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Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3AAbstract
is responsible for the metabolism of about 60% of currently known drugs.
However, this unusual low substrate specificity also makes CYP3A4 susceptible
to reversible or irreversible inhibition by a variety of drugs. Mechanism-based
inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide
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phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inac-
tivation, occurring when some drugs are converted by CYP isoenzymes to
reactive metabolites capable of irreversibly binding covalently to CYP3A4.
Approaches using in vitro, in silico and in vivo models can be used to study
CYP3A4 inactivation by drugs. Human liver microsomes are always used to
estimate inactivation kinetic parameters including the concentration required for
half-maximal inactivation (KI) and the maximal rate of inactivation at saturation
(kinact).

Clinically important mechanism-based CYP3A4 inhibitors include antibacteri-
als (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g.
tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), anti-
hypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their
receptor modulators (e.g. gestodene and raloxifene), and several herbal con-
stituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often
possess several common moieties such as a tertiary amine function, furan ring,
and acetylene function. It appears that the chemical properties of a drug critical to
CYP3A4 inactivation include formation of reactive metabolites by CYP
isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate,
and occurrence of clinically significant pharmacokinetic interactions with
coadministered drugs.

Compared with reversible inhibition of CYP3A4, mechanism-based inhibition
of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug
interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised
CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects,
including some fatal events. For example, when aforementioned CYP3A4 inhibi-
tors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4
substrates), torsades de pointes (a life-threatening ventricular arrhythmia associat-
ed with QT prolongation) may occur.

However, predicting drug-drug interactions involving CYP3A4 inactivation is
difficult, since the clinical outcomes depend on a number of factors that are
associated with drugs and patients. The apparent pharmacokinetic effect of a
mechanism-based inhibitor of CYP3A4 would be a function of its KI, kinact and
partition ratio and the zero-order synthesis rate of new or replacement enzyme.
The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors,
confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A
inhibition for drug safety and efficacy warrants closer understanding of the
mechanisms for each inhibitor. Furthermore, such inactivation may be exploited
for therapeutic gain in certain circumstances.

The cytochrome P450 (CYP) [EC 1.14.14.1] su- reactive oxygen species and water.[2,7] Among CYP
perfamily, containing 57 genes,[1] contributes to the isoenzymes, the subfamily CYP3A is responsible
metabolism of a variety of xenobiotics including for the metabolism of about 60% of currently known
therapeutic drugs, carcinogens, steroids and eicosa- therapeutic drugs.[2-4,8,9] The CYP3A subfamily in
noids.[2-6] The catalytic mechanism appears to be humans includes CYP3A4, CYP3A5, CYP3A7[4]

common to all CYP isoenzymes and involves a two- and CYP3A43.[10] CYP3A4 is the most abundant
electron reduction of molecular oxygen to form a among the isoenzymes of CYP3A subfamily in the
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human liver (~40%) and metabolises more than 50% 1. Approaches to Investigating
Mechanism-Based Inhibition ofof clinically used drugs,[3,11] whereas polymorphic
Cytochrome P450 (CYP) 3A4CYP3A5 accounts for 5–50% of total CYP3A abun-

dance[12,13] and is present in appreciable amounts in
1.1 In Vitro Modelsabout 25% of the adult population.[14] CYP3A7 is

the primary fetal isoform and is rarely detected in Human liver microsomes, hepatocytes and com-
adults.[15,16] CYP3A43 gene is expressed significant- plementary DNA (cDNA)-expressed enzymes are
ly in the prostate and testis, whereas the hepatic the commonly used in vitro systems for the
messenger RNA (mRNA) level is only 0.2–5% of investigation of mechanism-based inhibition of

CYP3A4.[21] By using these in vitro models, thethat of CYP3A4.[10] Thus, the two latter enzymes
qualitative features of mechanism-based inhibitionplay a minor role in drug metabolism in adults.
of CYP3A4, such as time-, NADPH- and concentra-

The low substrate specificity makes CYP3A4
tion-dependent inhibition, can be easily determined.

susceptible to reversible or irreversible inhibition by Experimentally, mechanisms of inhibition of inhibi-
a variety of drugs.[17] The irreversible mechanism- tors could be assessed initially by comparing their
based inhibition of CYP3A4 refers to the inactiva- inhibitory effects obtained in the presence and ab-
tion of the enzyme via the formation of metabolic sence of NADPH during a preincubation period.

Important kinetic parameters for mechanism-basedintermediates (MIs) that bind tightly and irreversi-
inhibition such as the concentration required forbly to the enzyme.[18,19] A mechanism-based inhibi-
half-maximal inactivation (KI), the rate constant oftion of CYP3A4 should have the following fea-
maximal inactivation at saturation, analogous totures:[20,21]

maximum rate of metabolism by an enzyme-medi-
• preincubation time-dependent inhibition of ated reaction (kinact), and partition ratio (Rmax, ratio

CYP3A4 of moles of substrate activation per mole of enzyme
inactivation) can also be determined.[21]• nicotinamide adenine dinucleotide phosphate hy-

In vitro systems (particularly microsomal sys-drogen (NADPH)-dependent inhibition (i.e. no
tems) can be used to isolate and identify the resultantinhibition without NADPH in preincubation)
covalent metabolic intermediate-CYP3A4 complex

• inhibitor concentration-dependent inhibition with
by using gel electrophoretic and mass spectrometric

saturation kinetics (pseudo first-order kinetics) techniques. The addition of glutathione and N-
• substrate protection (i.e. slower inactivation rate acetylcysteine facilitates the identification of reac-

tive metabolites and characterisation of adduct for-of the enzyme in the presence of substrate)
mation with CYP3A4.[22] An apparent attenuation of• inhibitor protection (i.e. reduced inactivation of
the degree of CYP3A4 inactivation in preincubationCYP3A4 when coincubated with CYP3A4 inhib-
mixtures fortified with glutathione and the identifi-

itor or inhibitory antibody) cation of glutathione adducts in human liver
• uncertain prevention by exogenous nucleophiles microsomal incubations would provide further evi-

(e.g. glutathione semicarbazide, and N-acetylcys- dence implicating reactive metabolites in the inacti-
vation of CYP3A4. Each in vitro model has itsteine)
advantages and disadvantages, and a combination• irreversible inhibition (i.e. CYP3A4 activity not
use will often provide convincing data. Liver micro-

recovered after gel filtration or dialysis)
somes can be studied long term and are easily

• stoichiometry of inactivation (i.e. 1 : 1 stoichi- manipulated and optimised, but cofactor (NADPH)
ometry of the inhibitor and the active site of is necessary for CYP3A4-catalysed reactions to re-
CYP3A4). place those lost as a result of the destruction of cell

© 2005 Adis Data Information BV. All rights reserved. Clin Pharmacokinet 2005; 44 (3)
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integrity. Hepatocytes provide cellular integrity CYP3A4[22,119,128] are useful for the demonstration
of reduced covalent binding by drugs to CYP3A4with respect to enzyme architecture and are useful
and CYP3A4 adduct formation in vitro. Mecha-for determining the cytotoxicity of formed CYP3A4
nism-based inhibitors for CYP3A4 such as trole-adducts in vitro. However, the enzyme activity re-
andomycin,[90,131-133] clarithromycin[90,91] and eryth-sults obtained from hepatocytes should also be inter-
romycin[121,133] can be particularly useful, as they arepreted with caution, especially for quantitative com-
often insensitive to the concentration of the testparisons, as many enzyme activities decline sponta-
compound and can be used as reference CYP3A4neously during hepatocyte isolation or culture.[23]

inactivators. Some of them such as ritonavir[119,120]Cloned cDNA-expressed human CYP3A4 is availa-
have been used for the investigation of mechanism-ble, and in theory supplies are unlimited.[24,25] It is
based inhibition of CYP3A4 by drugs.worth noting that levels of enzyme expression are

Model inducers (e.g. rifampicin [rifampin],[27,134]variable across expression systems, and (especially
phenobarbital[27,135] and dexamethasone[27,134]) ofwith regard to CYP3A) reductase and cytochrome
CYP3A4 can be used as a valuable tool in the studyb5 to CYP ratios are often nonphysiological.[24,26]

of mechanism-based CYP3A4 inhibition. The nu-A number of well characterised model substrates
clear pregnane X receptor, also called steroid andfor CYP3A4[27-29] can be used for the study of mech-
xenobiotic receptor or pregnane-activated receptor,anism-based inhibition of CYP3A4 in vitro (table I).
was found to mediate the drug-induced expressionAmong these CYP3A4 substrates, benzodiazepine
of CYP3A4.[136-140] In in vitro assays for CYP3A4(midazolam and triazolam), testosterone and
induction using hepatocytes,[141-146] the catalytic ac-ciclosporin are most commonly used. These probe
tivity, protein or mRNA level of CYP3A4 are en-

drugs have been used to investigate the mechanism-
hanced and thus the formation of CYP3A4 adducts

based inhibition of CYP3A4 in vitro by a variety of
can be increased, leading to increased CYP3A4

drugs. These compounds are readily available and
inactivation. It should be noted that this in vitro

suitable for experiments in microsomes. However,
approach has several limitations, such as, the re-

only some of them may be used in assays with intact
markable interindividual donor variation in response

cells (e.g. hepatocytes), as these substrates should be
to the CYP3A4 inducers; and cell culture conditions

noncytotoxic and readily move across cell mem-
are also an important factor contributing to the con-

branes. Because the in vitro findings obtained with
siderable variability of CYP3A4 induction.[146] In

one probe substrate for CYP3A4 are often extrapo-
addition, the enzyme activity of CYP3A4 obtained

lated to the potential of test compounds to influence from hepatocytes should also be interpreted with
all CYP3A substrates and the inhibition of CYP3A4 caution, especially for quantitative comparisons, as
by drugs is often substrate-dependent,[30] it is impor- many enzyme activities decline spontaneously dur-
tant to use the right probe substrate and to conduct ing hepatocyte isolation or culture.[23]

the experiment under optimal conditions.[28]

Selective inhibitors (chemicals[124] and inhibitory 1.2 In Silico Models
antibody[125]) for CYP3A4 are also useful tools for
the study of mechanism-based inhibition of There is increasing use of in silico methods to
CYP3A4. These chemical probes and antibody are study mechanism-based inhibition of CYP
validated and readily commercially available (see isoenzymes by therapeutic drugs. The major in
http://www.gentest.com; http://www.biotrend.com). silico methods for this purpose include simple rule-
Reversible CYP3A4 inhibitors such as ketocona- based modelling, structure-activity relationships,
zole,[22,117,119,126,127] itraconazole,[128] quinidine at three-dimensional quantitative structure-activity re-
high concentration (≥50 μmol/L),[22] testoster- lationships, pharmacophores and homology model-
one,[129] terfenadine,[130] astemizole,[130] ci- ling.[147-152] All of these represent useful tools for
closporin[128] and inhibitory antibody against understanding inactivation reactions (formation of

© 2005 Adis Data Information BV. All rights reserved. Clin Pharmacokinet 2005; 44 (3)



Mechanism-Based Inhibition of CYP3A4 283

© 2005 Adis Data Information BV. All rights reserved. Clin Pharmacokinet 2005; 44 (3)

T
ab

le
 I

. 
S

om
e 

m
od

el
 s

ub
st

ra
te

s 
of

 c
yt

oc
hr

om
e 

P
45

0 
(C

Y
P

) 
3A

4 
us

ed
 f

or
 t

he
 s

tu
dy

 o
f 

m
ec

ha
ni

sm
-b

as
ed

 in
hi

bi
tio

n 
of

 C
Y

P
3A

4

S
ub

st
ra

te
M

et
ab

ol
ic

 r
ea

ct
io

n
Q

ua
nt

ita
tio

n 
m

et
ho

d
E

xa
m

pl
es

 o
f 

in
 v

itr
o 

ap
pl

ic
at

io
n

In
 v

iv
o

E
xa

m
pl

es
 o

f 
in

 v
iv

o 
ap

pl
ic

at
io

n
ap

pl
ic

at
io

n

A
lfe

nt
an

il
N

-d
ea

lk
yl

at
io

n[3
1-

33
]

LC
-M

S
 a

nd
T

ro
le

an
do

m
yc

in
,[3

1]
 e

ry
th

ro
m

yc
in

[3
1]

Y
es

[3
4,

36
]

E
ry

th
ro

m
yc

in
,[3

7]
 v

er
ap

am
il,

[3
6]

G
C

-M
S

[3
1,

34
,3

5]
di

lti
az

em
[3

6]

A
lp

ra
zo

la
m

1′
-h

yd
ro

xy
la

tio
n 

[3
8]

H
P

LC
[3

9]
T

ro
le

an
do

m
yc

in
[3

8]
Y

es
[4

0]
F

lu
ox

et
in

e,
[4

1,
42

]  e
ry

th
ro

m
yc

in
[4

0]

C
la

rit
hr

om
yc

in
N

-d
em

et
hy

la
tio

n[4
3]

H
P

LC
[4

4]
T

ro
le

an
do

m
yc

in
[4

3]
Y

es
[4

5,
46

]
C

ic
lo

sp
or

in
,[4

6]
 c

ar
ba

m
az

ep
in

e[4
5]

C
or

tis
ol

6β
-h

yd
ro

xy
la

tio
n[4

7-
49

]
H

P
LC

[4
7,

50
,5

1]
G

es
to

de
ne

,[4
7]
 c

ic
lo

sp
or

in
[4

7]
Y

es
[5

1,
52

]
G

es
to

de
ne

,[5
3]
 d

es
og

es
tr

el
[5

3]

C
ic

lo
sp

or
in

O
xi

da
tio

n[5
4-

57
]

H
P

LC
[5

5,
58

]
N

ic
ar

di
pi

ne
,[5

8]
 n

ife
di

pi
ne

,[5
7,

58
]  v

er
ap

am
il,

[5
8]

Y
es

[5
9]

C
la

rit
hr

om
yc

in
,[6

0]
 e

ry
th

ro
m

yc
in

[6
1]

di
lti

az
em

[5
8]

D
ap

so
ne

N
-h

yd
ro

xy
la

tio
n[6

2,
63

]
H

P
LC

[6
4]

G
es

to
de

ne
,[6

2]
 t

ro
le

an
do

m
yc

in
[6

2]
Y

es
[6

5]
E

th
in

yl
es

tr
ad

io
l[6

6]

E
ry

th
ro

m
yc

in
N

-d
em

et
hy

la
tio

n[6
7]

B
re

at
h 

te
st

,[6
8]

T
ro

le
an

do
m

yc
in

[6
9]

Y
es

[7
0,

71
]

C
ic

lo
sp

or
in

,[7
2]
 t

ro
le

an
do

m
yc

in
,[7

0]

sp
ec

tr
op

ho
to

m
et

ry
[6

9]
de

la
vi

rd
in

e 
[7

3]

E
th

in
yl

es
tr

ad
io

l
2-

hy
dr

ox
yl

at
io

n[7
4,

75
]

H
P

LC
[7

4]
G

es
to

de
ne

[7
6]

Y
es

[5
3]

R
ito

na
vi

r,
[7

7]
 g

es
to

de
ne

,[5
3]

de
so

ge
st

re
l[5

3]

Li
do

ca
in

e
N

-d
ee

th
yl

at
io

n 
an

d
H

P
LC

 [8
1]

T
ro

le
an

do
m

yc
in

[7
8]

Y
es

[8
2-

85
]

E
ry

th
ro

m
yc

in
[8

6]

(li
gn

oc
ai

ne
)

3-
hy

dr
ox

yl
at

io
n[7

8-
80

]

M
id

az
ol

am
1′

-h
yd

ro
xy

la
tio

n[8
7]

H
P

LC
[8

8]
Is

on
ia

zi
d,

[8
9]
 c

la
rit

hr
om

yc
in

,[9
0,

91
]  d

ilt
ia

ze
m

,[9
2]

Y
es

[9
3]

C
la

rit
hr

om
yc

in
[9

4]

flu
ox

et
in

e[9
1]

N
ife

di
pi

ne
O

xi
da

tio
n[3

0,
67

,9
5]

H
P

LC
[9

6]
G

es
to

de
ne

[7
6]

Y
es

[9
7]

O
ra

l c
on

tr
ac

ep
tiv

e 
st

er
oi

ds
,[9

8]

rit
on

av
ir[9

9]

T
er

fe
na

di
ne

H
yd

ro
xy

la
tio

n[1
00

-1
02

]
H

P
LC

[1
03

]
C

la
rit

hr
om

yc
in

,[5
4]
 g

es
to

de
ne

,[1
02

]  r
ito

na
vi

r,
[1

04
]

N
o

flu
ox

et
in

e[1
05

]

T
es

to
st

er
on

e
6β

-h
yd

ro
xy

la
tio

n[6
7]

H
P

LC
,[1

06
,1

07
]

Ir
in

ot
ec

an
,[1

09
]  t

am
ox

ife
n,

[1
10

]
N

o
G

C
-M

S
[1

08
]

di
hy

dr
al

az
in

e,
[1

11
,1

12
]  d

ilt
ia

ze
m

,[9
5]

m
ife

pr
is

to
ne

,[1
13

]  v
er

ap
am

il,
[9

5]
 n

ic
ar

di
pi

ne
,[9

5]

ra
lo

xi
fe

ne
,[2

2]
 b

er
ga

m
ot

tin
,[1

14
]  e

ry
th

ro
m

yc
in

[4
4]

T
ria

zo
la

m
1′

-h
yd

ro
xy

la
tio

n[6
,2

8,
11

5]
H

P
LC

[1
16

]
D

el
av

ird
in

e,
[1

17
]  n

el
fin

av
ir,

[1
18

]  r
ito

na
vi

r,
[1

18
-1

20
]

Y
es

[1
15

,1
22

]
E

ry
th

ro
m

yc
in

,[1
22

]

er
yt

hr
om

yc
in

,[1
21

]  f
lu

ox
et

in
e[1

15
]

cl
ar

ith
ro

m
yc

in
,[1

22
]  d

ilt
ia

ze
m

[1
23

]

G
C

-M
S

 =
 g

as
 c

hr
om

at
og

ra
ph

y 
m

as
s 

sp
ec

tr
om

et
ry

; 
H

P
L

C
 =

 h
ig

h-
pe

rf
or

m
an

ce
 li

qu
id

 c
hr

om
at

og
ra

ph
y;

 L
C

-M
S

 =
 li

qu
id

 c
hr

om
at

og
ra

ph
y 

m
as

s 
sp

ec
tr

om
et

ry
.



284 Zhou et al.

metabolic intermediate-CYP3A4 complex), struc- Most substrates listed in table I can be used in
tural requirements for inactivators, providing insight vivo in humans to evaluate inhibition and induction
into the active site of CYP3A4, optimising the de- of CYP3A.[25,158] Midazolam is considered as one of
sign of drugs and selective inhibitors of CYP3A4, the best in vivo probe drugs for the study of
and predicting possible metabolic drug-drug interac- CYP3A4 activity,[17] for several reasons: it can be
tions involving mechanism-based inactivation of administrated both orally and intravenously, which
CYP3A4.[19,150,153,154] The resulting data based on in can provide a measure of CYP3A4 activity relative
silico approaches may be of clinical significance. to intestinal and hepatic metabolism, respectively;
For example, knowledge of the substrate specificity midazolam is not a substrate of P-glycoprotein (P-
and regulation of the CYP is essential, as this will gp);[159] and midazolam metabolism at lower con-
provide information on the possible drug-drug inter- centrations exhibits a regioselective difference
action. which can be used to discriminate among individu-

als with or without CYP3A5, as CYP3A5 has aAn example of application of an in silico model
much higher 1′-OH : 4-OH ratio of midazolam me-to understanding CYP3A4 inactivation is the struc-
tabolism than CYP3A4.[12,87] Several classical in-ture-activity relationship analysis of the 17α-acety-
ducers such as rifampicin,[160-162] ritonavir[77,163] andlenic steroids, which indicates that the delta 15
phenobarbital can be used to study induction ofdouble bond is critical, but is not in itself sufficient
hepatic and intestinal expression of CYP3A4 in vivofor the inactivation process, possibly owing to attack
in humans.of CYP on the substituted acetylenic carbon leading

to porphyrin N-alkylation.[76] In fact, a variety of
2. Biochemical Mechanism fordifferent mechanism-based CYP inactivators have
Drug-Induced Inactivation of CYP3A4proven to be useful in identifying active site amino

acid residues involved in substrate binding and ca-
talysis.[19] Labelled peptides isolated from the inacti- 2.1 Formation of Reactive Metabolic
vated proteins can be analysed by N-terminal amino Intermediates of Drugs
acid sequencing in conjunction with mass spectro-

The first step of inactivating CYP3A4 by drugs ismetric techniques to determine the active sites of
the bioactivation of drugs to reactive MIs, which iscovalent modification and amino acids involved.[19]

often via various CYP isoenzymes. The diversity of
CYP isoforms means that a wide range of drugs can1.3 In Vivo Models
be bioactivated by either a single CYP or multiple
CYPs. It is well known that drugs which containAlthough in vitro and in silico models may pro-
several common moieties such as a tertiary aminevide a quick screening tool for mechanism-based
function,[164-167] furan ring[114,168] and acetyleneCYP inhibition, the relative simplicity of in vitro
function[76,113] are metabolised by CYP isoenzymesand in silico approaches provide limited information
and bind to the same enzyme covalently to form awithout considering many important physiological
CYP-metabolite complex and thereby inactivate thefactors. Animal models (mouse and rat) have been
enzyme. Investigations of mechanism-based inacti-extensively used to study mechanism-based CYP3A
vation can lead to detailed information on the inter-inhibition, providing important information on CYP
action of the compound and the enzyme, i.e. theinactivation. However, interspecies variations in the
nature of the reactive intermediate formed, the effi-substrate specificity, catalytic features and amino
ciency of the inactivation process, and amino acidacid sequences of CYP isoenzymes may cause diffi-
residues located within the enzyme active site.[19]culty in extrapolating animal data to humans.[155-157]

Therefore, in vivo human studies are usually neces- For some CYP3A4 inactivators, the reactive MIs
sary to provide evidence of their clinical impor- have been largely identified. Diltiazem, nicardipine
tance. and verapamil (all calcium channel antagonists)
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contain an amine functional group and undergo N- placement of leucine 210 or leucine 211 with ala-
dealkylation, resulting in MIs.[169,170] Macrolides nine reduced, but did not abolish, the activation
such as erythromycin, clarithromycin, troleando- effect of α-naphthoflavone on progesterone and tes-
mycin and oleandomycin with 14-membered rings tosterone hydroxylase activities.[187]

can be metabolised by CYP3A4 to form reactive
In deference to the large CYP3A4 active site,

nitrosoalkanes via N-demethylation which interact
substrate-dependent drug-drug interactions and thewith CYP to result in MI complex.[90,131,132,164,171-176]

atypical pharmacokinetics associated with certainEthinylestradiol, the major constituent of many oral
CYP3A4-mediated oxidations, there is strong evi-contraceptives, is metabolised by CYP3A4 to one
dence in support of the hypothesis that there aremajor metabolite, 2-hydroxyethinylestradiol, and at
multiple substrate binding sites in CYP3A4.[188-191]

least three additional catechol metabolites,[129,177]

The evidence is mainly from studies using methodswhich are believed to inactivate CYP3A4.[129] How-
such as site-directed mutagenesis, homology model-ever, for most known CYP3A4 inactivators, their
ling and functional analysis using substrates such asreactive MIs and bioactivation pathways are
progesterone, testosterone and midazolam.[30,181,192]largely unknown. The CYP3A4-mediated metabo-
The most distant amino acids from the catalyticlism of several protease inhibitors (amprenavir,[120]

centre of CYP3A4 that have a role in substrateL 754394,[147,178,179] nelfinavir[180] and riton-
binding are leucine 210, leucine 211 and asparticavir[119,120]) results in unknown reactive metabolites
acid 214.[187,193]which then inactivate CYP3A4. Midazolam is a

potent CYP3A4 inactivator and such enzyme inacti- CYP3A4 exhibits unusual substrate kinetics, in-
vation is suggested to be related to the 1′-hydroxyl- cluding activation, autoactivation, partial inhibition
ation metabolic pathway.[181] Several antiproges- and substrate inhibition often observed.[30,188-190,194]

togens (e.g. mifepristone, lilopristone and onapris- Several hypotheses involving two-site or three-site
tone) are suggested to be oxidised by CYP3A4 to

models as well as the existence of functionally dis-
reactive nitroso species that complex the haem of

tinct conformers have been proposed to explain the
the enzyme,[182] thereby inactivating it.

atypical CYP3A4 pharmacokinetics.[188-190] There is
a 6-fold difference in the Km values between triazo-
lam α-hydroxylation and 4-hydroxylation[195] and2.2 Multiple Active Sites of CYP3A4
two very distinct Km values for the two hydroxyl-
ation pathways of midazolam,[181,196,197] suggestingCYP3A4 is known to metabolise a large variety
the existence of two binding sites in CYP3A4. Theof compounds varying in molecular weight (MW)
differential stimulation/inhibition by α-naph-from lidocaine (MW = 234d) to ciclosporin (MW =
thoflavone and testosterone[30,196] and observation of1203d).[2,183] It is believed that CYP3A4 has a spa-
two distinct apparent inhibition constant (Ki) valuescious hydrophobic active site capable of accommo-
for inhibition of 1′-OH and 4-OH midazolam forma-dating a diverse range of compounds. As a result,
tion by the peptide YPFP-NH2 have provided addi-CYP3A4 binding interactions are dominated by the
tional evidence to support two binding sites oflipophilicity of the drug molecule involved, as indi-
CYP3A4.[197] However, the possibility of the sub-cated by a significant correlation between the
strate binding at a single site but in two differentoctanol partition coefficient (log D7.4) and apparent
orientations cannot be ruled out. Furthermore, mo-Michaelis-Menten constant (Km) for
lecular modelling[193] and mechanistic studies[190,197]CYP3A4.[184,185] Modelling and amino acid align-
suggest that the complex effects observed with se-ment studies have proposed that these amino acids
lect CYP3A4 substrates may be attributable to theoccupy positions in the F-helix, remote from the
binding of multiple substrates within the active sitehaem iron of the CYP3A4 active site.[186]

of the enzyme.Mutagenesis studies have demonstrated that re-
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2.3 Mechanisms for the Inactivation haem.[205,212] In the case of ethinylestradiol, the en-
of CYP3A4 zyme inactivation led to the destruction of approxi-

mately half the haem with the concomitant genera-
Mechanisms of CYP inhibition by a drug can be tion of modified haem and ethinylestradiol-labelled

divided into three categories: reversible, quasi-irre- haem fragments and produced covalently radio-
versible and irreversible.[198] Quasi-irreversible and labelled CYP3A4 apoprotein.[114,129,199,213-215] The
irreversible inhibitors require at least one cycle of chemical structure(s) and the nature of adduction of
the CYP catalytic process and are thus signified by these modified species remain to be established.
both NADPH- and time-dependent inhibition. These Ethinylestradiol can modify both the haem and the
catalytic processes result in reactive metabolites that apoprotein of CYP3A4, whereas it modified only
lead to chemical modification of the haem, the pro- the apoprotein in CYP2B1 and CYP2B6.[216] These
tein, or both as a result of covalent binding of results suggest that the metabolic activation of a
modified haem to the protein.[21,199,200] The detailed single ethinyl compound can result in different reac-
mechanism of inactivation may be elucidated by a tivities towards haem versus apoprotein with differ-
number of analytical and proteomic techniques, ent CYP isoenzymes.
such as mass spectrometry and homology model-

3. Estimation of Inhibitory Potencies ofling. For example, mifepristone was shown to be
CYP3A4 Inactivatorscovalently bound to the apoCYP3A4 by gel electro-

phoresis,[113,114] while both haem adduction and
fragmentation are ruled out, as the Soret absorption 3.1 Estimation of Apparent KI and kinact
of the inactivated CYP3A4 did not decrease when

To get KI and kinact, the logarithm of the remain-compared with the controls.[201] A similar result has
ing enzymatic activity is plotted against the prei-been observed with bergamottin.[114,202,203]

ncubation time. The apparent inactivation rate con-Covalent labelling of the apoCYP isoforms has
stant (kobs) is determined from the slope of the initialbeen shown to be the mechanism for inactivation of
linear phase. The value of kobs is then plotted againstCYPs by terminal acetylenes such as 1-
the inhibitor concentration, and the parametersethinylpyrene, 2-ethinylnaphthalene, and some oth-
(kinact and KI) are obtained by the nonlinear least-er polycyclic arylacetylenes,[204-206] furan-contain-
squares method using the following equation (equa-ing compounds such as methoxsalen, coriandrin and
tion 1):[21,217]

bergamottin,[114,202,207] and sulphur-containing and
halogenated compounds such as parathion and
chloramphenicol.[208,209] CYP3A4 inactivators such

� �
� �IK

Ik
k

�

�
�

I

inact
obs

as delavirdine,[126] L 754394,[147] ethinylestradi- (Eq. 1)
ol[129] and midazolam[181,190] possibly bind covalent- where kobs, kinact, KI represent the apparent inactiva-
ly to the CYP apoprotein and inactivate it. Certain tion rate constant of the enzyme at the initial concen-
CYP3A4 inactivators such as macrolides (e.g. eryth- tration of inhibitor [I], the maximum inactivation
romycin[210]), glabridin[211] and nelfinavir[180] bind rate constant, and the apparent inactivation constant
the haem and inactivate the enzyme. between the enzyme and inhibitor, respectively.

The reactive intermediates of acetylenic com- Furthermore, the inactivation efficiency (Einact) can
pounds formed by several CYP isoenzymes have be calculated by equation 2:
been known to alkylate the prosthetic haem group as
well as to bind covalently to the protein.[200] Studies
with CYP2B1 demonstrated that 2-ethinylnaphtha- � �IK

k

�
�

I

inact
inactE

(Eq. 2)lene predominantly inactivates CYP2B1 through
modification of the apoprotein, whereas pheny- The inactivation half-life (t1/2inact) can be calculat-
lacetylene inactivates CYP2B1 via N-alkylation of ed by equation 3:
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Drugs in table II can also be classified in four
groups based on their kinact values: drugs with kinactinact

½inact

693.0

k
t �

≤0.06 min–1 (i.e. t1/2inact ≥11.6 min) [e.g. fluoxe-(Eq. 3)
tine,[91] dihydralazine,[111] tamoxifen[110] and irinote-In addition, Rmax can be estimated by equation 4:
can[109]]; drugs with kinact 0.061–0.10 min–1 (i.e.
t1/2inact 6.93–11.5 min) [e.g. clarithromycin,[90,91] am-

)(
max

obs tkeRr ��

��

(Eq. 4) prenavir[120] and ritonavir[119,120]]; drugs with kinact
0.11–0.29 min–1 (i.e. t1/2inact 2.39–6.30 min) [e.g.where r and Rmax represent the nanomoles of reac-
diltiazem,[91,92,95,218] glabridin,[211] troleando-tive product formed per nanomole CYP at a particu-
mycin[90,131-133] and raloxifene[22]]; and drugs withlar time (t) and at infinity, respectively. It should be
kinact ≥0.30 min–1 (i.e. t1/2inact ≥6.30 min) [e.g. ges-noted that partition ratio (Rmax) is also an important
todene,[76] mibefradil[219] and delavirdine[126]]. Bothpotency parameter for CYP3A4 inactivation. The
nicardipine[95] and L 754394[147,178] are the most po-partition ratio of the most powerful mechanism-
tent inactivators of CYP3A4, with a kinact of 2.0 andbased inhibitor is zero (i.e. every turnover produces
1.62 min–1, respectively, while fluoxetine[91] andinactivated enzyme). CYP3A4 inactivators with a
K 11002[128] inhibited CYP3A4 to the least extent,low partition ratio (e.g. 1.4 for L 754394[147,178]) are
with kinact values of 0.017–0.026 min–1.often potent mechanism-based inhibitors, while

those with a high partition ratio (e.g. 50 for
ethinylestradiol[129] and 41 for delavirdine[126]) have 3.3 Relationship between KI and kinact, Km
low inhibition of CYP3A4. and Ki

There is no significant relationship between KI3.2 Reported Apparent KI and kinact
and kinact (r2 = –0.31, p = 0.598) [figure 1a], indicat-
ing that both inhibitor concentration and time ofA number of drugs with different efficacy and
exposure are independent determinants for CYP3A4structure have been reported to be mechanism-based
inactivation. Similarly, there is no correlation be-inhibitors of CYP3A4 (table II). Most of these drugs
tween apparent Ki and KI (r2 = 0.047, p = 0.3454)are reported to be CYP substrates and reversible
[figure 1b]. This may be because the apparent Ki isinhibitors of CYP3A4. These drugs can be classified
mainly determined by a reversible process where theinto four groups based on their KI values, reflecting
parent drug molecules play a major role; whereas KItheir inhibitory potency: drugs with KI ≤1.0 μmol/L
is a dissociation constant reflecting an irreversible(e.g. ritonavir,[119,120] troleandomycin[90,131-133] and
process where covalent binding occurs.[19] In partic-tamoxifen[110]); drugs with KI 1.1–5.0 μmol/L (e.g.
ular, the Ki values for CYP3A4 inhibition may beamprenavir,[120] verapamil,[95,218] diltiazem[91,92,95,218]

substrate-dependent and less selective comparedand mibefradil[219]); drugs with KI 5.1–10.0 μmol/L
with KI. As shown in table II, the apparent Ki values(e.g. fluoxetine,[91] midazolam[181] and clarithro-
of drugs for the inhibition of CYP3A4-mediatedmycin[90,91]); and drugs with KI >10 μmol/L (e.g.
reaction are often greater than the corresponding KIirinotecan,[109] gestodene,[76] isoniazid[89] and eryth-
values, exceptions being gestodene (5.6[47] vsromycin[220-222]). In addition, the metabolites of
46 μmol/L[76]) and isoniazid (63.9[231] vs 228 μmol/some drugs are also mechanism-based inhibitors of
L[89]).CYP3A4 (e.g. N-desmethyl diltiazem,[91] N-

desmethyltamoxifen,[110] SN 38[109] and 6′, 7′-dihy- Because of the highly possible relevance of drug
droxybergamottin[223]). Among these drugs, both bioactivation by CYP isoenzymes to metabolites
K 11777[128] and ritonavir[119,120] are the most potent that subsequently inactivate the enzymes, the appar-
CYP3A4 inactivators, with KI of 0.06 and ent Km values for bioactivation are often comparable
0.07 μmol/L, respectively; whereas isoniazid[89] is a to the KI values. For example, the apparent Km
weak CYP3A4 inactivator with a KI of 228 μmol/L. value[234] for the hydroxylation of the 17α-propynyl
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group of mifepristone (9.9 μmol/L) in human liver
microsomes is comparable to its KI (4.7 μmol/
L).[113] Another example is delavirdine, which un-
dergoes oxidation (desalkylation and 6′-hydroxyl-
ation) by pooled human liver microsomes or recom-
binant CYP3A4 with an apparent Km of
5.4–6.8 μmol/L,[126] which is close to its KI
(9.5 ± 1.7 μmol/L) for CYP3A4 inactivation.[117]

The similar binding affinities for these two indepen-
dent processes imply that the orientation of the
mifepristone molecule in the active site of CYP3A4
may be similar for both the oxidative bioactivation
and enzyme inactivation. A relationship study of
CYP3A4 inactivators indicates that there is a signifi-
cant relationship between apparent Km and KI
(r2 = 0.668, p = 0.004) [figure 1c]. However, this
positive correlation disappears if amprenavir,[120]

clarithromycin,[90,91] diltiazem[228] and tamoxifen[110]

are included. For these drugs, a large difference
(9.8- to 250-fold) between apparent Km and KI are
observed, which may be due to the involvement of
multiple CYP isoenzymes in their metabolism and
bioactivation, multiple binding sites of CYP3A4,
nonspecific binding to microsomal proteins and dif-
ferent assay systems.

4. Clinical Considerations of
Drug-Induced CYP3A4 Inactivation

4.1 Altered Drug Pharmacokinetics and/or
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Fig. 1. Relationship between KI and kinact (a), Ki (b) and Km (c). KI

= concentration required for half-maximal inactivation; Ki = appar-
ent inhibition constant; kinact = maximal rate of inactivation at satu-
ration; Km = Michaelis-Menten constant.

Pharmacodynamics due to
CYP3A4 Inactivation concentrations of a number of therapeutic agents

that are substrates of CYP3A4 (table III). DiltiazemBecause of the pivotal role of CYP isoenzymes in
has been shown to potently inhibit the metabolismdrug metabolism, significant inactivation of these
of a variety of coadministered drugs includingisoforms and particularly the major human hepatic
carbamazepine,[240] ciclosporin,[241,242] quini-and intestinal CYP3A4 could result in drug-drug
dine,[243] midazolam,[244] alfentanil,[36] nifedipine[245]interactions and adverse drug reactions. Compared
and lovastatin[246] (table IV). Inhibition of CYP3Awith reversible inhibition of CYP3A4, mechanism-
by ritonavir explains, at least in part, the remarkablebased inhibitors of CYP3A4 more frequently cause
elevation of blood concentrations and area under thepharmacokinetic/pharmacodynamic drug-drug in-
plasma concentration-time curve (AUC) of otherteractions, as the inactivated CYP3A4 has to be
concomitantly administered drugs that are exten-replaced by newly synthesised CYP3A4 protein.
sively metabolised by CYP3A4 and have intermedi-Pharmacokinetic interactions often occur as a result
ate (10–80 L/h) to high (>80 L/h) intrinsic clearanceof a change in drug metabolism. For example, the

14-membered-ring macrolides increased the plasma and significant first-pass metabolism. These drugs
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include rifabutin (400%),[247] clarithromycin
(77%),[248] ketoconazole (350%),[163] saquinavir
(5000%),[249] amprenavir (210%),[250,251] nelfinavir
(152%),[163,252] lopinavir (7700%)[253] and indinavir
(380%).[254]

Mechanism-based inactivation of CYP3A4 may
cause severe drug toxicity due to metabolic inhibi-
tion of coadministered drugs.[269] When irreversible
CYP3A4 inhibitors such as erythromycin and
clarithromycin are coadministered with other drugs
such as terfenadine, astemizole or pimozide, pa-
tients may experience torsades de pointes.[269-271]

Terfenadine is a CYP3A4 substrate that undergoes
extensive first-pass metabolism following oral ad-
ministration.[54,272] In the absence of a drug interac-
tion, the carboxylate metabolite is the principal cir-
culating entity in plasma, whereas unchanged
terfenadine, a drug known to cause torsades de
pointes, is normally not present at measurable con-
centrations.[272,273] Rhabdomyolysis has occurred
when simvastatin was combined with erythromycin
or ritonavir.[274] Symptomatic hypotension may oc-
cur when mechanism-based CYP3A4 inhibitors are
combined with some dihydropyridine calcium chan-
nel antagonists,[275] as well as with the phosphodies-
terase inhibitor sildenafil.[276] In addition, ataxia can
occur when carbamazepine is coadministered with
mechanism-based CYP3A4 inhibitors such as
macrolide antibacterials, isoniazid, verapamil and
diltiazem.[277,278] On the other hand, beneficial drug
interactions may occur as a result of CYP3A4 inacti-
vation. Coadministration of a mechanism-based
CYP3A4 inhibitor with ciclosporin may allow re-
duction of the dosage and cost of the immunosup-
pressant.[269] Certain HIV protease inhibitors (e.g.
saquinavir) have low oral bioavailability that can be
significantly (>50-fold) increased by the addition of
ritonavir.[279,280]

In addition to toxic drug-drug interactions, the
formation of drug reactive metabolite-CYP3A can
also play a role in toxicity initiation. The formed
adduct can induce potential immune responses,
leading to production of autoantibodies against
CYP3A. The formation of drug-CYP3A adducts
may be nontoxic or fatal, depending on the drugs,

© 2005 Adis Data Information BV. All rights reserved. Clin Pharmacokinet 2005; 44 (3)
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pharmacokinetics of adduct formation and degrada- onset of inhibition by erythromycin is a predictable
tion, other affected target proteins and organs, and property of a relatively weak inactivator. The
pathological conditions of the patients.[281] The reac- delayed offset of CYP3A inhibition is expected to
tivity of drug intermediates and subcellular localisa- be independent of the inactivating drug and the
tion of major protein targets are important determin- extent of inhibition. This time-dependent offset may
ing factors in the toxicity.[282,283] Selective protein explain the serious adverse events associated with
covalent binding by a drug or its metabolite(s) has discontinuation of the irreversible inactivator,
been associated with target organ/tissue toxicity of mibefradil, and immediate initiation of alternative
drugs.[284] For example, reactive metabolites of calcium channel antagonist treatment.[219,290] A
tamoxifen are believed to bind covalently to DNA mibefradil washout period of 7–14 days was thus
and proteins in the endometrial tissue, causing en- recommended.
dometrial carcinoma. Determination of in vitro pharmacokinetic pa-

rameters is essential for the prediction of drug me-
4.2 In Vitro-In Vivo Extrapolation Involving tabolism by a particular CYP isoenzyme in vivo. The
CYP3A4 Inactivation apparent KI values for competitive inhibition deter-

mined in vitro, together with its relationship to un-
One of the main objectives of in vitro metabolic bound plasma concentrations of the inhibitor

inhibition studies is the qualitative and quantitative
achieved with therapeutic doses in vivo, can be used

prediction of in vivo drug-drug interactions, and
as a rough guide to predict the possibility of a

quantitative in vitro metabolic data may be extrapo-
significant in vivo drug interaction.[20,291] Relating

lated reasonably well to in vivo situations with the
the in vitro results to in vivo pharmacokinetics is not

application of appropriate pharmacokinetic princi-
straightforward. Generally, to predict the degree of

ples.[20,285-288] It can be anticipated that the inactiva-
interaction observed in clinical cases quantitatively,

tion of CYP3A4 by various drugs would increase
it is necessary to investigate the correlation between

the bioavailability of coadministered drugs
in vitro inhibitory potency of the inhibitor and in

metabolised mainly by CYP3A4, because of intesti-
vivo inhibition, taking into account the distribution

nal and hepatic inhibition of CYP3A4. It is believed
of the inhibitor into the liver, and extrapolation of

that, in vivo, the inhibitory effect of a mechanistic
data from animal studies.[229]

inactivator is more prominent after multiple-dose
Several approaches for modelling mechanism-administration and lasts longer than that of a revers-

based enzyme inactivation have been described inible inhibitor.[198] The activated species irreversibly
the literature.[21,91,217,292-294] In a well describedalters the enzyme to remove it permanently from the
model of mechanism-based enzyme,[293] an inac-pool of active enzyme. Thus, the time-dependent
tivator can be released from the enzyme throughinactivation of CYP3A isoenzymes results in non-
reversible binding, converted to a product through alinear pharmacokinetics, as indicated by 50–100%
productive catalytic cycle, or can inactivate the en-prolongation of the diltiazem half-life in humans
zyme by forming a complex. The active enzymeafter long-term administration compared with the
concentration at time t ([E]t) can be defined bysingle-dose data.[289]

equation 5:The extent of a drug interaction due to CYP3A
inactivation is time dependent in both onset and
offset. For example, erythromycin did not signifi-
cantly inhibit the clearance of alfentanil on the first

[I] + KI[E]t = [E]0 × e  
–t × [I] × kinact( )

day of coadministration but produced a 25% de-
(Eq. 5)crease after 7 days.[37] As the half-life for onset of

where [E]0 is the initial enzyme concentration, [I] isinactivation is inversely proportional to the efficien-
inactivator concentration, and kinact and KI are pa-cy [kinact/(KI + [I])] of inactivation, the delayed
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rameters estimable by nonlinear regression. This 4.3 Factors Affecting the Clinical
Consequence of Mechanism-Basedmodel assumes that:[91]

Inhibition of CYP3A4• the conditions of the well stirred model are met;

• hepatic elimination is the only pathway; 4.3.1 Drug-Related Factors
The clinical importance of any drug-drug interac-• there is complete absorption of drugs from the

tion due to CYP3A4 inactivation depends on factorsgastrointestinal tract;
that are associated with the administered drugs and

• hepatic first-pass metabolism is influenced by an patients, and the pharmacodynamic consequences
inactivator. may or may not closely follow pharmacokinetic

alterations. Since many mechanism-based CYP3A4By using this model, it was predicted that dil-
inhibitors are also inducers of CYP isoenzymes, andtiazem, clarithromycin and fluoxetine at unbound
enzyme inactivation is significantly affected by drugplasma concentrations of 0.1 μmol/L will increase
exposure time, the clearance of coadministered

the AUC of a coadministered CYP3A substrate by drugs may be increased or decreased in vivo, de-
1.4-, 2.6- and 4.7-fold, respectively.[91] These pre- pending on the interplay between substrate, inhibi-
dicted results are in good qualitative agreement with tor, inducer and CYP3A4. There appear to be no

common structural factors that determine whether areported clinical data, especially when one considers
compound is a CYP3A4 inactivator. However, it isthat simple competitive models completely fail to
well known that drugs which have several commonpredict any interactions where a Ki of 60, 10 and
moieties such as a tertiary amine function,[164,165]

50 μmol/L for diltiazem, clarithromycin and fluoxe- furan ring[114,168] and acetylene function[76,113] are
tine, respectively,[54,220,295] and steady-state plasma metabolised by CYP isoenzymes and bind to the
concentrations of 0.3, 0.9 and 1.0 μmol/L, respec- same enzyme covalently to form a CYP-metabolite

complex and thereby inactivate the enzyme. It ap-tively, were used.[94,246,295]

pears that the chemical properties of a drug criticalHowever, the in vitro inhibitory potencies of
to CYP3A4 inactivation include formation of reac-

mechanism-based CYP3A4 inhibitors do not neces-
tive metabolites, metabolism by CYP isoenzymes,

sarily translate directly into relative extents of inhi- preponderance of CYP inducers and P-gp substrate,
bition in vivo. In vivo clinical consequences depend and occurrence of clinically significant pharmacoki-

netic interactions with coadministered drugs.upon additional factors that are not easily accounted
Many CYP3A4 inactivators such as irinote-for in vitro and they could confound in vitro-in vivo

can,[296-299] some protease inhibitors[300] and mifepri-extrapolation for drug-drug interactions. Such fac-
stone[301] are also known substrates and/or inhibitors

tors include:
of P-gp. P-gp encoded by the human MDR1 is

• concentration-time course constitutively expressed in the brush border mem-
brane of intestinal enterocytes and the canalicular• plasma protein binding
membrane of hepatocytes, and it transports structur-• atypical substrate pharmacokinetics for CYP3A4
ally and functionally diverse compounds.[302,303]

• existence of inhibitory metabolites Thus, the potential for effects of these CYP3A4
• partitioning from plasma to liver inhibitors on the bioavailability of certain drugs may

be enhanced, given that P-gp is the other major• rate-limiting transport of drug and inhibitor into
determinant of the oral bioavailability of manythe hepatocytes
drugs.[301,304] However, P-gp can also alter the intra-

• intestinal active efflux of drug and inhibitor cellular concentration of CYP3A inhibitors and in-

• extrahepatic metabolism of drugs and inhibitors. ducers and hence the magnitude of the inhibitory
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and inductive response. Furthermore, P-gp is pre- of drug interactions involving CYP3A4 inactiva-
sent on many barrier sites throughout the body, such tion. However, changes in liver blood flow, liver
as the blood-brain and blood-testis interfaces, and size, renal function, drug protein binding and distri-
could decrease the concentration of its substrates bution with aging may be significant, and thus affect
such as protease inhibitors in these sanctuary drug metabolism and elimination. Further studies
sites.[302] P-gp, like CYP3A, can also be induced by are required to substantiate whether there is a clini-
many drugs.[305] This would complicate the interac- cally significant sex- and age-dependent difference
tions between drugs, CYP3A and P-gp. It has been in CYP3A inactivation.
postulated that P-gp and CYP3A are functionally Inflammation and relevant cytokines are known
linked components of a drug detoxification cascade to affect drug metabolism by downregulating or
that limits the bioavailability of several drugs.[306] upregulating expression of several CYP isoen-
There is substantial overlap in substrate specificity zymes, including the CYP3A subfamily. Cytokines
between CYP3A and P-gp, and several modulators/ such as interleukin-6 rapidly and extensively de-
substrates of P-gp and CYP3A have been shown to creased the expression of both human pregnane X
coordinately upregulate the expression of these pro- receptor and constitutively activated receptor
teins in vitro.[307] mRNAs in human hepatocytes, leading to reduced

expression of CYP3A4, CYP2B and CYP2C.[309]

4.3.2 Patient-Related Factors This receptor downregulation phenomenon is ac-
The age, sex, comedications, diseases and genet- companied by reduced responsiveness of CYP3A4

ic factors are all potentially important factors affect- to induction by both rifampicin and phenobarbital.
ing the clinical outcomes of mechanism-based In addition, cytokines are potent regulating factors
inactivation of CYP3A4. In most cases, there are of drug transporters,[313] indicating a complex effect
remarkable interindividual variations in the mecha- on drug metabolism and transport of inflammation
nism-based inactivation of CYP3A4 and subsequent and cytokines.
drug-drug interactions. This is mainly due to the
significant difference of CYP3A4 content. There is 5. Conclusion and Future Perspectives
a significant variation in the hepatic expression of
CYP3A4 based on in vitro (35- to 100-fold) studies The low substrate specificity also makes
using human liver bank[11] and in vivo (20- to CYP3A4 susceptible to reversible or irreversible
50-fold) using probe drugs such as erythromycin[308] inhibition by a variety of drugs. Irreversible inhibi-
midazolam[93] and alfentanil.[34] Such a substantial tion of CYP3A4 due to enzyme inactivation or com-
variation is considered to be the result of a number plexation occurs when some therapeutic drugs are
of environmental, physiological and genetic fac- converted by CYP isoenzymes to reactive metabo-
tors.[137] Treatment of patients with rifampicin re- lites capable of binding covalently to CYP3A4.
sults in a 4- to 8-fold variation in induction of Clinically important mechanism-based CYP3A4 in-
CYP3A4 in the enterocyte as assessed by CYP3A4 hibitors include antibacterials (e.g. clarithromycin,
probe,[309] indicating additional interindividual vari- erythromycin and isoniazid), anticancer agents (e.g.
ation in the CYP3A4 inductive response. irinotecan and tamoxifen), anti-HIV agents (e.g.

It appears that there are no marked age and sex ritonavir and delavirdine), antihypertensives (e.g.
differences in CYP3A4 expression,[310-312] although verapamil and diltiazem), and sex steroids and their
24–36% higher activity in females than in males has modulators (e.g. gestodene and mifepristone). Most
been reported.[70] CYP3A4 catalytic activity is also of these CYP3A4 inactivators are also substrates
not affected by smoking status, alcohol (ethanol) and inducers of CYP isoenzymes (particularly
consumption or percentage ideal bodyweight.[310] CYP3A4). The drugs that inactivate CYP3A4 often
Thus, it can be predicted that age and sex are not possess several common moieties such as a tertiary
important factors determining the clinical outcome amine function, furan ring and acetylene function.
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