.[1,7]

BTMs present a dynamic expression of bone turnover, as

they can reflect changes on a daily to weekly basis and thus on a

substantially shorter timescale than BMD.A division into three

BTM categories can bemade, depending on their relation to the

BMU in combination with bone: collagenous bone resorption

markers, bone formation markers and markers of osteoclast

regulatory proteins.[11,58,59] Table I and figure 3 present a

summary overview of various markers of bone turnover in re-

lation to their origin and function. The collagenous resorption

markers are degradation products of bone collagen, and their

concentrations reflect the rate of bone resorption.[15,61-63] Bone

formation markers can be measures of the enzyme activity of

osteoblasts, measures of the bone protein of which bone matrix

is composed or measures of pro-collagen markers. The osteo-

clast regulatory proteins are divided into markers reflecting the

rate of osteoclastogenesis and the osteoclast numbers. Finally,

calcium (and phosphate) balance studies can present additional

information on bone turnover and reflect the net index of the

Table I. Biochemical markers of bone turnover summarized as presented by Leeming et al.,[11] Seibel[58] and Cremers and Garnero[59]

Marker Sample Remarks

Bone resorption

Collagenous bone resorption markers

CTx Urine and serum Degradation products of bone reflecting rate of resorption and composition

NTx Urine and serum Degradation products of bone reflecting rate of resorption and composition

ICTP Serum Degradation products of bone reflecting rate of resorption and composition

PYR/DPD Urine and serum Various PYRs and DPD derived from mature type I collagen; degradation products of bone reflecting

rate of resorption and composition

Bone formation

Enzyme activity marker

BSAP Serum Specific product of osteoblast; linear relationship with osteoblast and osteoblastic precursor activity;

involved in the mineralization of bone

Bone protein marker

OCN Serum/plasma Non-collagenous protein of bone matrix; specific product of osteoblast; synthesized and secreted by

osteoblasts, also released during degradation of bone; correlated to histomorphometric measurements

Pro-collagen marker

PICP/PINP Serum/plasma Specific for proliferation of osteoblasts and fibroblasts; released from newly synthesized pro-collagen;

PINP correlates to histomorphometric measurements

Osteoclast regulatory proteins

Markers of osteoclastogenesis

RANKL Serum Produced by bone-forming osteoblasts and activated T-cells

OPG Serum Secreted by osteoblasts

Markers of osteoclast numbers

TRAcP-5b Serum/plasma Produced in mature osteoclasts, activated macrophages and dendritic cells; correlates to histomorphometric

measurements; marker of bone resorption; osteoclast numbers and function[60]

Cathepsin K Serum/plasma Enzyme for the degradation of type I collagen

BSAP= bone-specific alkaline phosphatase; CTx=C-terminal cross-linked telopeptide of type I collagen; DPD =deoxypyridinoline; ICTP=C-telopeptide
pyridinoline cross-links of type I collagen; NTx=N-terminal cross-linked telopeptide of type I collagen; OCN= osteocalcin; OPG=osteoprotegerin; PICP=
C-terminal pro-peptide of type I collagen; PINP= procollagen type I N-propeptide; PYR=pyridinoline; RANKL= receptor activator of NF-kB ligand;

TRAcP-5b= tartrate-resistant acid phosphatase.
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resorption and formation of bone in the whole body.[15,64]

However, calcium balance studies are costly, time consuming

and difficult to perform well.[49,65]

2.2 Variability in BMD and BTMs

Assessments of BMD and BTMs are subject to variability

arising from both technical/analytical and biological sources.

The analytical or technical variability of BMD measures

arises from the type of scanner used (DXA; e.g. lunar or ho-

logic). Different scanners present slightly different outcomes,

and the precision can vary because of device errors, technician

variability, intra- and inter-observer variability and between-

centre variations.[66-71] Nevertheless, the overall reproducibility

of DXA measurements is satisfactory, as has been established

with phantom measurements.[72,73] To overcome the issues of

comparing differences in the numerical measures (g/cm2) for

different types of scanners, each manufacturer provides a re-

ference distribution for each device to internally normalize the

individual measures. This presents the T-score, i.e. the number

of standard deviation (SDs) above or below the mean reference

value for young adults, which can be compared between scan-

ners. In section 4.3, the use of the T-score in diagnosing os-

teoporosis and the points to consider when using these

normalized scores are discussed.

Biological variability reflected in BMDmeasures results from

the influence of seasonal variation, age, sex, demographics, recent

fractures, drugs, disease, mobility and lifestyle, including food

and vitamin D intake, and arises from the effects of these factors

on the underlying physiological system.[11,26,58] The BMD preci-

sion error is often reported as a coefficient of variation (CV [%])

or as the SD (g/cm2). The short-term precision error for the

lumbar spine and total hip is reported to be constant

(0.010–0.15 g/cm2 [CV1–1.5%] with 1 g/cm2 as the reference) over

a wide clinical range.[74] This implies that the CV will increase

with decreasing BMD measures. Therefore, it is best to base the

smallest detectable differences in an individual on the SD.[73-75] It

has also been shown that in older subjects, themeasurement error

increases for the spine and total hip.[73-75] The long-termprecision

error (SD) in a clinical study increased by 6.5–9.2% with each

additional year of monitoring.[76]

BTMs exhibit substantial intra- and interindividual varia-

bility originating from analytical and biological sources. The

analytical variability in BTM measures is determined by the

marker itself (e.g. resorption markers are often a mixture of

molecular entities), the assay used for a specific marker, the

precision of the assay used, inter-laboratory variation, the

mode (24-hour or second morning void for urinary markers)

and timing of sampling (diurnal variation, menstrual rhythm),

the type of sample taken (e.g. urine or serum) and the status of

the subject (e.g. fasting, exercised). These are typically con-

trollable factors, and they should thus be accounted for by

investigators and laboratories – for example, by study design,

specimen collection and use of standardized assays and work-

ing protocols.[77,78] The CVs for the inter- and intra-assay

variability are typically within 10%.[11,15,58,79,80]

An important issue in measuring BTMs and comparing

treatment effects between studies based on these markers lies in

the fact that various assays, which are sometimes presented in

different units (e.g. U/L or ng/L), exist for practically every

marker. This has an influence on comparison of the results of

‘identical’ markers based on different assay methods. The mar-

kers of formation and resorption of bone can be measured by a

variety of assays such as colourimetric, electrophoretic or

precipitation techniques; high-performance liquid chromato-

graphy; or immunological assays such as enzyme immunoassay,

immunoradiometric assay, radioimmunoassay, chemilumines-

cence immunoassays, electrochemiluminescence immunoassays

and ELISA.[15,58] Furthermore, comparison of treatment effects

based on the results of different markers is a challenge, as the

markers present specific sensitivity for the change in bone turn-

overwith a treatment.Overall, this leads to questions as to how to

compare a treatment with itself (e.g. between different types of

assay) and with other treatments (e.g. treatment-specific sensi-

tivity of the marker) based on BTMs. To complicate matters

further, relationships between markers and fractures have often

been presented in relation to a specific assay. (See Cremers and

Garnero,[59] Szulc and Delmas[81] and Garnero[82] for discussions

RANKL

CTx
NTx
ICTP
PYR
DPD

Cathepsin K

PICP/PINP
BSAP
OCN

TRAcP-5bRANK

OPG

Lining cell
Osteoclast
Osteoblast
Osteocyte

Fig. 3. Biochemical markers of bone turnover in relation to their origination

during bone remodelling. BSAP=bone-specific alkaline phosphatase;

CTx=C-terminal cross-linked telopeptide of type I collagen; DPD =deoxypy-
ridinoline; ICTP =C-telopeptide pyridinoline cross-links of type I collagen;

NTx=N-terminal cross-linked telopeptide of type I collagen; OCN= osteo-
calcin;OPG=osteoprotegerin;PICP=C-terminal pro-peptide of type I collagen;

PINP= procollagen type I N-propeptide; PYR= pyridinoline; RANK= receptor
activator of NF-kB; RANKL=RANK ligand; TRAcP-5b= tartrate-resistant acid
phosphatase. (Adapted from Leeming et al.,[11] with permission. ª Springer-

Verlag 2006.)
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on themarkers of bone turnover and the challenges of their use in

clinical practice and in clinical drug development.) As we will

discuss later, a mechanistic platformmodel will aid in comparing

disease and treatment effects based on these heterogeneous sets of

markers, as it captures the underlying dynamics present in the

data, independently of the measured markers and corresponding

assays or reported assay units.Differences in themanner inwhich

the markers are analysed in different studies can also be captured

with such a mechanistic model. Furthermore, the previously

mentioned differences in the numerical values produced with

respect to the devices for measuring BMD can be incorporated

into a platform model without relating them first to internal re-

ference properties that are typical of a specific scanner.

The biological variation in the measures of BTMs arises

from comparable factors, as mentioned previously for BMD.

Besides the previouslymentioned controllable factors, there are

also uncontrollable factors of biological variability, such as age,

sex, demographics, recent fractures, drugs, disease, mobility

and lifestyle.[58,78] However, in contrast to BMD, the influence

of several of these factors on BTM concentrations can be ob-

served on a daily to monthly basis. In combination, these fac-

tors result in substantial amounts of intra- and interindividual

variation in BTM.[83] Generally, the variability in the markers

of bone turnover increases with advancing age and after me-

nopause.[11,77,83-85] In paediatric to adolescent populations, the

observed variability even dictates the characterization of dif-

ferent age categories to allow interpretation of bone marker

values.[86]

An example of biological variation is the rhythms due to

short- and long-term hormonal and seasonal differences. In-

terestingly, BMD decreases during winter and increases during

summer, and an inverse relationship of this seasonal variation is

observed for BTM concentrations. This is a direct result of a

decrease in vitamin D concentrations and an increase in PTH

concentrations during the winter.[26,58,87,88] Furthermore, in-

fluences of kidney function are relevant for renally cleared

markers measured in urine and serum. With decreased creati-

nine filtration, markers corrected by urinary creatinine can

present an apparent increase. On the other hand, decreased

renal function might present an apparent decrease in urinary

bone makers.[58,89]

The intraindividual biological variations of BTM for urinary

and serum N-terminal cross-linked telopeptide of type I col-

lagen (NTx) have been reported as being as large as 13.1%
and 6.3%, respectively, within 3 days, and 15.6% and 6.3%,

respectively, within 3 months. Others have reported intra-

individual variability in the order of 5–27% in healthy and

osteoporotic women for bone-specific alkaline phosphatase

and osteocalcin determined during a period ranging fromweeks

to up to 2 years. Intraindividual variability of 9–48% for col-

lagen cross-link immunoassays have been reported for com-

parable periods.[11,58,77,80,83,90]

In summary, BTMs are subject to substantial short- and

long-term variability arising from controllable and uncontrol-

lable (e.g. analytical and biological) variation, and for BMD, this

variability appears to be somewhat smaller.[11,58,79,80,91]

When monitoring the individual effectiveness of treatment

on BMD and BTMs, induced changes in these markers have

to go beyond intraindividual variability. This means that the

individual change in the marker – BTM or BMD – should be

greater than the imprecision or noise of the measured value.

This is called the least significant change.[58] Treatment gen-

erally induces changes within days to months in BTMs, and

these changes typically range from 20% to 80%, depending on

the choice of marker and treatment efficacy.[11,58,78,79,92,93] In-

travenous zoledronic acid has presented a maximum decrease

in the mean of the urinary resorption marker NTx at 1 week,

and denosumab has shown decreases in concentrations of serum

C-terminal cross-linked telopeptide of type I collagen (CTx)

within 3 days.[94,95] For BMD, the changes range from 0% to 9%
after a period of 1–3 years.[79,90] Interestingly, for the mono-

clonal antibody to RANKL (denosumab), significant increases

in BMD have been observed within 1 month of treatment.[95-98]

Both BTMs and BMD are thus capable of detecting treat-

ment efficacy, but BTMs present this information on a shorter

timescale, which is also shown by the fact that changes in BTMs

within 1–6 months correlate with BMD changes observed for

up to 3 years.[11,58,77,79,99-103]

3. Imbalance and Activation in Bone Physiology

Bone turnover is perturbed in many diseases, each character-

ized by a specific pathophysiology. Examples of such metabolic

bone diseases are Paget’s disease of bone, postmenopausal

osteoporosis, hyperparathyroidism and hypoparathyroidism.

However, external factors such as the use of corticosteroids, im-

mobilization, and calcium and vitamin D deficiency are also well

known as leading to altered bone turnover.[4,40,104] The change in

the turnover arises from direct or indirect alterations at a certain

stage in bone remodelling, which may result in an imbalance

between resorption and formation and/or an increased activation
frequency of the BMU.[1,13,14,31,32,36,105]

As bone remodelling is strictly regulated within a tightly

coupled system, any local or systemic perturbations leading to

uncoupling of osteoclastic and osteoblastic collaboration may

substantially change bone mass. Figure 4 shows a comparison
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between normal turnover and high turnover of bone. More-

over, in disarranged regulation, any changes in osteoclastic

activation or activity will be further attenuated by the different

timescales on which osteoclasts and osteoblasts function.

Osteoblasts will initially be unable to follow the increased

resorption, which results in decreased bone mass. Clearly, tra-

becular bone, which has a higher turnover than that of cortical

bone, is more sensitive to perturbations during remodelling.

4. Bone Pathology: Osteoporosis

Osteoporosis is a systemic skeletal disease characterized by

low bone mass and microarchitectural deterioration of bone

tissue, leading to enhanced bone fragility and a consequent

increase in fracture risk.[57] Various forms of osteoporosis exist,

which include postmenopausal osteoporosis, senile or age-

related osteoporosis, idiopathic and juvenile osteoporosis, or

osteoporosis as a result of other diseases (e.g. hypogonadism,

endocrine states, diabetes), conditions (e.g. immobilization),

deficiencies (e.g. vitamin D, calcium) or medications (e.g. cor-

ticosteroid use).[106,107]

4.1 OPG/RANKL/RANK System

The most common forms of osteoporosis are age-related os-

teoporosis in both women and men, and postmenopausal os-

teoporosis in women (figure 5). Alterations in the OPG/
RANKL/RANK osteoclast regulatory system have been related

to variousmetabolic bone diseases, including osteoporosis.[20,30-32]

Loss of trabecular and cortical bone occurs as part of normal

aging and affects both men and women from the fourth or fifth

decade of life onward. Inwomen, this bone loss presumably starts

within 15 years preceding menopause and affects primarily

trabecular bone, while cortical bone appears unaffected until

menopause.[108] The slow bone loss relates to a combination of

age-related mechanisms, including reduced bone formation,

cumulative effects of calciumand vitaminDdeficiency, decreased

physical activity, and an age-related decrease in gonadal func-

tion.[1,13,20,108-120] For example, one factor that probably con-

tributes to age-related bone loss is a deficiency in calcium and

vitamin D, which can result in increased resorption of bone

through the action of PTH. This secondary hyperparathyroidism

stimulates increased calcium release from bone, an increase in

BTMs and a subsequent decrease in bone mass.[31] Counter-

intuitively, serum OPG concentrations have been shown to in-

creasewith age inbothwomenandmen, but this is thought of as a

protective compensatory mechanism, as the concentrations of

bone markers have been negatively correlated to OPG con-

centrations.[32] This conflicting finding may also result from the

fact that it is unclear whether serum concentrations of OPG ac-

curately reflect the ratio of RANKL to OPG on the tissue level,

where it is expected to have its effect.[32] In OPG-knockout mice,

the level of osteopenia tends to increase with age, and increased

concentrations of RANKL and decreased concentrations of

OPG have been shown in normal aging mice.[32] Estrogen con-

centrations have been shown to be positively correlatedwith both

OPG concentrations and BMD, and inversely correlated with

markers of bone turnover.[11,19,20,30-32,37,50,121-123]

At the time of menopause, women experience an additional

transient period of accelerated bone loss when estrogen con-

centrations rapidly decrease. During this phase, increased

concentrations of BTMs are observed, and these are correlated

to decreasing BMD.[111,124-126] The onset of this postmeno-

pausal phase lies between the ages of 50 and 65 years, and it

presumably lasts for a period of 5–10 years and follows an

exponential loss pattern in BMD.[13,108,109,127-133] During this

period, trabecular bone is primarily affected because of its

higher turnover and larger surface area compared with cortical

bone, and the loss of trabecular mass appears to be a sensitive
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Fig. 5. Bone mass dynamics during life. The bone mass increases during

the initial decades of life. The attained peak bonemass is greater in men than

in women. In both men and women, an age-related decrease in bone mass is

observed. For women, this decrease is further attenuated by an accelerated

phase of bone resorption during menopause.
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Fig. 4. Schematic representations of the effect on bone mass of normal and

high bone turnover. During normal bone turnover, the amount of bone formed

(F) equals the amount removed (R). During high turnover, the quantity of

removed bone is not compensated for by the amount of bone that is formed,

leading to a decrease in bone mass. (Adapted from Tanaka,[36] with per-

mission. Copyright ª 2007 S. Karger AG, Basel.)
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indicator of estrogen deficiency.[130] Estrogen deficiency in

postmenopausal women has been shown to induce an increase

in RANKL and a decrease in OPG, in addition to increased

responsiveness of osteoclasts upon activation of the RANK

receptor. Moreover, RANKL has been positively correlated

with markers of bone turnover, and OPG has been shown to

have an inverse relationship with these markers, although

contradictory results have been published.[20,30-32,35,37]

After this accelerated phase, the slower phase of bone loss

continues. During the postmenopausal phase, the majority of

fractures are related mainly to trabecular bone, and they include

acute vertebral compression fractures and distal forearm (Colles’)

fractures.[7,129,134-137] In the long term, the age-related decrease in

bone mass affects both trabecular and cortical bone, and hip

fractures related to age-related bone loss are observed after the

age of 70 years in both women and men.[7,138] The prevalence of

osteoporosis and the lifetime probability of fractures beyond the

age of 50 is about 3-fold higher in women than in men.[7]

4.2 Risk Factors for Osteoporosis andOsteoporotic Fractures

The major determinants of bone mass and the subsequent

risk of osteoporosis and osteoporotic fractures are the peak

bone mass accrued during the third decade of life and the

subsequent rate of bone loss commencing after the fourth to

fifth decades of life (figure 6). This makes womenmore prone to

the effects of decreasing bone mass than men, as women have a

lower peak bonemass and they experience accelerated bone loss

after menopause.[1,139,140]

Various genetic and environmental factors determine the

bone mass during life by influencing the accrued peak bone

mass and the subsequent bone loss rate. These factors include

modifiable risk factors and non-modifiable risk factors such as

age, the menarche, (premature/early) menopause, a family

history of osteoporosis/fractures, previous fragility fractures,

low bodyweight, life expectancy, nutritional status, physical

activity/immobility, lifestyle, race, sex, smoking, excessive

alcohol (ethanol) consumption, and various medications and

diseases.[4,7,57,133,136,138] In combination, these independent

risk factors determine bone strength and the risk of osteoporo-

tic fractures.

The total fracture risk is determined by the bone strength in

addition to the frequency and direction of falls and the in-

dividual contribution of each risk factor to the overall fracture

risk.[1,7,19,136,138,141]

Considering osteoporosis, one should therefore clearly

distinguish between the diagnosis of osteoporosis and the as-

sociated fracture risk assessment.[4,57,65,142]

TheWHO endorses a tool that takes into account all of these

factors to predict the 10-year risk of osteoporosis fracture in

men and women: FRAX�. A link to this tool and other pro-

grams that calculate cost-effectiveness and quality of life can be

found on the website of the International Osteoporosis Foun-

dation.[143] It should be noted that the links provide no quan-

titative insight into the contribution of each separate risk factor

on which the calculations are based.

4.3 Diagnosis and Whole Bone Strength

BMD is the best single predictor of bone strength, and the

diagnosis of osteoporosis is based on this confirmatory measure-

ment, which accounts for 60–85% of bone strength.[2,4,57,144-146]

Based on the deviation of an individual BMDmeasurement from

that of the young healthy adult female mean (T-score), four ca-

tegories are defined by theWHO (table II).[57] These categories are

considered arbitrary cutoff values, as they heavily depend on the

reference population, e.g. race, sex, demographics.[4,138,147-158]

Although the BMD is a strong predictor of bone strength, a

low BMD alone accounts for only up to 44% of the fracture

risk.[159] As discussed previously, independent risk factors

(mostly extraskeletal factors) then provide complementary

Peak bone
mass level

Increased
bone loss

Low bone
density

FracturesMenopause

Aging

Other factors Trauma

Fig. 6. Major determinants of bone mass and the subsequent risk of os-

teoporosis and osteoporotic fractures. (Adapted from Riggs,[107] with per-

mission from the BMJ Publishing Group.)

Table II. Diagnostic categories based on bone mineral density (BMD) in

women, according to the WHO[4,57]

Diagnostic category BMD T-score compared with young adult

meana

Normal BMD between -1 and +1 SD

(T-score above -1)

Osteopenia (low bone mass) BMD between -2.5 and -1 SD

(T-score between -1 and -2.5)

Osteoporosis BMD below or equal to -2.5 SD

(T-score below -2.5)

Severe osteoporosis

(established osteoporosis)

BMD below or equal to -2.5 SD in the

presence of ‡1 osteoporotic (fragile) fracture

a SDs below the mean BMD of a healthy woman aged 30 y.

SD = standard deviation.
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information on the individual risk of osteoporosis and osteo-

porotic fractures. As the total fracture risk reduction cannot be

explained by BMD alone, the term ‘bone quality’ was desig-

nated to capture other skeletal properties that contribute to the

whole bone strength.[160] These include the shape, geometry,

microarchitecture, bone tissue composition, mineralization,

microdamage and the rate of bone turnover.[1,161-165]

The term ‘bone quality’ is currently under discussion, as

(i) BMD and bone quality are practically inseparable because

BMD is an aggregate measure of bone (e.g. it includes the mi-

neralization of bone); and (ii) the definition of bone quality is

imprecise and difficult to measure and, at present, it is therefore

difficult to translate bone quality into antifracture efficacy. (See

Sievänen et al.[160] and Jarvinen et al.[166] for discussions on

bone strength and bone quality semantics.) Nevertheless, the

terms ‘bone strength’ and ‘bone quality’ aid the discussion on

the complex properties of bone that contribute to the prob-

ability of fractures. More recently, advances in this field have

been made by assessing the mechanical competence (strength)

of bone by finite element modelling based on 3-D micro-

computed tomography (micro-CT) images and high-resolution

peripheral QCT (HR-pQCT) data.[167-169] An alternate view to

the discussion on bone quality has been presented by Hernan-

dez and Keaveny.[170] They argue that changes in bone quality

should be looked at in a more clinically meaningful manner by

quantifying the biomechanical effects of these changes rather

than trying to resolve the semantics on bone quality. They state:

‘‘Because a clinical fracture is ultimately a biomechanical event,

it follows then that any clinically relevant modification of bone

quality must change bone mechanical performance (strength)

relative to bone mass (density)’’. A more comprehensive frame-

work for quantifying the biomechanical effects is proposed,

which enables evaluation of the relationship between bone

mechanical performance and bone density. Furthermore, the

hierarchical nature of the framework enables characterization

of the scale at which the clinically relevant changes in bone

quality occur, rather than looking at separate physical levels in

bone quality. The previously discussed HR-pQCT technique

would fit into this framework by presenting information on a

specific level of bone biomechanics. Hernandez[161] also pre-

sented this framework to investigate how bone turnover could

independently influence fracture risk by altering both bone

biomechanics (strength) and bone mass (density).

Biochemical markers of bone provide easily accessible in-

formation on aspects of bone quality, such as the rate of bone

turnover, and they become increasingly more important as

supplementary and even independent predictors of BMD and

fracture risk.[11,58,59,77-79,171-183] Furthermore, these markers

present the response to treatment and patient compliance on a

shorter timescale than that of BMD.[11,58,59,77,92,93,140,180,184-186]

These markers cannot diagnose osteoporosis, because there is a

broad overlap between healthy and diseased populations. The

current markers also do not discern between trabecular and

cortical bone loss.[1,4,57,142]

Other measures that provide information on parts of the bone

quality framework include quantitative assessment of trabecular

and cortical bone structure, the activation frequency and the re-

modelling imbalance. These include histomorphometric techni-

ques, such as HR-pQCT, which present specific information on

cortical and trabecular bone characteristics at the cellular and

tissue level by using invasive bone biopsies and various imaging

techniques to provide 3-D images of bone.[13,14,59,105,187-191] In-

terestingly, BTMs such as osteocalcin, N-terminal pro-peptide of

type I procollagen and tartrate-resistant acid phosphatase have

been linked to histomorphometric measurements and can thus be

regarded as presenting an insight into the actual turnover and

true quality of bone.[58,77,167]

4.4 BTMs, BMD and Fractures

BMD measurements present the surrogate marker for the

diagnosis and management of osteoporosis and for the devel-

opment of new treatments in this area. As discussed previously,

low BMD has a strong relationship to the risk of fracture, and

this measurement alone explains a substantial part, but not all

components, of whole bone strength and fracture risk.[180,192]

Single BTMs or combinations of BTMs have been shown to be

related independently to the risk of fractures, to predict changes

in BMD and to reflect the efficacy and mechanism of action of

different treatments.[11,26,91,99-103,117,171,175,193-212] It has been

shown that combining a clinical risk factor with low hip BMD

and high levels of bone resorption improved the predictive

value of the relative risk of fracture from 1.8–2.8 to 5.8. Com-

bining high levels of bone resorption with BMD or a history of

previous fracture results in a 70–100% higher 10-year prob-

ability of hip fracture than is associated with low BMD

alone.[115,203,213] The levels of thesemarkers semi-quantitatively

reflect the actual bone turnover, and early changes in BTM are

able to explain equal or even larger proportions of antifracture

efficacy compared with changes in BMD.[15,171,175,178,181,214]

Of interest in the development of new treatment modalities is

the shorter timescale with which BTMs change with respect to

BMD and antifracture efficacy. The changes in BTMs can be

assessed faster andmay consequently be better drug development

tools, with respect to antifracture efficacy, than slow changing

BMD. As discussed previously, the combination of the
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information in BTMs and BMD has been shown to more accu-

rately predict the risk of fracture than either marker alone. As

bone strength comprises various skeletal characteristics besides

bone density alone, combinations of markers at various stages of

bone remodellingmay present amore comprehensive insight into

the total or true quality of bone. (See Seibel,[58,77] Cremers and

Garnero[59] and Szulc and Delmas[81] for overviews of the ap-

plicability of biochemical markers of bone turnover.)

The US FDA and the European Medicines Agency distin-

guish between agents used in the treatment or prevention of

osteoporosis.[65,215,216] Prevention relates to the avoidance of

bone loss during the first years of menopause, while treatment

refers to the reduction of fracture risk. BMD is regarded as the

primary outcome marker for drugs developed for prevention of

osteoporosis. For treatment of osteoporosis, the primary out-

come is the reduction in vertebral and non-vertebral fractures in

addition to proof of an increase in BMD.[7,65,142,215-217] Trials

for prevention of osteoporosis require durations of 2 years,

while those for treatment of osteoporosis must be of 3 years’

duration, with an additional requirement to include thousands

of subjects to be able to establish antifracture efficacy. Al-

though BTMs have been shown to exhibit potential for use as

surrogate markers, they are regarded as secondary outcomes

and are only approved as such by these regulatory agencies. An

important shortcoming lies in the fact that these markers are

not disease-specific and reflect every change in bone metabo-

lism. Nevertheless, in combination with BMD, they provide a

substantial body of information on treatment efficacy at dif-

ferent timescales in the development of treatments for osteo-

porosis.[11,58,77] In the development of new dose regimens for

treatments such as risedronate, ibandronate and zoledronic

acid, the combination of BTMs and BMD has been used to

achieve effective dose regimens. For risedronate and iban-

dronate, these markers have been accepted by regulatory

agencies as proof of efficacy for new dose regimens in addition

to previously established antifracture efficacy.[59,218-230]

4.5 Treatment Options and Emerging Treatments

It is possible to distinguish between different treatments

based on differences in their mechanisms of action, specific sites

and modes of action, routes of administration (e.g. oral,

intravenous, nasal spray), dosage regimens, and degrees of

efficacy and effectiveness.[7,231-233]

Most agents decrease bone resorption (antiresorptive or anti-

catabolic treatment), some increase bone formation (anabolic

treatment), and others have been reported to do both.[234] The

nature of the treatment effect is reflected in the dynamics of

BTMs. Figure 7 presents a schematic overviewof these dynamics.

Antiresorptive treatments result in a decrease in markers of bone

resorption, which is followed by a decrease in formation markers

due to coupling of the osteoblastic and osteoclastic actions.

Anabolic treatments present an increase in markers of bone

formation, which is followed by an increase in markers of bone

resorption. During the period between the onset of the effect on

the initial bone marker and the subsequent change in the second

bone marker, bone mass increases. According to the bone mar-

kers, the effect of anabolic treatments appears to wear off after a

period of time.[1,41] Figure 8 illustrates the change in BMD with

antiresorptive and anabolic treatments. The antiresorptive effect

(representing, for instance, estrogens, bisphosphonates and cal-

citonin) on BMD levels off after a period of time. The anabolic

effect (representing, for instance, fluoride and intermittent PTH)

on BMD initially continues to increase beyond the pronounced

anabolic window (the first 6–12months of treatment). Thismight

relate to the fact that beyond this period, bone formation is still

more greatly increased than bone resorption.[42,237] Therefore, the

continuous increase in BMD with decreasing values of BTM is

probably a result not just of secondary mineralization but also of

a continued relative increase in bone formation.[235]

In general, antiresorptive treatments include hormone

replacement therapy, bisphosphonates, selective estrogen-

receptor modulators and calcitonin. The anabolic treatments

are represented by intermittent PTH and its analogues, and

sodium fluoride. The latter treatment has been abandoned, as

it was shown to actually increase the risk of non-vertebral

fractures.[233] Strontium ranelate has been shown to slightly
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increase bone formation and to slightly reduce bone resorption,

thereby presenting a treatment that demonstrates both treat-

ment actions. (For an overview of these pharmacological

treatments, see Sambrook and Cooper,[1] Kanis et al.[7] and

Borges and Bilezikian.[238]) Calcium and vitamin D derivates

are important elements that positively influence bone home-

ostasis by supplementing any nutritional deficiencies in the el-

derly.[7] Table III presents an overview of the (pharmacological)

interventions with references to background information.

Emerging antiresorptive treatments include novel agents

that are currently under development, such as cathepsin K in-

hibitors and a fully monoclonal antibody to RANKL, called

denosumab, which have different mechanisms of action than

the existing treatments. Cathepsin K inhibitors selectively

decrease osteoclast-mediated bone resorption by inhibiting the

enzyme required for the breakdown of type I collagen, pre-

sumably without altering bone formation. Denosumab blocks

the binding of RANKL to RANK.[96,231,232] Sclerostin anti-

bodies are another promising group of biological therapies,

which have been shown to exert anabolic properties and to

increase bone mass.[1,327]

Discussion of the complex matter of the exact biological

mechanism of action of these agents is beyond the scope of this

article, but it is acknowledged that these mechanisms might

determine the relationship to outcome. From a conceptual and

mathematical perspective, it is more important that there are

agents available with different mechanisms, specific sites and

modes of action, and degrees of efficacy and effectiveness,

which result in qualitatively and quantitatively different dyna-

mics of the biochemical markers of bone turnover.

The heterogeneity in the dynamics of the markers of bone

turnover reflects the differences observed in BMD. For ex-

ample, an increase in BMD results from a net positive bone-

forming index, which can result from an increase in bone for-

mation, a decrease in bone resorption or a combination of both.

Each of these treatment effects is reflected by different bone

marker dynamics (figures 7 and 8). To reflect and compare the

complex mechanisms of action, combined use of these markers

in drug development is thus warranted.[59] To compare treat-

ments on a common basis, conceptual and mathematical

models describing these combined dynamics can play a crucial

role, as described in sections 5–7.

The development of new treatment regimens, such as

monthly and yearly administration of agents (e.g. zoledronic

acid[343]), is facilitated by the use of BTMs, as they provide a

direct insight into bone dynamics and the related treatment

effects. Combinations (figure 9) or sequential use of treatments

with similar antiresorptive or opposite mechanisms of action

require use of the markers to understand the complex

dynamics that lead to an increase in BMD and ultimately a

reduction in fracture risk.[77,237,308,309,344,345]

Finally, the site and mode of action of treatments and specific

pharmacokinetic properties lead to differences in the duration of

the effect on BTMs and BMD after withdrawal of treatment,

perhaps indicative of disease modification or at least suggesting

an appropriate duration of the effect.[98,185,310,346-352]

5. Modelling of Osteoporosis

In the area of osteoporosis, various conceptual, mathema-

tical, statistical and epidemiological models have been estab-

lished that have provided valuable insights into the complex

area of bone research. In particular, conceptual models have

provided an important basis for the understanding of the

complex coupled interaction between the osteoclastic and os-

teoblastic actions within the BMU, and the influence on bone

mass.[16-18,353] The models can be divided into those based on

the theory of bone physiology and those based on the available

markers and clinical outcome data.

5.1 Theory-Based Models in Bone Biology

The concepts of bone biology have been formalized into

mathematical models incorporating the inherent dynamics of

biological systems to deterministically describe the time trend in

bone mass.[25,55,56,354-367] These models incorporate and explain

the influence of various factors, such as age, peak bonemass, drug

treatment and (patho-)physiological processes, on BMD. Many

of themodels are presentedwith a focus on the BMUconcept and

relate the system tomechanical andmetabolic influences. Another

group of conceptual mathematical models exist, which pursue a
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more mechanistic approach by incorporating these influences,

with a direct focus on the dynamics and homeostatic regulation

of the coupled interaction of the osteoclasts and osteoblasts

within the BMU.[53,368-374] As such, the effects are described

theoretically at the cellular level of the underlying physiological

system. Figure 10 depicts the conceptual model proposed by

Table III. Possible (pharmacological) interventions in osteoporosis

Class Representatives Action Comments References

Bisphosphonates Alendronate,

risedronate,

ibandronate,

zoledronic acid,

clodronate,

etidronate

Antiresorptive Strong affinity for bone apatite; half-life from

bone estimated to be 10 y

1,7,52,172,199,230,233,239-250

HRT Estrogen and

combined estrogen/
progestogen

Antiresorptive Relief of postmenopausal symptoms;

increased risk of breast cancer, deep vein

thrombosis and pulmonary embolism prohibits

its long-term use

1,7,52,77,90,123,172,174,185,198,

233,238,251-274

SERM Raloxifene,

lasofoxifene

Antiresorptive Agonistic and antagonistic estrogenic effects,

depending on the target tissue; decreases

bone turnover markers and increases bone

mineral density to a lesser extent than

bisphosphonates; nevertheless shows similar

efficacy in terms of fractures

1,7,52,172,175,233,254,275-284

STEAR Tibolone Antiresorptive Action on estrogen, progesterone and

androgen receptors, depending on the target

tissue

233,265,277,285-300

Calcitonin Calcitonin salmon Antiresorptive 1,7,10,45,52,104,172,233,

279,301-307

PTH Teriparatide Anabolic Intermittent administration result in increase

bone mineral density; continuous

administration leads to decrease in bone

mineral density; transient effect on bone

mineral density (anabolic window)

1,7,52,61,99,172,208,233,

237,308-318

Strontium ranelate Strontium ranelate Stimulating

formation,

antiresorptive

Increased bone formation markers and

decreased resorption markers

1,7,233,318-326

Cathepsin K inhibitors Representatives

under development

or discontinued:

relacatib, balicatib

Antiresorptive Inhibits tissue-specific cysteine protease

critical for breakdown of collagen and bone

matrix

1,59,60,231,232

Monoclonal antibody toRANKL Representative:

denosumab

Antiresorptive Specifically targeted at the

OPG/RANKL/RANK system

1,32,95,97,98

Sclerostin antibodies Anabolic Targets sclerostin secreted by osteocytes,

which reduces bone formation

327

Calcium Calcium

supplements

Supplement

nutritional

deficiency

Important in deficient state; reduction of age-

related hyperparathyroidism; needed for

mineralization of bone

1,7,64,172,233,267,328-335

Vitamin D derivates Alfacalcidol,

calcitriol

Supplement

nutritional

deficiency

Important in deficient state; essential for

calcium absorption

1,7,87,88,120,172,233,267,329,

330,334-342

HRT= hormone replacement therapy; OPG=osteoprotegerin; PTH= parathyroid hormone; RANK= receptor activator of NF-kB; RANKL=RANK ligand;

SERM= selective estrogen-receptor modulator; STEAR= selective tissue estrogenic activity regulator.
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Lemaire et al.,[53] which specifically incorporates the interaction

between osteoblasts and osteoclasts.

The aforementioned conceptual and mathematical models

present powerful frameworks for understanding the complex

dynamic interactions and the resulting outcome of the process

of bone remodelling in bone physiology. Moreover, the models

are able to capture, explain and mimic the characteristics of

bone biology, metabolic bone diseases and various treatment

conditions, as discussed in the literature. A disadvantage of

these methods lies in the fact that the inherent variability that

exists in biological systems is generally not accounted for.

5.2 Data-Based Models in Bone Biology

The models based on the biological markers and clinical

outcomes can be divided into statistical/epidemiological

models that describe the correlation between markers of bone

pathophysiology and clinical outcome, and models that

describe the dynamics of various bone markers and clinical

outcomes.

The statistical and epidemiological models have provided

valuable information on the correlation, predictive value and

interrelated time courses of various BTMs, BMD and clinical

outcomes. Furthermore, this area of research has provided

insight into the influences of various factors, such as age, lifestyle,

andmenopause, on these parameters, and hasmade it possible to

evaluate, statistically confirm and compare the effects of different

treatments.[7,11,91,101,102,115-119,134,136,137,154,157,173,177-179,181,192,196,

198,204,205,213,214,375-377]

Nevertheless, these methods cannot be used for quantitative

dynamic prediction of treatment efficacy in the area of drug

development, because the effect of treatment is normally cap-

tured only as a categorical covariate without considering or

quantifying the underlying temporal changes inherent in the

biological system.

The models describing the dynamics of various bone markers

based on data reflecting bone biology consist of (i) models that

aim to extract quantitative measures of bone turnover; and

(ii) models that describe the dynamics and relationships at the

level of BTM, BMDand clinical outcomes. The first collection of

models presents quantitative measures of bone turnover and

bone biology, by using techniques such as tetracycline labelling

with invasive histomorphometric measurements (bone biopsies)

and noninvasive techniques such as tracer kinetics of lab-

elled calcium and fluoride (radioisotope techniques and positron

emission tomography).[13,62,63,169,189,359,378-384] Specific aspects of

the bone quality can also be measured by assessing the mechan-

ical competence (strength) of the bone by finite elementmodelling

based on 3-Dmicro-CT imaging and HR-pQCT data.[167-169] All

of the above methods specifically present intrinsic measures of
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bone turnover, such as the activation frequency of BMUs and

osteoblastic and osteoclastic activity, and are able to characterize

the underlying bone biology at the tissue and cellular level.[189,385]

Generally, these models provide exceptional information on the

underlying biology of bone; however, most of the methods can-

not be applied on a large scale because of technical and ethical

considerations, and they provide information only on specific

parts of the skeleton.

The second collection of models is in a field of research that

describes the dynamics of various bone markers, based on data

reflecting bone biology, and is based on population pharma-

cokinetic-pharmacodynamic and disease progression model-

ling, also referred to as the ‘population approach’.[386-391] The

value of this mathematical approach lies in the fact that the

dynamics of BTM, BMD and clinical outcome can be dyna-

mically linked even though the changes occur at vastly different

rates, and that time-variant changes in the course of the disease

can be explicitly taken into consideration in a mathematical

structure describing different stages of metabolic bone dis-

eases.[9,230] Various examples exist where the pharmacokinetics,

BTM and BMD are linked within such a mathematical

framework.[54,392-400] Figure 11 presents a schematic depiction

of a population pharmacokinetic-pharmacodynamic model of

ibandronate.

Furthermore, this approach has been applied by the FDA to

quantitatively link BMDto clinical fracture risks.[401] In addition,

it has been used to dynamically describe the influence of seasonal

variation on BMD and to establish new treatment schedules for

bisphosphonates such as ibandronate.[226,230,394,398,402] This

method provides a basis for the prediction and extrapolation of

treatment effects, as the dynamics in the markers at various levels

are considered in relation to the variability that exists between

and within individuals, and it is therefore discussed further in

sections 6 and 7.

6. Integration of Knowledge into Osteoporosis

Research

6.1 Rationale for Combining Sources of Information

As presented, there is extensive knowledge on the physiology

of bone, and several conceptual, statistical and mathematical

approaches exist that capture various aspects of this biological

system, each starting from either a theoretical or a data-driven

point of view. Valuable information for understanding the

complex area of bone biology and pathophysiology has been

obtained by conceptualizing, utilizing and combining the avail-

able data that reflect the various levels of bone biology at different

time stages of bone disease. The knowledge about bone phy-

siology continues to increase, and different sources of informa-

tion will continue to emerge. As a result, the conceptual,

mathematical and statistical models will change accordingly.

None of the aforementioned approaches comprehensively

integrates the conceptual and mathematical knowledge about
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the underlying regulatory system during the time course of

osteoporosis, and the information about this system that is con-

tained in the various BTMs and BMDmeasurements. As there is

understanding of the pathophysiology of osteoporosis and the

effect of various treatments, in addition to well established short-

and long-term markers reflecting this disease, this combined

knowledge can be integrated into a framework model with a

mechanistic basis, which can ultimately be used to quantify

clinical efficacy and optimize drug development in this area.[9]

Again, it should be noted that in order to follow this ap-

proach, one should recognize the fact that not all processes or

information can or must be included to describe the observable

results (e.g. markers) arising from the underlying complexity of

the system, as long as the important aspects of bone physiology

are maintained. Integration of knowledge on each regulatory

process would result in a systems-biology approach, which

would inherently lack the opportunity to comprehensively de-

scribe individual variability.[403] When pursuing more com-

prehensive models, one needs to identify which factors are

likely to be predictive and what adjustments to the conceptual

structures are needed to capture the relevant (or supported)

rate-limiting steps. Obviously, this depends on the mathema-

tical structures chosen, the aim of the model, the available

information on the time course of biomarker dynamics, the

available covariates and the disease status of the patients (e.g.

early or late postmenopausal). Therefore, the identification of

the factors and the necessary model adjustments need to be

evaluated on an individual basis.

An integrated approach may allow for differentiation be-

tween current drug classes and novel agents with different

mechanisms of action. Through this differentiation, a quanti-

tative prediction of the final clinical outcomes of these novel

agents can ultimately be obtained early in clinical development.

Furthermore, development of new treatment regimens can be

supported, and the effect on clinical outcomes of combinations

or sequential use of treatments can be predicted.

6.2 Population Pharmacokinetic-Pharmacodynamic

and Disease Progression Modelling

As discussed previously, an approach that allows for com-

prehensive integration of the knowledge of the disease system,

individual treatment efficacy and the measures of bone turn-

over and bone density is in the area of population pharmaco-

kinetics-pharmacodynamics and disease progression model-

ling. This methodology is based on nonlinear mixed-effects

analysis, enabling identification and quantification of phar-

macokinetic and pharmacodynamic responses to treatment

within populations by estimating typical population para-

meters in addition to describing random effects.[404] It aims to

comprehensively describe the dynamics of exposure and the

related response of a treatment in relation to (patho-)physio-

logical processes, while at the same time characterizing the in-

terindividual variability in the drug and system-specific

parameters, and the residual variability in the response. Fur-

thermore, it aims to identify covariates that explain parts of the

variability that exists between and within individuals. As such,

this population approach characterizes individual profiles in

relation to a typical population trend.

In recent years, population modelling has evolved from an

empirical descriptive approach into a scientific means of identi-

fying and quantifying the time course of drug effects, while

considering the complex physiological and pathophysiological

processes and mechanisms on the causal path between drug

administration and effect.[388,389] A pertinent feature of this

so-called mechanism-based pharmacokinetic-pharmacodynamic

modelling is the separation of drug-specific and biological sys-

tem-specific characteristics, which has been made possible by the

availability of relevant biomarkers and the increase in knowledge

about biological systems. This separation between the drug and

the system is crucial for the prediction and extrapolation of

treatment effects.[389] More recently, the effects of drugs on

disease processes and disease progression has become of interest

to account for the time-variant changes pertinent to biological

systems that are under the influence of disease. This additional

level of pharmacokinetic-pharmacodynamic modelling is of

particular importance when considering disease-modifying

treatment effects, as these agents specifically target the underlying

time course of the disease.[9,389,405] So far, the population

approach has been widely used for characterization and predic-

tion of pharmacokinetic-pharmacodynamic responses and
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Fig. 11. Schematic presentation of a population pharmacokinetic-pharma-

codynamic model applied in the development of intermittent oral and in-

travenous ibandronate regimens. Ae =amount excreted in urine; CLR = renal
clearance; Dose= ibandronate dose; kD = uCTx degradation rate constant;

kS = uCTx formation rate; uCTx= urinary C-terminal cross-linked telopeptide

of type I collagen; Vx= volume of distribution in compartment x. (Reproduced

from Pillai et al.,[392] with permission.)
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disease progression in relation to treatment in both clinical and

drug-development settings.[386,406-409]

7. Population Modelling in Osteoporosis:

Towards Disease System Analysis

An integrative approach to the conceptual and mathema-

tical models and known statistical correlations allows for a

mechanism-based description of osteoporosis, and presumably

other bone diseases, without the need to incorporate each

minute process of bone physiology. This approach can further

optimize the use of various short- and long-term markers

during drug development and in clinical practice. Such an ap-

proach, which incorporates the various levels and timescales of

the disease and drug action by combining the available

knowledge and data, is referred to as DSA.[9]

The population approach has been applied in the area of

osteoporosis to dynamically link BTMs, most often resorption

markers, to BMD and the latter to clinical fractures, albeit in a

descriptive manner.[401] A more mechanistic approach to

modelling of bisphosphonate treatment has been proposed,

which accounts for a surface and a deep bone compartment in

the pharmacokinetics of pamidronate in relation to the dy-

namics of a resorption marker.[394] A related example is pre-

sented for ibandronate, where the pharmacokinetics are

coupled with CTxmeasurements through a bone compartment,

and for a cathepsin K inhibitor, where the contributions of

cortical and trabecular bone are accounted for in the produc-

tion of CTx and NTx fragments during treatment.[392,393,410]

Nevertheless, given the levels of knowledge about the system

and the available data, this could conceptually be taken a step

further by also incorporating markers of bone formation to

mechanistically reflect the observed time delay between the

onset of the treatment effect in resorption markers and for-

mationmarkers caused by the coupled action of the osteoclastic

and osteoblastic cells. Furthermore, the short-term treatment

effect characterized from the resorption and formationmarkers

could be used to translate these effects into long-term BMD

changes. Ultimately, the fracture risk could be incorporated

as an additional, clinically relevant, although not physiological

marker.

From a more mechanistic point of view, the underlying

regulatory system of bone physiology could be taken into

consideration even more specifically, as the markers reflect

explicit parts and levels of the system (e.g. BTMs), or deriva-

tives of this system (e.g. BMD). The markers present in-

formation on distinct timescales about parts of the source

system, which can be extracted when considering the concepts

of bone pathophysiology. In this manner, a more accurate

description of bone biology and treatment action could be

achieved.

In view of the complex homeostatic control mechanisms in

osteoporosis and the multitude of biomarkers that reflect its

disease status, a DSA approach would require a cascade of

compartments.[9] Lemaire et al.[53] and Komarova et al.[371]

have presented multidimensional models that could serve as a

basis for a DSA approach, to which BTMs and BMDmeasures

could be linked.

7.1 Bone Physiology and Treatment Mechanism of Action

Abenefit of a comprehensive platformmodel, incorporating

the understanding of bone physiology and the information

present in the markers at different stages and levels, is that it

would allow for comparison of various treatments on a com-

mon basis during the time course of osteoporosis. When com-

paring treatments that decrease the resorption of bone with

those that increase the formation of bone or treatments that

induce both, different dynamics of the various bone resorption

and formationmarkers are observed, each ultimately leading to

an increase in BMD. Each treatment induces these effects

through different sites and modes of action within the system

and with different characteristic dynamics. For example, such a

model would allow for comparison of teriparatide (which in-

creases bone formation, which is followed by an increase in

bone resorption) with the converse action of antiresorptive

agents (see figure 7). Peterson and Riggs[54,411] have provided

an example of a conceptual physiological model, in which bone

physiology based on the OPG/RANKL/RANG regulatory

system of Lemaire et al.[53] and calcium homeostasis by Raposo

et al.[64] is combined, which enables comparison of these kinds

of treatment effects on a common basis.

As the increase in BMD is, at least partly, dependent on the

time-window between the changes in the formation and re-

sorption markers, a combined approach could allow for char-

acterization of this transient effect window, allowing for better

understanding and more accurate prediction of the (individual)

increases in BMD. This could be of great value when con-

sidering emerging treatments such as cathepsin K inhibitors,

which decrease bone resorption while presumably exerting

only modest effects on bone formation, and denosumab, which

specifically interacts with the osteoblastic-osteoclastic reg-

ulatory system.[95,97,232]

A DSA approach offers the advantage that it brings all

observations on biomarkers and BMD under a common
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denominator, leading to a definite conclusion on the treatment

effect in terms of ‘disease modifying’ versus ‘symptomatic’,

as well as ‘disease-dependent’ versus ‘disease-independent’.[9]

This is important because analysis of the treatment effect on

individual biomarkers may lead to different conclusions,

depending on the choice of the biomarker. For instance, this

can be observed in the investigation by Greenspan et al.,[198]

where the effect of bisphosphonate treatment was apparently

symptomatic when considering the dynamics of BTMs.

Although the dynamics of both bone formation markers and

bone resorption markers appear symptomatic, they have differ-

ent dynamics after termination of the treatment. This is because

the main action of bisphosphonates is inhibition of osteoclast-

mediated bone resorption and because of the specific pharma-

cokinetics of bisphosphonates. Ultimately, the treatment effect

on BMD dynamics appears to be disease-modifying.[9] We have

recently made a similar observation in a DSA analysis of the

effect of tibolone in combination with calcium on a variety of

biomarkers and BMD (Post TM et al., unpublished data).

7.2 Extrapolation and Prediction

Another advantage of pursuing this comprehensive plat-

form model using the population approach is that it char-

acterizes the dynamics of a population, while identifying and

explaining the diverse sources of variability. For instance, the

seasonal influence on BTMs and BMD can be accounted for in

a dynamic mechanistic fashion, and variation in stature,

bodyweight and body composition, which correlate with BMD

measures, can be taken into account to describe parts of

the between- and within-subject variabilities. Eventually, by

characterizing and quantifying these covariates and risk fac-

tors, and by accounting for inter- and intra-assay variation,

extrapolation and prediction of various treatment effects along

the trajectory of osteoporosis become feasible. The population

approach allows an integrated mechanism-based model to

leverage parameter information on specific parts of the system

in a population analysis, where individual studies may lack

information on specific components such as the disease, drug

action or covariates.

From a drug-development perspective, establishing models

that are capable of extrapolating and predicting treatment

effects offers clear advantages in selecting effective compounds

with the right dose, effective dosage regimens for the right

population, a shorter timeframe and a reduced number of

subjects for clinical trials. In addition, it would present an op-

portunity to take the best compound into full development

based on quantitative differentiation between novel and exist-

ing drug classes, thus considering different mechanisms of

action. Finally, it would allow prediction, comparison and

selection of the efficacy of different treatment regimens for

various mechanisms of action. Given the 2- to 5-year duration

of clinical trials and the substantial number of subjects needed

to establish antifracture risk, the efficiency of drug develop-

ment in the area of osteoporosis would greatly benefit from

predictive models for existing and novel compounds early in

their development.

From a regulatory perspective, although these models cannot

replace the actual trial, they may enable quantitative comparison

betweennovel and existing drug classes to provide comprehensive

supplementary guidance for assessment of treatment efficacy.

From a clinical perspective, individual extrapolation would

offer a tool for accurate estimation of individual treatment ef-

fectiveness, with prediction of its effects on BMD and perhaps

the fracture risk, dose and treatment adjustments, treatment

combinations and monitoring compliance. Nevertheless, one

should bear in mind that knowledge about the system, and the

information on relevant parts of the system and the available

treatment effects, continue to increase and, inherently, the

disease models should change accordingly to mirror important

advances. Furthermore, established disease systems should be

qualified extensively before they are applied in a regulatory

setting, and especially in a clinical setting, in order to avoid

misinterpretation of treatment effects.

8. Conclusion

In studying disease and treatment effects in the area of os-

teoporosis, an integrative approach is advocated in which the

concept of DSA is applied. This concept combines the interplay

between various levels of bone (patho-)physiology and relevant

biomarkers in a dynamic quantitative framework. Depending

on the quality and completeness of the data, this would allow

for a mechanistic model capable of quantitative assessment of

treatment efficacy at the various levels of bone physiology and

at different stages of pathophysiology on a universal basis. An

important characteristic of this approach lies in the identifica-

tion and characterization of the essential time and rate-limiting

steps in the regulatory system, based on the available literature

data and conceptual mathematical models. The important as-

pects of bone physiology should be preserved, while avoiding a

full physiologically based model incorporating each known

process. This optimization of the use of information will bring

the investigation of osteoporosis a step further by stepping

away from ‘simple’ fragmented models, which may miss out on
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certain aspects that are relevant to the disease and treatment

effects under investigation.

Ultimately, this should lead to a practical quantitative tool,

which enables translation of short-term effects into long-term

predictions in clinical and drug-development settings, and dif-

ferentiation in efficacy between different drug classes. More-

over, with continuing advances in knowledge about the system,

and with a multitude of markers becoming available that

reflect bone physiology at various levels, such a platformmodel

could be expanded, thereby increasing the translational power

of such a platform model to compare, predict and extrapolate

treatment effects with different mechanisms of action. Al-

though development of fully mechanistic disease systemmodels

may be practically impossible, it is concluded that parsimo-

nious – but mechanism-based – disease system models may

ultimately be used to adequately predict the long-term effects of

drug treatment on the clinical outcome: fractures.
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