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Abstract Models of tolerance are commonly derived on empirical grounds, because of
lack of knowledge about the mechanism of tolerance or because of the difficulty
of appropriately simplifying complex physiological processes. The present study
was performed to evaluate the interchangeability of tolerance models used in the
literature and to address some determinants for selection of an appropriate design
and data analysis strategy.

Seven models were chosen (noncompetitive antagonist model, partial agonist
model, reverse agonist model, direct moderator model, indirect moderator model,
pool model and adaptive pool model) along with their corresponding parameter
estimates, representing a wide range of empirical models.

The performance of the models on various data sets was evaluated. Data were
simulated from each original model and were further analysed by the other
models. The effect-time course of each and every data set could be described well
by at least 2 different empirical tolerance models, but no model could describe
all the data sets adequately. However, all models could adequately describe at
least 2 different data sets. This indicates that, without additional knowledge or
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assumptions, it is unlikely that reliable mechanistic information can be de-
duced from the mere fact that 1 (or more) of these models can describe the data.
Generally, data expressing only limited tolerance can be described by a wide
variety of models, whereas few models will be appropriate for data characterised
by extensive tolerance.

The models that gave an adequate description of a data set were selected for
further study that investigated their predictive capacity based on the parameters
previously determined. Predictions were made for 4 different administration
schemes. The selected models gave similar predictions for the extended designs
of 3 data sets for which the original study designs characterised tolerance well.
For the other 4 data sets, the selected models gave disparate predictions, although
the models described the original data set well. Thus, the predictive capability
of a model was linked to the original study design, whereas the correlation be-
tween predictive performance and the type of model was weak or absent. Based
on the results, factors of importance for the design and evaluation of studies of
tolerance were identified and discussed.

Tolerance and physical dependence are phe-
nomena that have been described for several drugs.
They are manifested as time-variant concentration-
effect patterns and originate from different kinds of
adaptive processes in the body. Depending on the
rate and extent of their development, tolerance and
physical dependence may necessitate changes in
the dosage regimen of a drug.

Castañeda-Hernández and colleagues divided
tolerance into ‘true’ tolerance, in which the mea-
sured effect is subject to tolerance, and ‘homeo-
static’ tolerance, where the measured effect is the
outcome of the direct drug effect and homeostatic
counter-regulatory processes.[1] Tolerance may be
due to ‘neuroadaptive’ processes, for example un-
coupling of the receptor-effector system, reduction
of the number of receptors or depletion of second
messengers.[2] Homeostatic tolerance could be caused
by systemic adaptations of physiological systems,
e.g. neurohormonal counter-regulation, as for the
vasoconstrictive effect of nitroglycerin[2] or the
remoxipride-induced depletion of prolactin.[3]

An often-used definition of neuroadaptive tol-
erance is that a given dose of a drug produces a
decreased effect after repeated administration or,
conversely, that increasingly larger doses must be
taken to obtain the effects observed with the first
dose.[4-7] Arapid, within minutes, diminution of the

response has been referred to as desensitisation or
tachyphylaxis.[4,8] A general description of toler-
ance can simply be a decreased effect with pro-
longed exposure to the drug.[8,9]

Physical dependence is a state in which the pre-
sence of a drug is required to maintain the normal
physiological system. It is characterised by spe-
cific symptoms, withdrawal effects or rebound ef-
fects, which arise upon discontinuation of the drug
and generally counteract the initial effects of the
drug.[5,6,8] Tolerance and physical dependence are
commonly, but not necessarily, associated.[4,6]

For simplicity, in this study all adaptive pro-
cesses influencing the measured effect will be re-
ferred to as tolerance, and subsequent discontinuation
of the drug as rebound effects. Several publications
have characterised and quantified drug tolerance
and rebound effects using pharmacokinetic-phar-
macodynamic modelling. The division of the mod-
els into different types in table I is roughly based
on the classification made in the references. The
proposed models are more or less empirical with
respect to drug mechanisms. Although some mod-
els are characterised as physiological when de-
scribing certain drug effects, they have all been
suggested for more empirical characterisation of
other drugs. Often the tolerance mechanism is not
fully known or is very complex, which explains
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why highly physiological models might be diffi-
cult to develop. Few publications have presented
comparisons of the performance of different em-
pirical tolerance models.[15,16,28] In addition, there
is a lack of information on the applicability of
the models to characterise systems and administra-
tion regimens other than for the conditions under
which they have been developed.

The main objectives of the present study were to:
• evaluate the interchangeability of tolerance mod-

els when applied to data sets demonstrating var-
ious extents of tolerance

• address the characteristics of the models and
their predictive performance when applied to
other drug input designs.

Secondary objectives were to:

Table I. Summary of tolerance models in the literature by model type

Tolerance driving
force

Predicts
rebound?

Designed for
tolerance?

Drug Measured effect Study time
scale

Reference

Tolerance compartment

Concentration No Yes Furosemide (frusemide) Cl– excretion rate; diuresis < day 10

Concentration No Yes Nicotine Heart rate < day 9a

Concentration No Yes Nicotine Heart rate < day 11

Effect Yes Yes Caffeine MAP < day 12

Concentration Yes Yes Morphine Antinociceptive effect > day 13

Concentration Yes Yes Morphine Antinociceptive effect < day 14a

Concentration No Yes Morphine Antinociceptive effect > day 15a

Concentration No Yes Nicotine MAP; epinephrine (adrenaline);
heart rate

< day 16

Concentration Yes Yes Alprazolam Timing performance < day 17

Concentration Yes Yes Cocaine Timing performance < day 18

Indirect models

Concentration Yes Yes Histamine; cAMP < day 19

Effect Yes Yes Cocaine Euphoria; heart rate; blood
pressure

< day 20

Effect Yes Yes Glyceryl trinitrate Diastolic pressure < day 2

Effect Yes Yes Glucocorticoid mRNA; TAT enzyme < day 21

Concentration Yes Yes Remoxipride Prolactin concentration > day 3a

Effect Yes Yes Furosemide Diuresis; natriuresis < day 22a

Concentration Yes No Morphine Antinociceptive effect < day 23a

Effect Yes Yes (Simulation) 24

Effect Yes Yes Glucocorticoids mRNA; TAT enzyme > day 25

Endogenous control systems

Concentration Yes Yes Nifedipine Heart rate; MAP < day 26

Effect Yes Yes Alfentanil EEG; ECG; CO2; respiration < day 27

Effect Yes Yes Alfentanil EEG < day 28a

Effect Yes Yes Antide Testosterone; LH > day 29

Other models

Time No Yes Cocaine Heart rate < day 30

ND No Yes Alprazolam Psychomotor performance < day 31

Time No Yes Cocaine Heart rate; subjective effect < day 32

Effect Yes Yes L-Propranolol Heart rate < day 33

a Included as part of this article.

cAMP = adenosine 3′,5′-cyclic monophosphate; Cl– = chloride ion; CO2 = carbon dioxide; ECG = electrocardiogram; EEG = electroenceph-
alogram; LH = luteinising hormone; MAP = mean arterial blood pressure; mRNA = messenger RNA; ND = not detected; TAT = tyrosine
aminotransferase.
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• provide a comprehensive summary of empirical
tolerance models

• distinguish some design characteristics of im-
portance to tolerance studies

• if possible, make suggestions for the model se-
lection process in drug tolerance studies.

1. Theory

Seven tolerance models were selected, and are
shown in table II. They were all considered to be
general and not restricted to a particular drug ac-
tion. It should be noted that the nomenclature in
several models has been changed from that in the
original references in order to standardise the pre-
sentation.

In 3 of the models (noncompetitive antagonist
model, partial agonist model and reverse agonist
model), tolerance was described by a tolerance
compartment linked to the plasma compartment,
and the time course of tolerance was estimated by
the equilibration rate constant (kt0). In the noncom-
petitive antagonist model presented by Porchet et
al.,[9] the extent of tolerance to the effect of nicotine
on heart rate was described assuming the develop-
ment of a noncompetitive antagonist. Ouellet and
Pollack[15] presented a model for morphine effects
(the partial agonist model). Tolerance was in-
cluded in the pharmacodynamic model as a partial
agonist, where maximum effect (Emax), steady-
state concentration of the drug producing 50% of
Emax (EC50) and γE (slope factor of the sigmoid
effect curve) denote the parameters that describe
the agonist concentration-effect relationship. Max-
imal tolerance (Tmax) and steady-state concentra-
tion at half the maximal tolerance (TC50) are the
parameters characterising the concentration-effect
relationship of the partial agonist, i.e. the degree of
tolerance. In a somewhat different model for the
antinociceptive effects of morphine, called the re-
verse agonist model by Gårdmark and associ-
ates,[14] tolerance was defined using an agonist/re-
verse agonist relationship.

A physiology-mimicking pharmacodynamic
model was developed to characterise the develop-
ment of tolerance to the electroencephalographic

effects of alfentanil (the direct moderator model).[28]

Tolerance was described as a negative feedback
(Ef) produced by the drug-induced effect using a
first order transfer function. The net effect (E) is
the sum of the primary drug effect, described by a
sigmoid Emax model, and the opposite feedback ef-
fect, in which the extent of tolerance is quantified
by the parameter G.

An alternative model based on the indirect-re-
sponse model, the indirect moderator model, was
presented by Holford and colleagues for the mod-
elling of cocaine data.[20,34] The model originates
from the field of hormone regulation,[35,36] and was
further evaluated by Gabrielsson and Weiner[37]

and applied to the diuretic and natriuretic effects of
furosemide (frusemide).[22] The drug was postu-
lated to reduce the loss of response, manifested as
an increase in effect. This was counteracted by an
integrated stimulating function of a moderator (T),
which thereby accounted for the development of
tolerance.

Tolerance to drug effects has also been charac-
terised by a physiological model developed by
Ekblad and Licko.[19] Movin-Osswald and Ham-
marlund-Udenaes[3] used the model to describe the
time-dependent effect of remoxipride on prolactin
concentrations (the pool model). In this model, un-
like the tolerance compartment models, mass is
transferred from the pool to account for the re-
sponse following drug administration. The rate and
extent of pool depletion can characterise a toler-
ance development process. The drug stimulates the
emptying of the pool by the function S(Cp), where
Cp is plasma concentration. To account for any dif-
ferences in the extent of tolerance and rebound
development, a feedback loop was added to the pre-
vious model, resulting in the model here called the
adaptive pool model and used to characterise mor-
phine tolerance.[23] In this model, the feedback acts
to modify the input rate into the pool as a function
of the pool content, with φ being the parameter by
which an estimation of the degree of feedback is
made.
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2. Methods

The study was divided into 2 parts. Part I was
conducted to evaluate the performance of the 7 em-

pirical tolerance models on various data sets. Data
were simulated from each original model and were
further analysed by the other 6 models. The models

Table II. Selected applications of different tolerance models

Model Functionsa Data Reference
for data

Noncompetitive antagonistb
E = E0 +

SLE ⋅ Cp

1 +
Ct

TC50

Nicotine 9

Partial agonistb,c

E =
Emax ⋅ Ce

γE ⋅ TC50 + Tmax ⋅ Ct ⋅ EC50
γE

EC50
γE ⋅ TC50 + EC50

γE ⋅ Ct + TC50 ⋅ Ce
γE

Morphine (long infusion) 15

Reverse agonistb,c

E = SLE ⋅ Ce −
Tmax ⋅ Ct

γT

TC50
γT + Ct

γT

Morphine (short infusion) 14

Direct moderatorc dEf

dt
= G ⋅ kt0 ⋅ (E − Ef)

Alfentanil 28

dE =
Emax ⋅ Ce

γE

EC50
γE + Ce

γE
+ E0 − Ef

Indirect moderator dE
dt

= kin − kout ⋅ E ⋅ I(Cp) ⋅ S(T)
Furosemide (frusemide) 22

dT
dt

= ktol ⋅ (E − T)

I(Cp) = 1 −
Imax ⋅ ER

IC50 + ER

S(T) = 1 + T
TC50

Pool dPool
dt

= k0 − kin ⋅ Pool ⋅ S(Cp)
Remoxipride 3

dE
dt

= kin ⋅ Pool ⋅ S(Cp) − kout ⋅ E

S(Cp) = 1 + SLE ⋅ Cp

Adaptive pool
dPool

dt
= k0 ⋅ ��

�

Pool0

Pool
�
�
�

ϕ

− kin ⋅ Pool ⋅ S(Cp)
Morphine/morphine-3-glucuronide 23

dE
dt

= kin ⋅ Pool ⋅ S(Cp) − kout ⋅ E

S(Cp) = 1 + SLE ⋅ Cp

a Some parameters are renamed compared with the original reference.

b Equilibration between plasma and tolerance site, described by
dCt

dt
= kt0 ⋅ (Cp − Ct).

c Equilibration between plasma and effect site, described by
dCe

dt
= ke0 ⋅ (Cp − Ce).

Ce = concentration in the effect compartment; Cp = concentration in plasma; Ct = concentration in the tolerance compartment; E = effect; E0

= baseline effect; EC50 = concentration at half the maximal stimulating effect; Ef = tolerance development; Emax = maximal stimulating effect
of the drug; ER = excretion rate of the drug in urine; φ = exponent of the feedback relationship; G = extent of tolerance development; g =
slope factor of the sigmoid effect curve; I() = inhibition function; IC50 = concentration at half the maximal inhibiting effect; Imax = maximal
inhibiting effect of the drug; k0 = rate constant for production of the pool; ke0 = rate constant out of the effect compartment which determines
the rate of the effect delay; kg = rate of tolerance development; kin = rate constant for production of effect; kout = rate constant for loss of
effect; kt0 = rate constant out of the tolerance compartment which determines the rate of the tolerance delay; Pool0 = baseline amount in
the pool; S() = stimulation function; SLE = slope of the linear effect; SLT = slope of the tolerance relationship; T = tolerance moderator; TC50

= steady-state concentration at half the maximal tolerance; Tmax = maximal tolerance.
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that gave an adequate description of a data set were
selected for part II. The objective of Part II was to
demonstrate the predictive capacity of the selected
models based on the parameters obtained from part
I, with different study designs.

2.1 Part I

2.1.1 Simulations
For each selected model, error-free concentra-

tion and effect data were simulated for a typical
patient according to the study design of the original
reference. The simulations were based on the
model parameters displayed in table III, which gen-
erally were the estimates presented in the original
reference. Concentration and effect data were sim-
ulated without error at the same time-points as in
the original reference. However, as indicated in
table III, modifications to the original work had to
be made in some instances because the kinetics and
dynamics could not be fully recapitulated from the
parameters given in the reference.

The plasma concentrations in the morphine long
infusion study (partial agonist model) were simu-
lated using a 1-compartment model to attain the
midpoints of the concentration intervals presented
in the reference.[15] To simulate the pharmacody-
namics of alfentanil (direct moderator model), the
baseline effect (7Hz) was taken from the effect-
time diagrams and the corresponding baseline ef-
fect (E0) was calculated to 15Hz according to the
reference.[28] The furosemide excretion rate profile
was assessed following linear interpolation of the
raw data from 1 individual (subject 1), kindly sup-
plied by the authors, and served as the input to the
indirect moderator model simulations.[22] The ki-
netics of remoxipride in the pool model were de-
scribed in the original reference by a 2-compart-
ment model.[3] However, there was no information
regarding the parameters for the biexponential
equation in the reference and, as the distribution
phase was small, 1-compartment kinetics were se-
lected, as shown to be appropriate in other studies
of remoxipride.[38] When the morphine short infu-
sion data were simulated (the adaptive pool
model), modifications were made with respect to

the pharmacodynamics.[23] The parameters used in
this study correspond to the morphine infusion
only and differ, therefore, somewhat from the pa-
rameters in the original reference.

2.1.2 Analysis of the Simulated Data
In a second step, each of the simulated effect-

time profiles was analysed by all 7 models. Gener-
ally, in order to obtain the best fit to the data by
each model, all models were allowed to change in
terms of different pharmacodynamic relationships,
such as the Emax model or a linear relationship.

In the tolerance compartment models, the equil-
ibration delay (ke0) was included or removed de-
pending on the nature of the data. When the indirect
moderator model was applied to the various data
sets, the drug-induced stimulation or inhibition was
tested on both the production and the loss of re-
sponse to obtain the best fit. In addition, flexibility
was further increased by modelling tolerance as
either inhibition of production of response or stim-
ulation of loss of response, respectively.

Two modifications were made to the indirect
moderator model presented for furosemide.[22] The
indirect moderator model in the original reference
estimates 2 parameters that both describe the rate
of tolerance, ktol and tolerance lag-time (Ttol),
while fixing the parameter relating to the extent of
tolerance (TC50) at a value of 1.[22] Rather than fix-
ing the extent of tolerance to a predetermined
value, which limited the generality of the model,
the parameter TC50 and thereby the extent of toler-
ance at steady state was estimated. The Ttol used in
the original reference was removed from the model
used in the analysis of the other data sets, as esti-
mating 2 parameters was judged to be unrealistic
and ktol was the more physiological parameter.
Thus, in the present work, when using the indirect
moderator model, the rate of tolerance develop-
ment was characterised by ktol and the extent of
tolerance by TC50.

In 2 data sets, the effect was reported as a frac-
tion of the baseline (morphine short infusion)[14]

and of baseline and cut-off latency (10 sec) [mor-
phine long infusion)],[15] omitting baseline as a pa-
rameter in the models. However, to fit the indirect
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Table III. Parameter estimates used in the simulations in Part I

Parameter Nicotine Morphine (long
infusion)a

Morphine
(short infusion)

Alfentanila,c Furosemide
(frusemide)a

Remoxipride Morphine/morphine
-3-glucuronidea

k10 0.0112 min–1 0.08 min–1 2.5 h–1 0.18 h–1

k12 0.03 min–1 0.13 min–1 1.0 h–1

k21 0.033 min–1 0.06 min–1 1.33 h–1

Vc 114 ml 0.229L 174 ml/kg 34.7 ml

kt0 0.02 min–1 0.005 min–1 0.014 min–1

SLE 1.31
beats•min–1•ml–1•ng–1

31.7
%•L•μmol–1

2.3 μg/L/h 1.5 V/μmol/L

TC50 7.72 μg/L 14 μg/L 17 μmol/L 1 ml/min

E0 61.2 beats•min–1 2.8%b 3a min–1 15 μV/sec 8.5 ml/min 13.1 μg/L 4 V

CL 5.4-3.3 L/min

Vd 0.8 min–1 40L

ke0 4.33 min–1 0.02 min–1 4 min–1

Emax 100% 72 μV/sec

EC50 389 μg/L 845 μg/L

γE 2.64 1.85

Tmax 7% 713%

γT 3.6

CLmax 49.7 ml/min/kg

CLmin 29.3 ml/min/kg

Km 101 μg/L

CL2 101 ml/min/kg

V2 349 ml/kg

CL3 3.26 ml/min/kg

V3 149 ml/kg

kg 0.1 min–1

G 1.16

kout 9 h–1 1.87 h–1 0.35 h–1

ktol 0.1 h–1

Imax 0.81

IC50 38 μg/min

Ttot 1.2h

Pool0 245 μg/L 5.77 V

φ 0.07

a Modifications of pharmacokinetic/dynamic parameters with respect to the original reference.

b Baseline value taken from Gårdmark et al.[23]

c Pharmacokinetic parameters described in the original article.

CL = clearance; CL2 = intercompartmental clearance between compartment 1 and 2; CL3 = intercompartmental clearance between
compartment 2 and 3; CLmax = maximum clearance value at low drug concentrations; CLmin = minimum clearance value at high drug
concentrations; E0 = baseline effect; EC50 = concentration at half the maximal stimulating effect; Emax = maximal stimulating effect of the
drug; φ = exponent of the feedback relationship; G = extent of tolerance development; γγγγE = slope factor of the sigmoid effect curve; γγγγT = slope
factor of the sigmoid tolerance curve; IC50 = concentration at half the maximal inhibiting effect; Imax = maximal inhibiting effect of the drug;
k10 = rate constant out of compartment 1; k12 = rate constant from compartment 1 to 2; k21 = rate constant from compartment 2 to 1; ke0 =
rate constant out of the effect compartment which determines the rate of the effect delay; kg = rate of tolerance development; kin= rate constant
for production of effect; Km = Michaelis-Menten constant; kout = rate constant for loss of effect; kt0 = rate constant out of the tolerance
compartment which determines the rate of the tolerance delay; ktol = rate constant for the moderator; Pool0 = baseline amount in the pool;
SLE = slope of the linear effect; SLT = slope of the tolerance relationship; TC50 = steady-state concentration at half the maximal tolerance;
Tmax = maximal tolerance; Ttol = time delay of onset of tolerance; V2 = volume of distribution for compartment 2; V3 = volume of distribution
for compartment 3; Vc = initial volume of distribution; Vd = volume of distribution.
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models, a baseline value is necessary. The baseline
value was set at 3V, which was the mean of the
baseline observations in the morphine short infu-
sion study.[23] The baseline latency within the mor-
phine long infusion data was assumed to be 2.8 sec,
which was the baseline observation obtained for
the tail-flick method in our laboratory.[48]

In total, 49 effect-time profiles and parameter
sets were obtained, i.e. 7 from each simulated model.
In the analysis of all the data sets, a homoscedastic
error was assumed.

To obtain an approximate estimate of the extent
of tolerance present in the data, the tolerance com-

ponent in each original model was removed and
predictions were made by the reduced models. The
original effect-time profile was compared to the
profile obtained from the reduced model. The max-
imal tolerance was taken as the largest absolute
difference between the curves divided by the peak
effect from the reduced model, corrected for base-
line. This estimate is entirely model-dependent and
only one of many possible ways of defining the
extent of tolerance. Moreover, being a model-
dependent estimate, the extent of tolerance is no
more reliable than the model itself.

2.1.3 Model Selection
The criterion for evaluating the performance of

the different models on each data set was visual
inspection of the predicted and simulated observa-
tions versus time (figs 1 to 7). The models were
judged as overparameterised, and not selected, if
the parameter confidence intervals were large
(>60% relative standard error) or not obtainable.
The models that for each simulated profile fulfilled
these 2 criteria were selected for further evaluation
in part II.

2.2 Part II

The predictive performance of the models se-
lected in part I was tested by simulating the ex-
pected effect-time profiles for 4 different adminis-
tration regimens, using the pharmacodynamic
parameters obtained in part I. Predictions were
made for the following administration regimens:
(i) 3 consecutive infusions of the same dose; (ii) a
stepwise infusion of 4 dose levels; (iii) 3 escalated
short infusions; and (iv) a single continuous infu-
sion. The lengths of the input profiles were corre-
lated to the time of tolerance development esti-
mated in part I. In (i) and (iii), the infusion lengths
were set to 1 × t1⁄2,kt0 (i.e. the half-time determined
by the tolerance rate constant). The duration of
each step in (ii) was 3 × t1⁄2,kt0. The infusion time of
the long infusion (iv) was fixed at 4 × t1⁄2,kt0. The
time between the consecutive doses in (i) was 3 x
t1⁄2,kt0. In the pool model and the adaptive pool
model, no tolerance rate constant is estimated. In-
stead, the input length was based on t1⁄2,kin (i.e. the
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Fig. 1. The effect-time profiles of different empirical tolerance
models (broken lines) applied to the nicotine data set[9] originally
described by the noncompetitive antagonist model (solid lines).
This is from part I of the study.
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half-time determined by the rate constant for pro-
duction of effect). In all designs, the decline was
predicted for 10 × t1⁄2,kt0 (or 10 × t1⁄2,kin) after dis-
continuation of the infusions.

The concentration range of the designed pro-
files was the same as in the original data set. The
concentrations were simulated using the pharma-
cokinetic parameters described in table III, with
some modifications. To simulate the input profiles
for the 3 models describing morphine effects (the
partial agonist model, reverse agonist model and
adaptive pool model), the pharmacokinetics of

morphine presented by Gårdmark et al.[14] were
used. A 2-compartment pharmacokinetic model
with first-order input and an absorption lag-time
was fitted to raw data (subject 1) for furosemide
and the obtained parameters were used to simulate
the furosemide concentration profiles.

2.3 Data Analysis

The simulation of data and the subsequent anal-
ysis were performed in NONMEM version V.[39]

For visual inspection of the results, the Xpose
package, version 2,[40] using S-PLUS, version
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Fig. 2. The effect-time profiles of different empirical tolerance models (broken lines) applied to the morphine long infusion data set[15]

originally described by the partial agonist model (solid lines). This is from part I of the study.
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3.4,[41] was applied. The NONMEM subroutines
used were ADVAN6, except for the direct moder-
ator model and the indirect moderator model,
where ADVAN8 was used.

3. Results

3.1 Part I

The simulated profiles from the original models
and the predictions made by the other 6 models for
these profiles are presented in figs 1 to 7. The func-
tional forms of the pharmacodynamic relation-
ships that best describe the different data sets are
presented in tables IV and V. All models produced

a successful termination of the estimation step, al-
though for some runs the standard errors were not
obtainable (table VI). The objective function val-
ues for each model are presented in table VI, which
also highlights the models selected for part II. The
results are presented based on the data sets.

3.1.1 Nicotine Data
Three groups received 2 short infusions,[9]

(fig. 1) administered with 3 different interdose in-
tervals. Of the 2 resulting peaks, the second peak
was reduced because of tolerance. The initial base-
line effect (61 beats/min) was not reached at the
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end of the experiment. The partial agonist model
was reduced to the original noncompetitive antag-
onist model. The direct moderator model and adap-
tive pool model produced good fits, whereas the
other models overpredicted the initial baseline,
since they could not predict both the initial baseline
and the slow terminal decrease in effect. The adap-
tive pool model produced a significantly better fit
compared with the pool model. The extent of tol-
erance in this data set was estimated to be approx-
imately 74%. Three models (the partial agonist,
direct moderator and adaptive pool models) as well
as the original model were judged to adequately
describe the data (table VI).

3.1.2 Morphine Long Infusion Data
The data set[15] (fig. 2) consisted of 5 continuous

infusions of the same duration (over 12 hours). The
effect was reduced during all infusions, demon-
strating development of tolerance. In the fit of the
partial agonist model to its ‘own’data, kt0 and TC50

were poorly estimated with coefficients of varia-
tion of 66 and 64%, respectively, which was unique
for part I. The tolerance t1⁄2 was very long (5.8 days)
as compared with the study time of 12 hours, which
contributed to the poor precision of kt0.

The reverse agonist model, using a sigmoid ef-
fect relationship, gave the best description of the
escalated infusions in this data set, with parameter
estimates similar to those in the original model.
The other models, apart from the direct moderator
model, systematically overpredicted or un-
derpredicted the effect. Inclusion of sigmoidicity
in the models did not improve the fits. The direct
moderator model predicted the tolerance to de-
velop with a much shorter t1⁄2 than the original
model, which resulted in the curvature observed in
the predictions.

The adaptive pool model was reduced to the
pool model. As in the original reference, Emax was
fixed at 100% in all models, which for the noncom-
petitive antagonist model, the pool model and the
adaptive pool model resulted in large and unreli-
able estimates of EC50. The extent of tolerance was
estimated as 36%. One model (the reverse agonist
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model) was selected for part II as well as the orig-
inal model (table VI).

3.1.3 Morphine Short Infusion Data
In this data set[14] (fig. 3), 3 separate infusions

of different lengths (10 minutes, 1 hour and 3
hours) were combined, with tolerance clearly ob-
served during the longest infusion. The tolerance
compartment models together with the adaptive
pool model gave the best fit to this data set. The 2

shortest infusions were adequately described with
respect to the time and extent of the maximal effect.
For the longest infusion, the models generally
failed to predict the peak time and the loss of effect.
The estimated extent of tolerance in this data set
was 63%. Two models (the noncompetitive antag-
onist model and adaptive pool model), apart from
the original model, were selected as acceptably
describing the data (table VI).
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3.1.4 Alfentanil Data
The regimen consisted of a 10-minute infusion,

a computer-controlled 50-minute infusion and a
computer-controlled step infusion[28] (fig. 4). The
effect data were characterised by a rapid increase
to peak effect and a subsequent quick decrease due
to development of tolerance. The reverse agonist
model and the noncompetitive antagonist model
best explained this data set. The partial agonist
model was reduced to the noncompetitive antago-
nist model. The tolerance compartment models
were slightly better than the adaptive pool model,
which in comparison with the pool model bene-
fited from the feedback function. The extent of tol-
erance estimated for the data set was 60%. Three
models were selected for part II (noncompetitive
antagonist model, partial agonist model and re-
verse agonist model) as well as the original model
(table VI).

3.1.5 Furosemide Data
Furosemide[22] (fig. 5) was administered as 3

short infusions of 5 minutes each separated by 4
hours. The data demonstrated only a small reduc-
tion in the peak effects, indicating relatively lim-
ited development of tolerance. This data set was
well described by all models. An effect compart-
ment was added to the plasma compartment to im-
prove the fits of the tolerance compartment models
as well as the direct moderator model. The feed-
back function was not supported by the data and
consequently the adaptive pool model was reduced
to the pool model. The partial agonist model was
also reduced to the noncompetitive antagonist
model. The extent of tolerance present in the data
was estimated to be 31%. Five models, as well as
the original model, adequately described the data
and were selected for part II (table VI).

3.1.6 Remoxipride Data
Two 30-minute infusions[3] (fig. 6) were admin-

istered separated by different intervals. The short-
est interdose interval of 2 hours causes a profound
development of tolerance, which decreases as the
interdose interval increases up to 48 hours. In ad-
dition, the data also demonstrate the development
of rebound effects. As expected, the adaptive

pool model was overparameterised with respect to
the feedback function and was reduced to the pool
model used in the original work.

The indirect moderator model resulted in a
markedly better fit than the other models. An effect
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compartment was added to the plasma compart-
ment to improve the fits of the tolerance compart-
ment models as well as the direct moderator model.
The rebound effect could not be described by the
noncompetitive antagonist model or the partial ag-
onist model, although the noncompetitive antago-
nist model adequately predicted the peak effects.
In contrast, the direct moderator model, and partic-
ularly the reverse agonist model, predicted pro-
nounced rebound effects. The data did not support
the partial agonist model, which was reduced to the
noncompetitive antagonist model. The data set
shows a large extent of tolerance, estimated at 91%.
Two models (the adaptive pool model and the indi-
rect moderator model), as well as the original
model, were selected to be evaluated in part II (ta-
ble VI).

3.1.7 Morphine/Morphine-3-Glucuronide Data
The data[23] (fig. 7) originate from 2 infusions,

of the same duration (3 hours) but with different
rates, in which tolerance can be observed. Toler-
ance was demonstrated by a reduction in the effect
already evident during the infusion. The pool
model produced a good fit to the data. A similarly
good fit was obtained with the noncompetitive an-
tagonist model. The reverse agonist model and di-
rect moderator model both failed to predict the de-
velopment of tolerance and returned similar
objective function values, although the data were
mis-specified differently. The partial agonist model
was reduced to the noncompetitive antagonist model.
The rate constants ke0 and kt0 were not obtainable
for the reverse agonist model and the direct mod-
erator model. Tolerance was estimated to develop

Table IV. Functional form of the concentration-effect relationships

Model Nicotine Morphine
(long infusion)

Morphine
(short infusion)

Alfentanil Furosemide
(frusemide)

Remoxipride Morphine/morphine-
3-glucuronide

Noncompetitive
antagonist

Linear Linear Linear Emax, γ Emax, γ Linear Linear

Partial agonist Linear Emax, γ Linear Emax, γ Emax Linear Linear

Reverse agonist Linear Emax, γ Linear Emax Emax, γ Linear Linear

Direct moderator Emax Emax Linear Emax, γ Emax Linear Linear

Indirect moderator Emax
a Imax

b Imax
b Linear Imax

b Emax
a Emax

a

Pool Linear Emax, γ Linear Linear Emax, γ Linear Linear

Adaptive pool Linear Emax Linear Linear Emax Linear Linear

a Stimulation or inhibition of the production of response (kin).

b Stimulation or inhibition of the loss of response (kout).

Emax = maximum effect; γγγγ = slope factor of the sigmoid effect curve; Imax = maximal inhibiting effect of the drug; kin = rate constant for production
of effect; kout = rate constant for loss of effect.

Table V. Functional forms of the concentration-tolerance relationshipsa

Model Nicotine Morphine
(long infusion)

Morphine
(short infusion)

Alfentanil Furosemide
(fursemide)

Remoxipride Morphine/morphine-3-
glucuronide

Noncompetitive
antagonist

Ct/TC50 Ct/TC50 Ct/TC50 Ct/TC50 Ct/TC50 Ct/TC50 Ct/TC50

Partial agonist Ct/TC50 Tmax Tmax Ct/TC50 Tmax, γ Ct/TC50 Ct/TC50

Reverse agonist Linear Linear Tmax, γ Linear Linear Linear Linear

Indirect moderator Tmax
c Tmax

c Tmax
c Tmax

c Linearc Linearb Linearb

a The functional forms of the direct moderator model, pool model and adaptive pool model are always as given by the equations in table II.

b Stimulation or inhibition of the production of response (kin).

c Stimulation or inhibition of the loss of response (kout).

Ct = concentration in the tolerance compartment; γ = slope factor of the sigmoid effect curve; kin = rate constant for production of effect;
kout = rate constant for loss of effect.; TC50 = steady-state concentration at half the maximal tolerance; Tmax = maximal tolerance.
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to the extent of 88%. Three models (the noncom-
petitive antagonist model, the partial agonist model
and the pool model) were selected as adequately de-
scribing the data (table VI).

3.2 Part II

This part of the study was performed to evaluate
how the models that were judged to give a good
description of a data set in Part I predicted the ef-
fect of other administration regimens. The predic-
tions were compared with the ‘true’ profiles, i.e.
the predicted effects using the original model. The
models that displayed adequate fits to each data set,
based on visual inspection and the objective func-
tion value, were selected for part II as indicated in
table VI. The effect-time profiles following the 4
different inputs are presented in figure 8.

3.2.1 Nicotine Data
The 3 selected models predicted similar profiles

as the ‘true’ noncompetitive antagonist model.[9]

For the adaptive pool model, pool depletion in-
creased the influence of the feedback, which is
demonstrated in the last step of the stepwise infu-
sion and also in the predictions for the long infu-
sion. Although the declines were followed for 10
× t1⁄2,kt0, baseline (61 beats/min) was never attained
for any of the models.

3.2.2 Morphine Long Infusion Data
One model was selected, but showed extremely

different predictions compared with the ‘true’ par-
tial agonist model.[15] With both models, the effect
site equilibrated much faster with the plasma con-
centration (approximately 10 minutes) compared
with the equilibration half-time between the
plasma and tolerance compartments (5.8 days).
This, together with a linear model for tolerance,
resulted in huge negative predictions from the re-
verse agonist model. For the partial agonist model,
the prediction very slowly approached the baseline
following termination of drug administration.

3.2.3 Morphine Short Infusion Data
The adaptive pool model performed similarly to

the ‘true’ reverse agonist model[14] for the different
inputs, whereas the noncompetitive antagonist
model predicted the effect differently. In the pro-
files from the noncompetitive antagonist model,
tolerance does not seem to develop to the same
extent as in the other models, due to a several-fold
slower rate of tolerance development. This is par-
ticularly obvious during the slow infusion, where
the effect increases throughout the infusion.

3.2.4 Alfentanil Data
For alfentanil, the 4 selected models all gave

similar predictions to the ‘true’ direct moderator
model,[28] indicating that the data in part I were
very informative. There was conformity in the pre-
dicted profiles irrespective of input regimen.

Table VI. Objective function values in the final models from Part I. Values in bold indicate that the model was selected for Part II

Model Nicotine Morphine
(long infusion)

Morphine
(short infusion)

Alfentanil Furosemide
(frusemide)

Remoxipride Morphine/morphine-
3-glucuronide

Noncompetitive
antagonist

0 445b 462 1073 298b 968 170b

Partial agonist 0b,c 0b 456b 1073c 251 968c 170a,c

Reverse agonist 255 353 0 1023 267 1129b 323a

Direct moderator 121 445 533 0 260 1153 321a

Indirect moderator 207 448 504 1144 0 694 208

Pool 263 426b 509 1324 226 0 181

Adaptive pool 135 426b,d 447 1192 217 0d 0

a Standard errors not obtainable.

b Large standard error.

c Reduced to the noncompetitive antagonist model.

d Reduced to the pool model.
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3.2.5 Furosemide Data
For furosemide, the predictions of the 5 selected

models show marked differences in comparison
with the ‘true’ indirect moderator model[22] and
also between each other. In contrast to what was
observed in the original data, the selected models
demonstrated a large degree of tolerance develop-
ment. During the step infusion, the reverse agonist
model and the pool model attained baseline values
as early as during the first step. All models, except
the partial agonist model, demonstrated rebound
effects. The predictions of the reverse agonist
model resulted in an initial peak effect followed by
large negative effects. This peculiar profile is be-
cause the positive effect is approaching Emax and is
counteracted by a large negative tolerance effect.
The noncompetitive antagonist model predicted an
initial peak effect followed by a decline down to
the baseline effect, which is maintained throughout
the drug exposure. In this case, the antagonistic
influence overrules the agonist effect and sub-
sequently reduces the effect to the baseline effect.

3.2.6 Remoxipride Data
The indirect moderator model behaved simi-

larly to the ‘true’pool model[3] during the stepwise,
escalated and continuous infusions. At each step of
the stepwise infusions, baseline was attained. The
last concentration step produced only a slight
change in the effect due to the full depletion of the
pool (pool model) and a complete inhibition of kin

(indirect moderator model). Both models predicted
rebound effects when the remoxipride concentra-
tion decreased.

3.2.7 Morphine/Morphine-3-Glucuronide Data
The 3 models selected for the morphine/mor-

phine-3-glucuronide data demonstrated different
predictions in comparison with the ‘true’ adaptive
pool model.[23] The consecutive infusion regimen
allowed the pool in the pool model to be refilled to
a certain extent before the next dose, whereas the
stepwise and the continuous infusions caused a full
depletion of the pool, demonstrated by a pro-
nounced tolerance. The feedback mechanism in
the adaptive pool model increased the input rate
into the pool, causing less tolerance and rebound.

The pool model generally produced larger rebound
effects than the adaptive pool model.

4. Discussion

4.1 Models

The present study was performed to evaluate the
interchangeability of tolerance models used in the
literature and also to address some determinants
for selection of an appropriate design and sub-
sequently a suitable model. Models of tolerance are
often derived on empirical grounds, because of a
lack of knowledge about the mechanism or because
the biological system is complex and cannot easily
be simplified into a model that can be determined
from the available data.

The effect-time course of each data set in part I
could be described well by at least 2 different em-
pirical tolerance models. This indicates that with-
out additional knowledge (or assumptions), it is
unlikely that reliable mechanistic information can
be deduced from the mere fact that one (or more)
of these models can describe data. No model could
describe all data sets adequately, but all models
could describe some data sets well. Moreover,
there was no pattern that showed 2 models per-
forming in a consistently similar way in all or most
data sets. Nor was there any obvious trend indicat-
ing that tolerance compartment models were better
than the indirect types of models when applied to
data originating from tolerance compartment
models, or vice versa. Thus, although different
types of tolerance mechanisms were included
among the data sets, the models showed little or no
correlation with any particular system.

Of the tolerance compartment models, the non-
competitive antagonist model was the most general
and was selected for 4 data sets. This model char-
acterises tolerance development based on the for-
mation of an antagonist, but is also representative
of other tolerance mechanisms, such as upregula-
tion of receptors.[12] However, the model does not
predict rebound effects, which limits its usefulness
when such a phenomenon is observed. The partial
agonist model could be reduced to the noncompet-
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itive antagonist model when fitted to 5 of the data
sets, and was only preserved when applied to the
furosemide data. In this model, the tolerance effect
is quantified by the hypothetical interaction of an
agonist and a partial agonist. Thus, if tolerance de-
velopment is slow in relation to the effect, the con-
tribution of the partial agonist will result in a lin-
gering effect with the duration determined by the
tolerance half-life, which can be observed in figure
8 (morphine long infusion data). Hypothetically, in
both the noncompetitive antagonist model and the
partial agonist model, the equations originate from
events occurring at the same receptor.

The third compartment model discussed, the re-
verse agonist model, consists of 2 ‘additive’ inde-
pendent effects working in opposite directions,
which thus make the prediction of a rebound effect
possible. Such a model would be able to charac-
terise drug effects arising from an interaction at
different receptor types, as has been shown for
clonidine.[42] The model was the only one to ade-
quately describe the morphine long infusion data
(fig. 2). However, the reverse agonist model pre-
dictions for the furosemide and morphine long in-
fusion data demonstrated large negative effects. In
these cases, the tolerance effect was described by a
linear model. To fully characterise the effect, both
the reverse agonist model and the partial agonist
model use at least 8 parameters, which puts high
demands on the design.

The direct moderator model gave a good de-
scription of the nicotine data (fig. 1) and the furo-
semide data (fig. 5), but was less successful with
the other data sets. The estimated profiles were
sometimes oscillatory, exemplified by the fit to the
morphine long infusion data (fig. 2). In the direct
moderator model, tolerance reduces the effect in an
additive way, while in the indirect moderator
model tolerance is incorporated in a multiplicative
form. Both models are able to characterise rebound
effects, but not necessarily to the same extent as
tolerance. The indirect moderator model gave a
good fit to the remoxipride data, which originated
from an indirect response model (fig. 6). From a
practical point of view, the estimations with both

the direct moderator model and the indirect mod-
erator model required long running times and were
particularly sensitive to initial estimates of param-
eter values, considerably more so than any of the
other models.

The adaptive pool model managed to charac-
terise 4 data sets and performed better than the pool
model. Since the different parts of the pool model
are sequentially organised, the flexibility of the
model is limited. The pool can be physiologically
interpreted as storage of a hormone[3] or a transmit-
ter substance,[19] which will be depleted on stimula-
tion by a drug or an endogenous compound result-
ing in an increased response. The feedback mechanism
can be understood as a counter-regulatory homeo-
static phenomenon or regulation of cellular pro-
cesses. The depletion rate is dependent on the stim-
uli, producing peaks of a larger magnitude and
shorter duration when the stimulus intensity in-
creases.[19] Following removal of the stimulus, the
rate of change of the pool size is governed by kin,
the rate constant of the basal stimulation. Parame-
ter estimates obtained from the pool model can be
used for predictions of the response following
other doses or input modes. However, inclusion of
the feedback function in the adaptive pool model
limits the prediction possibilities, unless the feed-
back function is fully characterised. This was dem-
onstrated in figure 8 (nicotine data set), where the
tolerance is reduced at the end of the long infusion
due to an increased input rate into the pool. More
complex schemes based on the pool model have
been presented by Ekblad and Licko.[19]

4.2 Design

All the original experiments of part I were, with
the exception of the morphine/morphine-3-glucu-
ronide study, designed to characterise tolerance.
The large heterogeneity in design, despite this
common aim, indicates that a multitude of consid-
erations need to be made when choosing adminis-
tration strategies for adaptive systems. Several im-
portant factors for study design can be recognised:
(i) the absolute and relative time courses of the
pharmacokinetics, the concentration-effect delay
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and the development of tolerance; (ii) the extent of
tolerance development; (iii) the expected tolerance
mechanism; and (iv) practical constraints. In addi-
tion, optimal study design depends somewhat on
whether the objective of the study is model dis-
crimination, parameter estimation, characterisation
of a particular process component or predictions of
envisaged dosage schemes in the future. Here,
some general observations regarding study design
will be made.

4.2.1 Design Strategies
Three principal design strategies can be distin-

guished for characterising systems demonstrating
tolerance:
(i) continuous exposure
(ii) rechallenging, by reintroducing or changing
the drug exposure at different levels of tolerance
development
(iii) deduction of tolerance from the joint analysis
of different designs.

(i) In a continuous infusion design, it is of im-
portance that the exposure is long enough to ensure
that sufficient tolerance has developed at that par-
ticular concentration. In the morphine long infu-
sion and the morphine/morphine-3-glucuronide
studies, the study time was short in relation to the
estimated tolerance development, which contrib-
uted to the unreliable estimates of tolerance and
disparate predictions between the 2 models. If pos-
sible, it is advisable to follow the effect until a
stable baseline is attained. In addition to the dura-
tion of exposure, it is of importance to assess tol-
erance at different concentration (or effect) levels,
as was done within the morphine long infusion
data.

(ii) In a rechallenging design, it is important that
the consecutive doses are administered at different
levels of tolerance either during the development
of tolerance (as in the alfentanil experiment) or
during diminution of tolerance (as in the remoxipr-
ide experiment). In order to follow the diminution,
the initial dose should ideally give maximal or
near-maximal tolerance (the nicotine and remoxi-
pride designs); to follow the increase in tolerance,
each concentration level should develop tolerance

to a large extent (the alfentanil design). In addition,
a stepwise infusion of a length not inconsiderable
compared with the time of tolerance development
allows a separation of rate and extent of tolerance.
The models selected for part II from these data sets
demonstrated matching predictions, indicating a
well-characterised tolerance. In contrast, the part
II furosemide predictions showed a large disparity
between the models, although tolerance was chal-
lenged by repetitive doses. However, relative to the
tolerance half-life (7 hours), the study duration was
short (14 hours). In both the remoxipride and the
nicotine experiments, rechallenging was carried out
at different times after the first exposure, but with
the same dose at each time. This provides a good
description of the time course of tolerance. Instead
of administering equal doses, a design consisting
of differently sized doses could also be imagined.
Such a design, not explored in this study, might
provide more information regarding the extent of
tolerance, but might be less successful in determin-
ing the tolerance rate.

(iii) All studies, with exception of the furose-
mide study, rely on the joint analysis of data from
separate experiments with different designs, even
when one or more of the separate experiments is
designed as continuous infusions or has a rechall-
enging component. Although this provides rich in-
formation about the system, it assumes that inter-
individual or inter-occasion variability is handled
in a manner that does not invalidate the result. With
the furosemide and morphine/morphine-3-glucu-
ronide experiments as the only exceptions, the
original analysis pooled data across the individuals
or study occasions without recognising potential
variability in parameters. Although pooling of data
has shown to provide useful descriptions of simple
systems,[43] such results cannot necessarily be ex-
trapolated to these complex and often quite nonlin-
ear systems.

Whatever the choice of design, a reliable esti-
mation of the baseline is important to account for
variation over time, because of such factors as a
habituation process or circadian variations. Sev-
eral physiological processes, such as hormone se-
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cretion and haemodynamic variables, are subjected
to chronotropic variations and for some drugs such
variations have been incorporated in the pharmaco-
dynamic evaluation.[16,29,44]

4.2.2 Relative Kinetics of Drug, Effect 
and Tolerance
Irrespective of study design, the relative kinet-

ics of the drug, the effect and the development of
tolerance have to be considered. The tolerance pro-
cess will not be detected unless it develops at a
slower rate than that of the effect. Furthermore,
slow drug kinetics in relation to the rate of toler-
ance development will reduce the extent of re-
bound effects, since the tolerance-mediating system
will have time to adjust itself. The interaction be-
tween relative rates and study design is complex,
but some general notions can be outlined.

Slow tolerance development relative to the ef-
fect indicates that drug exposure has to be pro-
longed to ensure that tolerance develops. This
might lead to practical difficulties when using a
rechallenging design, since it implies that the inter-
dose intervals and drug infusions have to be long
and that rebound effects might develop within the
administration intervals. On the contrary, in a situ-
ation where development of tolerance is rapid rel-
ative to, or even similar to, drug elimination, the
diminution of tolerance can be followed by
rechallenging the system at various time points.
When tolerance develops at a much slower rate
compared with the effect, the 2 phenomena can be
readily separated by, for example, a step-infusion
regimen, although a slowly developing effect and
a consequently slow development of tolerance
might be difficult to separate.[11]

The length of the drug exposure in part II was
chosen relative to the rate of tolerance develop-
ment for all data sets. The significance of consid-
ering the relative rates is exemplified by alfentanil,
which has an elimination half-life of the same
length as the tolerance half-lives estimated by the
tolerance compartment models. Thus, prediction of
alfentanil effects during a long infusion, as shown
in figure 8, demonstrates that the development of
tolerance was masked by the increasing drug con-

centrations and would probably be difficult to
quantify. On the contrary, in the stepwise infusion
or the consecutive infusion designs, tolerance was
clearly observed.

4.2.3 Input Rate
It has previously been shown that the input rate

has a profound influence on development of toler-
ance for several drugs.[1] When the effect of nicot-
ine on heart rate was compared between cigarettes
and nicotine gums, the slower input rate of the gum
allowed tolerance to develop during the input, re-
sulting in lower effects of the gum.[45] In another
study, morphine was administered at 3 infusion
rates for 10 minutes, 1 or 3 hours. For the shortest
infusion an anticlockwise hysteresis loop was evi-
dent from the plasma concentration-effect data,
while the longest infusion gave a pronounced
clockwise hysteresis.[14] From the intermediate in-
fusion rate no hysteresis was observed, indicating
the influence of the administration rate on the de-
tectability of tolerance. For organic nitrates, inter-
mittent drug administration was recommended in
preference to a continuous regimen, because of the
higher degree of tolerance in the latter case.[46]

For drugs whose response triggers homeostatic
compensatory mechanisms, the administration rate
has been shown to be an important determinant of
development of tolerance. A well-known example
is the hypotensive effect of nifedipine, which is
more pronounced during slow administration due
to the capability of the baroreceptor reflexes to ad-
just themselves.[47] Thus, contrary to the nicotine
example, a slower input of nifedipine results in
larger effects. Similar conclusions were also drawn
for the hypotensive response of prazosin.[1]

4.3 Data Evaluation

As expected, the alternative models display the
same or higher objective function value than the
original model (table VI). Based on the magnitude
of the differences, the data sets could be divided
into 3 groups, demonstrating large (remoxipride
and alfentanil), intermediate (morphine long infu-
sion and morphine short infusion) and small (fu-
rosemide, nicotine and morphine/morphine-3-
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glucuronide) differences between the original and
the alternative models. These differences are de-
pendent on the amount of data and the capacity of
the alternative model to mimic the profile from the
original model. The latter will depend on the de-
sign of the study and also on the mechanism for
and the extent of tolerance development. The data
sets showing the large differences originated from
well-designed studies with a large amount of ob-
servations.

Among the data sets showing small differences
between the original and the alternative models,
the furosemide data exhibited a low extent of tol-
erance and the design of the morphine/morphine-
3-glucuronide data was not informative, which
could explain the small differences for these data
sets. The nicotine data exhibited a considerable ex-
tent of tolerance and the study was informative, as
demonstrated by the reliable predictions (fig. 8).
An explanation for the low difference in the objec-
tive function value may be that the noncompetitive
antagonist model used for the original data set is
relatively easy for the other, more complex, models
to mimic.

One objective of this study was to make sugges-
tions regarding the model selection process when
tolerance is modelled empirically. The experimen-
tal design and the extent and mechanism of toler-
ance are both factors that will have an impact on
the model selection process. Generally, if the data
express tolerance to a low extent, different types of
models will describe the data well, as exemplified
by the furosemide data. Only a few models will fit
to data characterised by extensive tolerance, for
example for remoxipride, due to the more exten-
sive information about the properties of the toler-
ance. Moreover, since the prolactin response to
remoxipride demonstrated rebound effects, the
number of appropriate models was reduced. Gen-
erally, an informative design will ensure that any
model offering a good fit to the data will result in
reasonable predictions, exemplified by the part II
predictions for alfentanil, nicotine and remoxipr-
ide, while the reverse is observed for an uninforma-

tive design [e.g. the data for morphine (long infu-
sion) and morphine/morphine-3-glucuronide].

5. Conclusions

There appears to be little reason to promote one
type of empirical tolerance model over the others,
or to discourage the use of any of the discussed
models. Rather, it would seem to be good practice
to avoid trying only 1 or 2 types of models, as is
commonplace today, and instead use a range of
models. Likewise, it can be recommended that the
predictive performance of the models that accept-
ably describe data is evaluated. If the models then
perform similarly, the choice of model will be ar-
bitrary. However, if the models display disparate
predictions, this indicates that the system is not
well characterised and that all models will have
limited predictive value.
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