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Abstract Magnesium exhibits a range of neuronal and vascular actions that may ame-
liorate ischaemic CNS insults, including stroke. Significant neuroprotection with
magnesium has been observed in different models of focal cerebral ischaemia in
many laboratories, with infarct volume reductions between 25 and 61%. Max-
imal neuroprotection is evident at readily attainable serum concentrations, and
neuroprotection is still seen when administration is delayed up to 6 hours after
onset of ischaemia.

Clinical use of magnesium in pre-eclampsia and acute myocardial infarction
confirms its safety and tolerability. Five small trials in acute stroke have reported
reduced odds of death or dependence with administration of magnesium, but
confidence intervals are wide, and definitive data from ongoing large trials are
awaited.
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The magnesium ion has a range of effects on
neurons and on vascular tissue that may contribute
to a protective action in ischaemic stroke. Magne-
sium is a ubiquitous feature of biological systems,
with physiological roles in cellular energy produc-
tion [80% of magnesium being bound to adenosine
triphosphate (ATP)], regulation of vascular smooth
muscle tone, protein synthesis, and competitive an-
tagonism of calcium entry at voltage- and ligand-
gated ion channels [e.g. the N-methyl D-aspartate
(NMDA) receptor complex].

There is evidence that magnesium affords neuro-
protection in animal models of ischaemic stroke,
and supportive evidence of a protective role in
CNS pathology resulting from a wide variety of
mechanistically relevant insults including global
cerebral ischaemia and seizures. Limited clinical
evidence of the efficacy of magnesium in stroke

exists. This article reviews the current data on mag-
nesium in ischaemic stroke.

1. Possible Neuroprotective
Mechanisms of Magnesium

1.1 Excitotoxic and Neuronal Effects

Pathological release of glutamate and other ex-
citatory neurotransmitters and consequent over-
stimulation of postsynaptic receptors is a key early
feature in animal focal ischaemia models. The
NMDA receptor is a particularly well documented
mediator of such excitotoxic mechanisms, with
consequent increases in calcium ion entry and
activation of numerous downstream neurotoxic
events including generation of free radicals, acti-
vation of apoptotic enzymes and initiation of pro-
teolysis. Pharmacological blockade of excitotoxic
pathways is a robust neuroprotective strategy in



animal focal ischaemia models, irrespective of the
precise mechanism chosen.[1]

Extracellular magnesium concentration declines
in the acute phase after stroke, global forebrain
ischaemia,[2] or head injury in animal models, while
intracellular free magnesium concentration in-
creases,[3] probably as a consequence of dissocia-
tion from ATP and intracellular acidosis.

Under normal conditions, active blood-brain
barrier transport maintains a magnesium concen-
tration that is higher in the brain than in the periph-
ery. Preclinical and clinical studies show slow en-
try of magnesium into CSF and brain tissue,[4,5]

with the peak level after a 15-minute intravenous
infusion being achieved after 4 hours.[5] After in-
travenous or intramuscular doses that increase se-
rum concentrations by 50 to 100%, the CSF total
magnesium concentration rises by only approxi-
mately 20%,[5,6] even with a damaged blood-brain
barrier.[7] While the overall increase in CSF mag-
nesium concentration is small, much greater local
concentrations around sites of pathological activ-
ity, such as seizure foci[8] or ischaemia,[9] are ob-
served in animal models. CSF ionised (rather than
total) magnesium concentrations did not increase
after short intravenous infusion in patients with
CNS injury,[10] but the importance of this is unclear
in light of direct evidence of therapeutic effects.

By antagonising presynaptic calcium entry and
potentiating adenosine action at adenosine A1 re-
ceptors,[11] magnesium inhibits glutamate release
in vitro at physiological concentrations. It is un-
clear whether this action is important in ischaemia,
but other inhibitors of glutamate release are neuro-
protective.[12-14]

Magnesium ions provide a physiological volt-
age-dependent block of the NMDA receptor ion
channel.[15] Depolarisation of the postsynaptic
membrane is required in addition to glutamate
binding in order to dissociate magnesium ions and
permit calcium and sodium entry. Although it is not
certain that increasing extracellular magnesium
concentrations is able to re-establish blockade of
the NMDA receptor under ischaemic conditions in
vivo, this has been shown in cell culture mod-

els.[16,17] Increasing extracellular magnesium con-
centrations additionally contributes to an increase
in intracellular concentrations that enhance NMDA
receptor blockade.[18-20] More direct evidence of
anti-excitotoxic actions of systemically adminis-
tered magnesium come from studies indicating that
magnesium reduces NMDA receptor antagonist
binding characteristics at therapeutically achiev-
able concentrations,[21] inhibits NMDA-induced
seizures,[22] and is neuroprotective in a ‘pure ex-
citotoxic’ model of neuronal injury involving in-
trastriatal NMDA injection.[23]

Magnesium ions antagonise calcium entry via
voltage-gated calcium channels of all types. Excess
calcium entry via postsynaptic voltage-gated chan-
nels contributes to the evolution of neuronal cell
death, although quantitatively it may be less impor-
tant than that via NMDA receptors.[24] Exogenous
administration of magnesium may increase intra-
cellular concentrations sufficiently to enhance
postsynaptic voltage-gated calcium channel antag-
onism.[20] Calcium entry via voltage-gated chan-
nels may not, however, be mechanistically relevant
in stroke, since there is limited preclinical evidence
of significant neuroprotection with synthetic
dihydropyridine calcium antagonists, and these
agents have not proved beneficial in clinical trials
involving over 7000 patients (see review by Horn
and Limburg[25]).

Magnesium is also protective in in vitro white
matter ischaemia models,[26] probably by inhibit-
ing sodium-calcium exchange; inorganic calcium
antagonists are ineffective in these models.

Another novel feature of magnesium in animal
models is its ability to prevent postanoxic de-
polarisations that may contribute significantly to
energy failure in critically perfused neuronal tis-
sue. This effect has been seen after intravenous ad-
ministration of magnesium in a rat model of suba-
rachnoid haemorrhage (SAH).[27]

1.2 Vascular Effects

Magnesium is a vasodilator, due to calcium
channel antagonism at vascular smooth muscle and
possibly more specific effects on myosin-binding
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proteins that regulate contraction. Magnesium ad-
ministration stimulates synthesis of renin, and im-
pairs that of aldosterone.[28] It may also promote
endothelial prostacyclin synthesis.[29,30] It pre-
vents or attenuates vasoconstriction induced by a
variety of mediators including endothelin-1,[31]

norepinephrine (noradrenaline), angiotensin II[32]

and serotonin,[33] and counteracts vasospasm in-
duced by SAH in animal models.[34] These effects
have been observed in animal and human intracere-
bral vessels.[35,36] Synthetic endothelin-1 antagonists
reduce the volume of cerebral infarction in focal
ischaemia models.[37]

Magnesium acts as a vasodilator in human ma-
ternal and fetal circulations, including the cerebral
circulation, when given as a treatment for pre-
eclampsia.[38-40] In focal ischaemia in rats, magne-
sium infused 10 minutes after middle cerebral ar-
tery occlusion (MCAO) to serum concentrations of
3.21 mmol/L increased blood flow to the ischaemic
cortex to the extent that there was no statistical
difference between magnesium-treated animals
and controls,[41] although no change in cerebral
blood flow by laser Doppler flowmetry was seen
in another MCAO model.[42]

Systemic vasodilatation by magnesium infusion
causes minor hypotension, but decreased systemic
vascular resistance is accompanied by increased
cardiac output, and retained renal function.[43]

1.3 Antiplatelet Effects

High serum concentrations of magnesium are
associated with antagonism of ex vivo platelet ag-
gregation, prolonged bleeding time and disaggre-
gation of platelet thrombi.[44,45] Prolongation of
bleeding time has also been observed in human
volunteer studies using more typical therapeutic
doses, with serum magnesium concentrations in
the region of 1.50 mmol/L.[46,47] However, no clin-
ically relevant bleeding complications have been
observed in several large clinical trials of magne-
sium in patients with myocardial infarction (MI),
even when coadministered with antiplatelet agents
and thrombolytic drugs.[48]

2. Preclinical Data

2.1 Focal Ischaemia

Magnesium is neuroprotective in rodent models
of reversible and permanent MCAO (see below).
No studies using larger species have been reported.
Unlike synthetic neuroprotective agents, syste-
matic development of magnesium has not been un-
dertaken. However, neuroprotective effects of mag-
nesium have been confirmed in many different
models, and by many different investigators, and
magnesium therefore conforms to a recent key
recommendation for neuroprotective drug devel-
opment,[49] which emphasised the importance of
obtaining robust preclinical evidence of neuro-
protection before proceeding to clinical trials; this
was supported by recognition that many synthetic
compounds lacked such evidence.

An unexplained but consistent observation in
animal models is that magnesium chloride is asso-
ciated with hyperglycaemia, whereas magnesium
sulphate is not.[42,50-53] Why this anion-specific ef-
fect should occur is not understood, and it has not
been reported in humans. Hyperglycaemia is likely
to attenuate any therapeutic effect of magnesium
since it is associated with brain lactic acidosis,
which is neurotoxic.[54] For example, after perma-
nent MCAO in rats, intraperitoneal magnesium
chloride reduced infarct volume by 26%, but by
44% when euglycaemia was maintained by coad-
ministration of insulin.[50]

Magnesium reduces infarct volume after per-
manent MCAO,[50]reversible MCAO with reperfu-
sion,[42,51] and after thrombotic MCAO.[52] The re-
ductions in total infarct volume varied between
25% (with magnesium chloride)[42] and 61% (with
magnesium sulphate).[52] As with synthetic agents,
cortical infarct volumes are reduced to a greater
extent than those in the basal ganglia,[42,50] but sig-
nificant basal ganglia protection was also seen af-
ter reversible MCAO of 90 minutes’ duration (see
figure 1).[51] Significant improvements in func-
tional neurological recovery have been noted,[42,52]

and in one study, magnesium-treated animals had
significantly reduced mortality compared with
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controls.[52] A dosage of 90 mg/kg elevated the se-
rum magnesium concentration to 1.49 mmol/L and
was associated with a highly significant infarct vol-
ume reduction when administered prior to the in-
duction of ischaemia[51] or, remarkably, up to 6 hours
after onset of ischaemia (see figure 1).[52] Dose and
time dependence of neuroprotection have been ex-
plored in two separate laboratories.

2.2 Other Relevant Models

Systemically administered magnesium signifi-
cantly reduces cerebral infarction after SAH in rats
induced by penetrating intraluminal carotid artery
injury, and prevents the postanoxic depolarisation
seen in this model.[27]

Amelioration of spinal cord ischaemia has been
reported,[55-57] but comparisons with brain isch-
aemia studies are difficult since very high doses
were given in the studies of spinal cord ischaemia
(sufficient to cause neuromuscular blockade,[55] or
300 to 600 mg/kg[57]) or the route was intrathecal.[56]

Improved functional recovery[56,58] and preser-
vation of neurophysiological responses[57] were re-
ported.

Systemic magnesium administration attenuates
or abolishes the induction of seizures by adminis-
tration of penicillin,[59] strychnine[60] and NMDA[22,61]

or electrical stimulation,[8] but not status epilepticus
induced by administration of pentylenetetrazol.[62]

In global forebrain ischaemia models, neuronal
salvage has been reported even with very delayed
postischaemic administration of magnesium, but
these studies have involved direct brain infusion of
high concentrations of magnesium and are of un-
certain relevance.[63] In two studies using more
therapeutically relevant dosing regimens, magne-
sium improved neurological function in dogs after
global ischaemia and reperfusion,[64] but was histo-
logically ineffective in rats when administered af-
ter 10 minutes of forebrain ischaemia.[53] Similar
dissociation of functional recovery from histology
was seen after spinal cord ischaemia in rats given
intrathecal magnesium.[58]

Magnesium improves functional and histologi-
cal outcomes after head trauma in a range of rodent

models, including focal fluid-percussion injury,
contusional or electrolytic lesions, and diffuse ax-
onal injury, even if administered 30 minutes after
injury.[65-70]

Control
Magnesium sulphate 30 mg/kg
Magnesium sulphate 90 mg/kg
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Fig. 1. Effect of magnesium sulphate on cerebral ischaemia in
rat focal ischaemia models. (a) Dose of magnesium sulphate
versus infarct volume in reversible middle cerebral artery suture
occlusion for 1.5 hours followed by reperfusion for 24 hours.
Magnesium sulphate was infused intra-arterially over 10 min-
utes before induction of ischaemia. Mean peak serum magne-
sium concentrations were 1.08 ± 0.13 mmol/L in the 30 mg/kg
group and 1.49 ± 0.18 mmol/L in the 90 mg/kg group (repro-
duced from the Journal of Neurosurgery, Marinov et al.,[51] with
permission). (b) Infarct volume and effects of delay in treatment
after induction of ischaemia by thrombus injection to the middle
cerebral artery. Animals were treated with magnesium sulphate
90 mg/kg intravenously 2, 4 or 8 hours after the induction of
ischaemia (reprinted from Neuroscience Letters, Yang et
al.,[52] with permission from Elsevier Science). * p < 0.05 vs
control.
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3. Clinical Data

3.1 Stroke

Data from four small clinical trials that have
assessed the effects of magnesium in patients with
stroke are available at present.[71-74] These include
162 patients treated within 12 or 24 hours of stroke
onset. Outcomes were assessed between 30 days
and 6 months after stroke. Details of administra-
tion regimen and trial design are given in table I.

Systematic review of these trials (figure 2)
yields an odds ratio for death and disability of
0.67 (95% confidence interval 0.35 to 1.26), and
an absolute risk reduction for poor outcome of
around 8%.[78] The wide confidence intervals re-
flect the small numbers of participants, and overall
power to detect a difference of the observed mag-
nitude was only 16%. A larger trial involving 510
participants reported a similar magnitude of bene-
fit using unconventional outcome measures,[75] but
was excluded from systematic review since rando-
misation and blinding procedures were not de-
scribed.

For three studies in which blood pressure data
were available, diastolic blood pressure was signif-
icantly lower in magnesium-treated patients at 24
hours, but not at earlier time points.[71-73] Overall
mean peak serum magnesium concentration was
1.50 mmol/L, although this is derived from trials
in which the majority of patients received loading
infusions of 8 mmol; a dose-optimisation study
found 16 mmol to achieve higher serum concentra-

tions (mean peak concentration of 1.84 mmol/L)
rapidly and without safety concerns.[72]

3.2 Other Conditions

Magnesium has predominantly been used in
treatment of pre-eclampsia/eclampsia and acute MI.

Several large trials, and systematic review of
data, confirm significant benefit in seizure preven-
tion and treatment in pre-eclampsia and eclamp-
sia.[79-82] Typical therapeutic regimens use high
doses, e.g. intravenous magnesium sulphate 16 mmol
is followed by either a 4 to 8 mmol/h intravenous
infusion, or intramuscular administration of 40 mmol
(10g) then 20 mmol 4-hourly, and serum concen-
trations maintained at around 2.1 to 2.6 mmol/L.[83]

In MI, initially positive results from systematic
review[84] and one moderately large trial[85] were
contradicted by the findings of the Fourth Interna-
tional Study of Infarct Survival (ISIS-4) mega-
trial,[48] where no benefit was found. However, de-
bate continues, and some further small trials con-
tinue to report the benefit of magnesium with re-
spect to a reduced incidence of dysrhythmias.[86]

These data on the use of magnesium in these
indications are pertinent since they confirm the
safety and tolerability of magnesium infusions
similar to those employed in stroke trials. They
also provide supportive evidence of CNS effects at
readily achieved serum magnesium concentrations
that are well within the neuroprotective range seen
in animal models of focal ischaemia.[51] The ab-
sence of a significant benefit in MI does not nec-

Table I. Clinical trials of magnesium in patients with acute stroke

Trial Year Time
window

No. of
participants

Treatment regimen

Wester et al.[74] 1984 12h 26 4 mmol IV bolus, 5 mmol/h IV for 8h, oral 10 mmol three
times daily for 5 days

Muir & Lees[71] 1995 12h 60 8 mmol IV bolus, 65 mmol IV over 24h

Muir & Lees[72] 1998 24h 24 8, 12 or 16 mmol IV bolus, 65 mmol IV over 24h

IMAGES pilot[73] 1998 12h 51 16 mmol IV bolus, 65 mmol IV over 24h

Galeas et al.[75] 1999 Unknown 510 7.5 mmol magnesium aspartate HCl IV daily

IMAGES[76] Ongoing 12h 2700a 16 mmol IV bolus, 65 mmol IV over 24h

FAST-MAG pilot[77] Ongoing 2h 20a 2.5g IV bolus, 16g IV over 24h

a Planned sample size.

FAST-MAG= Field Administration of StrokeTherapy-Magnesium; IMAGES = Intravenous Magnesium Efficacy in Acute Stroke trial; IV = intravenous.
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essarily have implications for stroke trials, since
the a priori hypothesis for mechanism of action
centred around antiarrhythmic or antiplatelet ef-
fects that were not confirmed in ISIS-4, and exper-
imental data are minimal. The multiple neuronal
mechanisms that potentially contribute to (or cause)
the neuroprotective effects of magnesium are also
not relevant in this situation.

3.3 Ongoing Trials

The Intravenous Magnesium Efficacy in Stroke
(IMAGES) trial is an academic multicentre trial
powered to detect a 5.5% absolute difference in
death and disability 3 months after stroke.[76] It is
funded by the UK Medical Research Council and
has recruited more than 67% of a planned 2700
patients at the time of writing. The sample size for
IMAGES was calculated on the basis of pilot trial
results[71] which have subsequently been supported
by systematic review of all magnesium trial data.
IMAGES is a worldwide study, with centres in the
UK, mainland Europe, North and South America,
Australasia, Singapore and China.

A substudy of IMAGES, MR-IMAGES, utilises
magnetic resonance imaging techniques that allow
comparison of lesion volume at acute and later time
points; the promise of these parameters as bio-
markers for efficacy has been shown in other neu-

roprotective trials.[87] MR-IMAGES will recruit
150 patients, which gives 80% power to detect a
25% difference in the proportion of patients exhib-
iting lesion growth.

The Field Administration of Stroke Therapy-
Magnesium (FAST-MAG) trial is presently in its
pilot phase, and a full trial is planned.[77] This study
utilises prehospital treatment of patients with sus-
pected stroke, commenced by paramedics and con-
tinued after hospital admission.

4. Conclusions

Preclinical data indicate significant neuropro-
tection by magnesium in several different models
of ischaemic stroke, with maximal effect at readily
achieved serum concentrations, and a protracted
therapeutic window of 6 hours. Improvements in
survival, brain oedema and functional outcome are
all reported independently by a number of different
laboratories. Similar benefits have been found in
models of SAH, head trauma, seizures and spinal
cord ischaemia. There is evidence of an action in
specific neuronal pathways such as NMDA recep-
tor–mediated excitotoxic injury, but other possibly
pertinent actions include calcium antagonism, va-
sodilatation, endothelin antagonism, and enhanced
regional cerebral blood flow. Peripherally admin-
istered magnesium enters the CSF and the brain,

Control
n/N

Odds ratio
(95% confidence intervals)

Study

χ2 0.66 (df = 3), p = 0.88; Z = −1.25, p = 0.5

Treatment
n/N

9/13 0.38 [0.08-1.90]Wester et al.[74] 6/13

4/6 0.56 [0.08-3.80]Muir & Lees[72] 10/19

14/30 0.76 [0.27-2.12]Muir & Lees[71] 12/30

12/25 0.79 [0.26-2.40]IMAGES pilot[73] 11/26

Total 39/88 39/74 0.67 [0.35-1.26]

1 50.20.1 10

Favours treatment Favours control

Fig. 2. Death and disability at final follow-up in all completed trials of magnesium for stroke. Randomisation and blinding procedures
were not specified for one trial, which was therefore excluded from analysis. IMAGES = Intravenous Magnesium Efficacy in Acute
Stroke trial; n/N = number with outcome/sample size.
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but does not have any known detrimental adverse
effects at therapeutic concentrations.

Clinical data are presently too limited to permit
definite conclusions on the effects of magnesium
in patients with stroke. Stroke trials completed to
date involve only 162 participants, and although
point estimates of effect indicate reduced death
and disability 1 to 6 months after stroke compared
with controls, the confidence intervals are very wide.
Estimates of effect size are comparable with exist-
ing stroke treatments.[88] One major trial (IMAGES)
is ongoing, and a further (FAST-MAG) is planned.

Magnesium has a profile comparable with, or
superior to, synthetic neuroprotective drugs. Never-
theless, no neuroprotective agent has so far been
successful in clinical trials and there have been a
large number of failures with compounds that had
promising preclinical results (see review by Gore-
lick[89]).

A number of potential weaknesses in stroke trial
design have been identified, many of which studies
of magnesium that have been performed to date
have avoided (e.g. reproducibility of preclinical
data, pharmacokinetic problems leading to poten-
tial under-dosing).[49] The major compromise in
the design of IMAGES is the long time window of
12 hours, which may reduce the study power by
including a high proportion of patients with al-
ready established irreversible ischaemic damage.
Such compromises are necessary to boost recruit-
ment from smaller centres not used to participating
in acute treatment trials since financial constraints
prevent competition with industry-funded trials
that dominate in large stroke centres. However,
since earlier administration will be addressed in
FAST-MAG, and biomarkers for efficacy will be
available from the MR-IMAGES substudy, the
neuroprotective potential of magnesium should be
tested fully.

If the ongoing trials are successful, the advan-
tages would be considerable. Magnesium is inex-
pensive and readily available, and worldwide up-
take would be anticipated. Since stroke is the
second biggest cause of mortality worldwide, even
modest reductions in death and disability may have

huge consequences if treatment can be widely de-
livered.
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