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Abstract Sevoflurane is a comparatively recent addition to the range of inhalational
anaesthetics which has been recently released for clinical use. In comparison to
older inhalational agents such as isoflurane or halothane, the most important
property of sevoflurane is its low solubility in the blood. This results in a more
rapid uptake and induction than the ‘older’ inhalational agents, improved control
of depth of anaesthesia and faster elimination and recovery. The more rapid
pharmacokinetics are a result of the low blood/gas partition coefficient of 0.69.
With an oil/gas partition coefficient of 47.2, the minimum alveolar concentration
(MAC) of sevoflurane is 2.05%. Two to 5% of the drug taken up is metabolised
by the liver. The pharmacokinetics of sevoflurane do not change in children, obese
patients or patients with renal insufficiency.

The pharmacokinetics and pleasant odour of sevoflurane make mask induction
feasible, which is an obvious advantage in paediatric anaesthesia. The hepatic
metabolism of sevoflurane results in the formation of inorganic fluoride. Upon
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contact with alkaline CO2 absorbent, a small amount of sevoflurane is degraded
and a metabolite (compound A) is formed and inhaled in trace amounts. Whether
inorganic fluoride or compound A are nephrotoxic is presently a matter of con-
troversy.

In the past few years, new inhalational anaes-
thetics have been introduced into anaesthesia prac-
tice for the following reasons:
• minimisation of organo-toxic effects
• optimisation of anaesthesia (the pharmacokinet-

ics of newer agents means more precise adjust-
ment of depth of anaesthesia is possible and a
more rapid elimination from the body with
faster recovery as the drug is more rapidly elim-
inated is achieved).
Sevoflurane, first described in 1972,[1,2] was re-

leased for clinical use in Japan in 1990, in Germany
in 1995 and in the US in 1996. Its low blood solu-
bility, of which only desflurane and nitrous oxide
are lower, results in a rapid wash-in and wash-out
in the blood. This allows for inhalation induction,
for example, in paediatric anaesthesia, and it has
been claimed that this results in improved dosing
during anaesthesia; in turn, this may result in a
more rapid recovery from anaesthesia in compari-
son to the traditional inhalational anaesthetics, hal-
othane, enflurane and isoflurane. There are several
excellent reviews describing sevoflurane.[3-7] Since
desflurane possesses favourable characteristics sim-
ilar to those of sevoflurane, this review compares
the two agents whenever this is pertinent.

1. Physicochemical Properties 
of Sevoflurane

1.1 Overview

Sevoflurane is a colourless, volatile, nonflam-
mable liquid with a characteristic mild odour re-
sembling ether. Chemically, sevoflurane constitutes a
polyfluorinated methyl-isopropyl compound (fig. 1),
with its most important chemical difference in
comparison to the older inhalational anaesthetics
being that fluoride represents the sole substituent.
Sevoflurane is stable at room temperature, has a
boiling point of 58.6°C and a vapour pressure of

157mm Hg; hence, sevoflurane can be used in
standard vaporisers.[7]

The most common measure of anaesthetic po-
tency of an inhalation anaesthetic is the minimum
alveolar concentration (MAC) of anaesthetic in
volumes (percentage) which are necessary to pre-
vent movement in 50% of patients during skin in-
cision.[8] As is the case with other inhalational an-
aesthetics, the anaesthetic potency of sevoflurane
is correlated with its lipid solubility (Meyer-Over-
ton rule). With an oil/gas partition coefficient of
47.2 its MAC has been reported to be 2.05% (table
I).[9,10] Thus, its potency is considerably lower than
that of halothane and isoflurane, but is about 3
times more potent than desflurane.

The most important pharmacokinetic (uptake,
equilibration and elimination) characteristic of an
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Fig. 1. The chemical structure of some inhalational anaes-
thetics.
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inhalational anaesthetic is its blood solubility, ex-
pressed by its blood/gas partition coefficient. With
a blood/gas partition coefficient of 0.69, sevoflur-
ane is less soluble than the older volatile anaes-
thetics,[9] but more soluble than desflurane (0.42)
or nitrous oxide (0.47).[19] The blood solubility of
sevoflurane is not dependent on patient age.[20] Its
solubility in plastic or rubber tubing used in anaes-
thesia apparatus is lower than those of the older
inhalational anaesthetics.[21] Clinically, sevoflur-
ane pharmacokinetics are not altered by solubility
in these materials.

1.2 Degradation at CO2 Absorbents

Upon contact with alkaline CO2 absorbents
(soda lime or Baralyme®), used to remove CO2

from the anaesthesia circuit, sevoflurane under-
goes degradation.[22-32] The most important deg-
radation product, fluoromethyl-2,2-difluoro-1-
(trifluoromethyl) vinyl ether (CF2 = C(CF3)
OCH2F) [compound A], has been reported to be
nephrotoxic in rats.[33-36] There is controversy sur-
rounding whether this also applies to humans (see
section 6). Studies in patients have reported mean
concentrations of compound A ranging from 8 to
40 ppm[37-42] in the inspired gas mix with maxi-
mum values of up to 61 ppm,[41] especially when a
closed breathing system or a low-flow anaesthesia
technique was employed. At the end of anaesthesia
the concentrations of compound A declined rapidly
towards <3 ppm in the exhaled gases.[42]

The concentration of compound A has increased
with higher sevoflurane concentrations,[22] use of
Baralyme® versus soda lime,[23,24] lower fresh gas

inflows, higher temperature[22,25] and lower water
content[25,32] of absorbent. Recently, it was reported
that contact with inappropriately dry absorbent (<5
to 10% water content) lead to the instantaneous,
exothermic degradation of sevoflurane.[27-30] As a
result, the concentration of sevoflurane in the in-
haled gas mix declined and induction of anaesthe-
sia was slowed. In an experimental setting in swine,
an inspiratory concentration of 357 ± 49 ppm of
compound A was found.[43] However, there was no
formation of carbon monoxide, as described in
the case of desflurane.[44]

2. Pharmacodynamics of Sevoflurane

Influences of sevoflurane on various body sys-
tems including cardiovascular parameters have
been reviewed by Eger[4] and Patel and Goa.[7] As
mentioned in section 1.1, a standard of comparison
of the potency of volatile anaesthetics is the
MAC. MAC values of sevoflurane decreased with
age (fig. 2).[45] Typical values reported are 3.3% in
neonates,[46] 2.0 to 2.5% in children between 1 and
9 years old,[47,48] 2.6% in young adults aged be-
tween 18 and 35 years,[49] 1.58 to 2.05% in mid-
dle-aged adults (16 to 59 years old)[10,50,51] and
1.45% in the elderly (>70 years old).[49] If 65 Vol%
(dose of anaesthetic vapour/gas measured in terms
of concentration) of nitrous oxide are added to the
inspired gas mix, MAC values in adults decrease
by about 50%.[49] In general, the MAC of sevoflur-
ane is about 3 times lower than that of desflurane,
but slightly higher than the values for enflurane
and isoflurane.

Table I. Physicochemical properties of inhalational anesthetics

Sevoflurane Desflurane Isoflurane Enflurane Halothane Nitrous oxide

Odour Pleasant Pungent Unpleasant Unpleasant Pleasant

Boiling point (°C) 58.6[7] 23.5[7] 48.5[7] 56.5a 49-51[7]

Vapour pressure at 20°C (mm Hg) 157[7] 669[7] 238[7] 175a 243[7]

Oil/gas partition coefficient 47.2[9] 18.7[11] 90.8[12] 96.5[12] 224[13] 1.4[13]

MAC (Vol%) [in patients aged 30-60y] 2.05[10] 6.0[14] 1.15[15] 1.68[16] 0.77[17] 104[18]

Blood/gas partition coefficient 0.69[9] 0.42[11] 1.4[19] 1.8[19] 2.5[19] 0.47[19]

a Manufacturer’s information.

MAC = minimum alveolar concentration.
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Gender does not influence the MAC of sevoflur-
ane or the other volatile agents. However, there is
evidence that ethnic factors may play a role. Under
comparable investigational conditions, typical MAC
values observed in US studies were considerably
higher (e.g. 2.05% and 2.6%)[10,49] than those reported
for Japanese adults (e.g. 1.58% and 1.71%).[50,51]

It is important to remember that the relationship
between the alveolar concentration and anaesthetic
effect is not linear, i.e. 2 MAC does not necessarily
mean twice the anaesthetic effect of 1 MAC. For
all volatile agents, dose-response curves are usu-
ally relatively steep, i.e. the slope (Hill-coefficient)
of the curve is high (>5).[50] For example, the MAC
for sevoflurane was 1.71% in one study and the
reported alveolar concentration where 95% of the

patients showed unresponsiveness (AD95), was
only slightly higher at 2.07%.[50] In another inves-
tigation a 2-fold difference between the MAC and
AD95 of sevoflurane was reported.[51] The term
MACawake defines the MAC at which patients will
open their eyes to command.[52] The MACawake

value cited in the literature was 33% of the age-ad-
justed MAC.[53]

3. Analytical Methods

Sevoflurane concentrations in biological fluids
(i.e. urine and plasma), tissues and in the breathing
circuit of an anaesthesia machine can be measured
by gas chromatography[54,55] or by chromatogra-
phy combined with mass-spectrometry.[56] Degra-
dation products of sevoflurane are measured by gas
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Fig. 2. Effect of age on the minimum alveolar concentration (MAC): comparison of fitted lines with published values (from Mapleson,[45]

with permission).
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or ion exchange chromatography or by specific
fluoride electrodes.[42] Fluoride electrodes are of-
ten used, since the formation of fluoride ions is
considered a marker of sevoflurane metabolism.
The most important method in clinical practice is
infrared analysis. All operating theatre gas analysers
use this method to allow for clinical titration of
inhalational anaesthetics. In the therapeutic con-
centration range, infrared determined concentra-
tions of sevoflurane were in good agreement with
concentrations measured by gas chromatogra-
phy.[42]

4. Pharmacokinetics of Sevoflurane

The systemic uptake of volatile anaesthetics and
their subsequent distribution and elimination have
usually been described by multicompartment mod-
els (fig. 3). Absorption of the anaesthetic agent by
the lung is equivalent to the continuous infusion of
an intravenous agent. The kinetic profile of a vol-
atile agent is mainly determined by its physico-
chemical properties. As mentioned in the introduc-
tion, the rate of induction of anaesthesia as well as
the rate of recovery from anaesthesia is inversely
related to anaesthetic solubility in the blood and
fatty tissues. In addition, agent distribution is de-
pendent on circulatory factors (e.g. organ perfusion)
which themselves are modified by the agent.

Common pharmacokinetic properties, such as
protein binding, metabolism and renal excretion,
have only a minor impact on the time required by
inhalational anaesthetics to reach MAC or
MACawake. The uptake of a volatile anaesthetic is
described by the rate of increase of the FA/FI ratio;
conversely, its elimination is described by the rate
of decrease of the FA/FA0 ratio, where FA is the
alveolar concentration of anaesthetic (measured at
the end of expiration), FI is the inspired anaesthetic
concentration and FA0 is the alveolar concentration
of the anaesthetic immediately before termination
of its application.

4.1 Uptake

In general, there is an inverse relationship be-
tween the blood/gas partition coefficient of a given

volatile anaesthetic and the time required until the
alveolar and inspired concentrations are in equilib-
rium. For instance, after 30 minutes the FA/FI ratio
of sevoflurane was approximately 0.8, i.e. equilibra-
tion was 80% complete in healthy adults (fig.
4).[55,57] Consistent with their physicochemical
properties, the increase of the FA/FI ratio was more
rapid with sevoflurane than with enflurane and
isoflurane, with only nitrous oxide and desflurane
yielding higher values, 98 and 90%, respec-
tively.[55,57]

In contrast to isoflurane, enflurane and desflur-
ane, sevoflurane has a pleasant odour and is not
irritating to the airways. As a result, inhalational
induction with sevoflurane is possible in children
and adults.[58] Studies have shown that inhalational
induction with sevoflurane is as rapid[59,60] or more
rapid[61] than with halothane. When 4.5 to 7 Vol%
of sevoflurane have been added to the inspired gas
mix during induction, it has taken about 1 to 7 min-
utes until a concentration of 4 to 6 Vol% was
reached in the exhaled gas mix.[61-63] However, the
brief period of apnoea required for intubation has
led to a drop in concentration to about 2 Vol%.[63]

Therefore, we postulate that during rapid inhala-
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Fig. 3. The 5-compartment model used by Yasuda et al.[55] in
determining the pharmacokinetics of sevoflurane. Compart-
ments 1 to 5 represent the central compartment, the vessel-rich
group (VRG), the muscle group (MG), the fourth compartment
(fat adjacent to vessel-rich organs) and the fat group (FG), re-
spectively. k12, k13, k14, k15 are the intercompartmental rate con-
stants describing movement from the lungs to the other
compartments; k21, k31, k41, k51 describe movement from the
other compartments to the lungs; k10 and k20 are the elimination
rate constants from the lungs and the VRG, respectively (from
Yasuda et al.,[55] with permission).
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tional induction, the correlation between end-tidal
concentration and blood concentration of sevoflur-
ane is lost.

4.2 Distribution and Elimination

Similar to uptake, the elimination of a given vol-
atile anaesthetic is related to its solubility in blood
and tissues (figures 5 and 6). Between 95 and 98%
of the amount of sevoflurane taken up is eliminated
through the lungs. The driving force is the differ-
ence in partial pressures between the inspired gas
mix and the pulmonary capillary blood. As only 2
to 5% of the absorbed dose of sevoflurane is meta-
bolised, metabolic clearance can be ignored for the
pharmacokinetics.

As in the case of enflurane, halothane, methoxy-
flurane and isoflurane,[64] distribution and elimina-
tion of sevoflurane is best described by a 5-compart-

ment mamillary model (fig. 3).[55] The 5 compart-
ments consist of the lungs, the vessel-rich group of
organs (including the liver), muscle, fat adjacent to
vessel-rich organs, and ‘peripheral’ fat. Using this
model the alveolar elimination of sevoflurane and
other volatile agents was analysed by means of 5
differential equations which described the rate of
change of a given agent’s concentration in each
compartment as well as its elimination rate from
the lungs and the vessel-rich groups of organs.

In addition, by incorporating the tissue/blood
partition coefficients of the various agents, the per-
fusion and tissue volumes of the various compart-
ments were estimated. Typical values observed for
sevoflurane, desflurane and isoflurane are given in
table II.[54,55] As a rule, tissue volumes of distribu-
tion and the mamillary time constants for all halo-
genated anaesthetics have been quite comparable
except for their elimination via the lungs (because
of their different solubilities). Compared with
isoflurane and halothane, sevoflurane has a shorter
wash-out time but FA/FA0 has decreased more rap-
idly with desflurane than with sevoflurane (figs 5
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and 6). Percutaneous losses account for less than
1% of the total uptake of sevoflurane.[65]

The question of whether the ‘storage’ capacity
of the ‘peripheral fat’ compartment results in a pro-
longed elimination phase dependent on the dura-
tion of anaesthesia was addressed in a study with
isoflurane and halothane.[66] For both agents, the
decline of the FA/FA0 ratio was more rapid after
administration for 30 minutes than for 2 hours.
Also, recovery (as a percentage of the total dose)
from the slowly equilibrating compartments (e.g.
peripheral fat) was larger after 2 hours of adminis-
tration. However, the time constants derived from
the 5-compartment model as well as the metabolic
clearances were similar regardless of whether the
agents were administered for 30 minutes or for 2
hours. In a recently published study, Eger et al.[67]

were able to show that sevoflurane-induced anaes-
thesia of 2 hours’ duration results in faster elimi-
nation and more rapid awakening than similar an-
aesthesia lasting 8 hours. With the 2-hour duration
the FA/FA0 ratio fell below 0.1 after approximately
22 minutes; this period was increased to 55 min-
utes after 8 hours of anaesthesia.

It must be stressed that multicompartment anal-
ysis has not been without problems. However,
analysis of the data using the 5-compartment
mamilliary model was carefully done and statistically
valid.[55] In terms of physiology, the model is plau-
sible. Nonetheless, its predictive power has not yet
been proven. The authors have described enflurane
using this model,[64,68] but it is noteworthy that oth-
ers have used a comparable 3-compartment model
for enflurane and validated it by assessing the pre-
dictive power of the model.[69] Very early in 1981,
a similar 3-compartment model was used for
sevoflurane.[70] In this study, the terminal elimina-
tion half-life of sevoflurane from the peripheral fat
compartment was about 20 hours.

We investigated the rate of elimination of sevo-
flurane, desflurane and isoflurane in 30 patients
undergoing surgery (10 patients per group). Our
unpublished observations were that 1 minute after
termination of application of the volatile agents the
FA/FA0 value dropped below 0.4 (fig. 7). In the

following 14 minutes, there was a mono-exponen-
tial decrease in the end-tidal anaesthetic concentra-
tions in all 3 groups. Using noncompartmental
analysis, we determined for this phase a half-life
of 8.16 ± 3.15 minutes for desflurane, 9.47 ± 4.46
minutes for sevoflurane and 10.0 ± 5.57 minutes
for isoflurane. These values were not significantly
different. Only at isolated points in time did we
note an FA/FA0 value for sevoflurane which was
significantly higher than that of desflurane or sig-
nificantly lower than that for isoflurane.

The length of time required until first patient
response to verbal commands was not different
among the groups (13.0 ± 4.7 min for desflurane,
13.4 ± 4.4 min for sevoflurane and 13.6 ± 3.4 min
for isoflurane). Therefore, we concluded that with
regard to the early phase of elimination (the phase
immediately after the termination of application of
the anaesthetic), the 3 agents were not significantly
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Sevoflurane 19

© Adis International Limited. All rights reserved. Clin Pharmacokinet 1999 Jan; 36 (1)



different. This early phase is the most important
factor determining time required for awakening.
Late phase elimination (2 hours to 5 days) was re-
portedly more rapid in desflurane as compared
with sevoflurane.[54,55] To date, these data have not
been reproduced by other investigators.

5. Pharmacokinetics of Sevoflurane in
Special Populations

5.1 Age

There are only a limited amount of data with
regard to the pharmacokinetics of sevoflurane in
children. The few studies conducted have usually
only investigated the rate of decrease of end-tidal
concentration in the first minutes after termination
of application of the anaesthetic. After the applica-
tion of anaesthesia for 60 minutes, the wash-out of
sevoflurane was significantly more rapid than that
of halothane. The FA/FA0 value 5 minutes after ter-
mination of the application of the volatile agent
was 0.23 ± 0.02 for sevoflurane and 0.47 ± 0.08 for
halothane.[71] Two further studies reported values
of 0.16 ± 0.05 and 0.32.[46,72] In a single study a
more rapid washout was found in children aged 1
to 12 months at an FA/FA0 value of 0.11.[46] In ad-
dition, 2 studies found a more rapid awakening
from anaesthesia with sevoflurane as compared
with halothane.[71,72]

After an 8-hour sevoflurane anaesthetic in
adults an FA/FA0 value of 0.32 was found.[42] After
a 2-hour anaesthesia in adults, our own research
(unpublished observations) determined an FA/FA0

value after 5 minutes of 0.20 ± 0.06. In another
study of 10 adults, 10 children and 10 infants, vol-

umes of distribution were measured using a 2-com-
partment model. There were no significant differ-
ences between groups.[73]

Based on a review of the available data, there
seems to be no significant difference in sevoflurane
pharmacokinetics between children and adults.

The pharmacokinetics of inorganic fluoride
produced in the course of 1- to 2-hour sevoflurane
anaesthesia in children were investigated in several
studies.[46,72,74,75] The average maximum serum
concentrations of fluoride ions ranged from 8.8 to
23.1 μmol/L. At 6 hours after termination of anaes-
thetic, serum concentrations had dropped to <10
μmol/L (for serum fluoride ion concentrations in
adults, see section 6.1 below).[75]

Based on these data, there appear to be no dif-
ferences in inorganic fluoride pharmacokinetics
between adults and children.

5.2 Obesity

There have been, to date, no data with regard to
sevoflurane pharmacokinetics in obese patients.
However, after sevoflurane anaesthesia, obese pa-
tients had significantly higher fluoride serum con-
centrations than nonobese patients: 51.7 ± 2.5
μmol/L versus 40.4 ± 2.3 μmol/L, respectively.[76]

Investigators found no signs of renal dysfunction.
In contrast, another research group did not find sig-
nificant differences in fluoride serum concentra-
tions between obese (30 ± 2 μmol/L) and nonobese
(28 ± 2 μmol/L) patients.[77]

5.3 Renal Dysfunction

There are no data with regard to the pharmaco-
kinetics of sevoflurane in patients with renal insuf-

Table II. Mamillary time constants and tissue volumes of inhalational anaesthetics

Compartment Mamillary time constants (min) Tissue volume (L)

sevoflurane[55] desflurane[54] isoflurane[55] sevoflurane[55] desflurane[54] isoflurane[55]

Lungs 0.58 ± 0.12 0.54 ± 0.09 0.63 ± 0.14

Vessel-rich organs 6.17 ± 2.65 4.21 ± 1.6 5.38 ± 1.94 7.4 ± 2.6 12 ± 2 7.1 ± 2.5

Muscle 63.3 ± 31.6 37.9 ± 10.1 57.0 ± 26.0 11.4 ± 4.8 17 ± 3 11.3 ± 5.6

Fat adjacent to vessel-rich
organs

377 ± 123 273 ± 88 383 ± 119 2.5 ± 0.6 6 ± 3 3.0 ± 0.7

Peripheral fat 2120 ± 690 1340 ± 230 2130 ± 680 4.1 ± 3.0 5 ± 3 5.1 ± 4.1
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ficiency. Serum fluoride concentrations after 3
hours of anaesthesia in patients with renal insuffi-
ciency were compared with healthy patients.[78]

Mean maximum fluoride concentrations were
about 35 μmol/L and not significantly different
between the 2 groups. Similarly, another research
group found average maximum fluoride concen-
trations of 25.0 μmol/L after a 2.5-hour anaesthesia
in patients with stable renal insufficiency.[79]

Based on these data, there appear to be no dif-
ferences in sevoflurane pharmacokinetics between
patients with or without kidney diseases.

6. Metabolism and Toxicity

6.1 Fluoride

Rapid hepatic metabolism of sevoflurane results
in the formation of inorganic fluoride and the or-
ganic fluoride metabolite hexafluoroisopropanol
(HFIP).[80] In the blood HFIP is conjugated with
glucuronic acid and excreted rapidly by the kid-
neys. Cytochrome P450 (CYP) 2E1, is predomi-
nantly responsible for the biotransformation of
sevoflurane.[81-84] In humans, 2 to 5% of the ab-
sorbed dose of sevoflurane is metabolised,[80] com-
pared with 75, 46, 8.5, 0.2 to 2 and 0.02 to 0.2%

for methoxyflurane, halothane, enflurane, isoflur-
ane and desflurane, respectively.[80]

Serum inorganic fluoride concentrations after
sevoflurane anaesthesia have been reported to be
dose dependent and reach about 10 to 20 μmol/L
(after 1 to 2 MAC hours), 20 to 40 μmol/L (after 2
to 7 MAC hours) and may be as high as 20 to 90
μmol/L with prolonged exposure.[80]

Serum fluoride ion concentrations after expo-
sure to enflurane were slightly lower than those of
reported after exposure to sevoflurane, but enflur-
ane is not generally considered to be nephrotoxic.
In comparison, serum fluoride concentrations
>50mmol/L after methoxyflurane anaesthesia have
resulted in a diminished concentrating ability of
the kidneys.[85,86] Therefore, it is controversial
whether a serum fluoride threshold of >50mmol/L
applies in the case of sevoflurane.[87] In the case of
methoxyflurance, other factors have been impli-
cated: for instance, Kharasch et al.[88] suggested
that the intrarenal biotransformation of methoxy-
flurane was crucial for its nephrotoxic effect. In
contrast, sevoflurane is predominantly metabo-
lised by the liver rather than intrarenally. A number
of studies could not show nephrotoxic effects after
sevoflurane anaesthesia (for a review see Malan[89]).
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However, 2 studies[90,91] have claimed mild renal
dysfunction single patients after the use of sevo-
flurane. These studies are very controversial.[88]

Presently, the US Food and Drug Administration
(FDA) recommends caution in the use of sevoflur-
ane in patients with coexisting renal disease.

6.2 Compound A

As pointed out in section 1.2, degradation
of sevoflurane after contact with CO2 absorbent
leads to formation of compound A which has
been reported to be nephrotoxic in rats.[33-36]

Depending on length of exposure, values of 25 to
50 ppm[33] or 114 ppm[36] are considered critical in
rats.

While no signs of nephrotoxicity were found
in studies with volunteers,[92,93] surgical pa-
tients[38-41,94] or in children,[95] a group of investi-
gators have reported albuminuria, glucosuria, and
liberation of the tubular enzymes α-glutathione
S-transferase (α-GST) and π-GST after exposure
of volunteers to 2.5 to 10 MAC hours of sevoflur-
ane.[96-98] These findings, however, remain quite
controversial, and have not been reproduced.

The standard for assessing renal function is glo-
merular filtration rate, measured by creatinine
clearance. Using this standard, there have been no
case reports or studies documenting compound A-
associated renal impairment. The FDA has recom-
mended the use of sevoflurane with fresh gas in-
flows of more than 2 L/min in order to minimise
the formation of compound A; however, other li-
censing authorities have not made this recommen-
dation. In contrast with older inhalational anaes-
thetics, the metabolism of sevoflurane has not
resulted in the formation of trifluoroacetic acid
(TFA); hence, the hepatotoxic potential of sevo-
flurane is considered to be minimal.[37,99]

7. Clinical Implications

The following section describes the pharmaco-
logical basis for the dosage and control of an inha-
lational anaesthetic (fig.8). There is a clear dose-
response relationship between the dose and clinical
effects (i.e depth of anaesthesia) of an inhalational

anaesthetic agent.[100] The dosage of an inhala-
tional agent does not consist of the application of
a finite amount of drug (as in the case of an intra-
venous agent), but rather depends on the addition
of a given concentration (i.e. partial pressure) of a
volatile anaesthetic to the inspired gas mix. First,
there will be an exponential increase of the inhala-
tion agent’s partial pressure in the blood. Initially,
this increase in partial pressure is rapid, followed
by a further, slower increase in the agent’s blood
partial pressure. After an infinite length of time, the
agent’s blood partial pressure will equal the agent’s
inspired alveolar partial pressure (fig. 4).

With continuous intravenous infusion, steady-
state is determined by metabolic clearance. With
inhalation anaesthetics, the steady-state concentra-
tion is equal to the concentration in the inspired gas
mix and independent of metabolic clearance. The
most important clinical factors determining the rate
of equilibration of an inhalational agent are:
• inspired concentration
• ventilation
• solubility of the agent in blood and tissue
• cardiac output
• tissue perfusion.

During inhalational anaesthesia, only the in-
spired concentration of the agent is controlled by
the anaesthetist. The most important property of
the agent, determining the rapidity of its uptake, is
its blood/gas partition coefficient.

In terms of pharmacodynamics, a given inhala-
tional anaesthetic blood concentration results in
certain clinical effects, i.e. a given depth of anaes-
thesia. However, there is no clear-cut, universal
definition of the term ‘depth of anaesthesia’.[100]

Strictly speaking, the stages of anaesthesia de-
scribed by Guedel (cited by Stanski[100]) apply only
to an ether anaesthetic, and in any event the stages
are usually no longer distinguishable from each
other because of the concomitant application of op-
ioids, muscle relaxants and hypnotics. Therefore,
modern definitions of depth of anaesthesia focus
on the suppression of clinically relevant responses
to noxious stimuli, i.e. the absence of pain percep-
tion, movement, increased rate of breathing, sweat-
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ing, increased heart rate or blood pressure, and hor-
monal stress response.[101] Thus, tachycardia and
hypertension may be signs of an inadequate depth
of anaesthesia while hypotension and bradycardia
may signal excessive depth, i.e. overdose.

There are 2 ways to control depth of anaesthe-
sia. In the first method, the patient is observed for
clinical signs of adequate or excessive depth of an-
aesthesia and the inspired concentration of volatile
agent is adjusted accordingly. Although a certain
amount of time is necessary until the inspired par-
tial pressure and partial pressure in the brain reach
equilibrium, in clinical practice, this method is suf-
ficient for the management of anaesthesia. In addi-
tion to observation of clinical signs of depth of
anaesthesia, the registration of more objective pa-
rameters of depth of anaesthesia, such as intraop-
erative monitoring of the electroencephalogram
(EEG), evoked potentials and oesophageal motil-
ity have been tried in order to ensure adequate
depth of anaesthesia.[100] However, wide clinical
use of these methods of monitoring is prevented by
their technical complexity and cost.

In the second method, modern anaesthesia ma-
chines allow for the measurement of inspired and
end-tidal concentrations of volatile anaesthetic by

infrared analysis. As a rule of thumb, the end-tidal
partial pressure of a volatile anaesthetic is approx-
imately the same as its alveolar partial pressure and
its arterial partial pressure. Under steady-state con-
ditions, the end-tidal concentration can serve as an
estimate of the anticipated depth of anaesthesia.
Therefore, management of inhalation anaesthesia
by monitoring and adjusting the end-tidal concen-
tration of the volatile agent is clinically feasible.

Indeed, in routine anaesthesia practice, inhala-
tional anaesthesia is controlled by close observa-
tion of end-tidal concentrations of the volatile
agent and clinical signs of the depth of anaesthesia.
This method of titration (control) of inhalation an-
aesthesia is much easier if equilibration between
the inspiratory and arterial concentration occurs
rapidly. For this reason both sevoflurane and
desflurane, in comparison with older inhalational
anaesthetics, should facilitate control of inhalation
anaesthesia.

At the end of administration of an inhalation
anaesthetic, inspired concentration of the agent is
reduced to 0%. At this point, rate of elimination
cannot be increased. Assuming constant ventila-
tion, cardiac output and tissue perfusion, only the
agent’s blood solubility and the length of exposure

End-tidal concentration

Pharmacokinetics

Dose
Inspiratory concentration

Blood concentration
Effects

Depth of anaesthesia

Pharmacodynamics

Time MAC

− EEG
− Evoked potentials
− Oesophageal motility

− Suppression of clinically
  relevant responses to 
  noxious stimuli

Fig. 8. The feedback control of adequate depth of anaesthesia. EEG = electroencephalogram; MAC = minimum alveolar concen-
tration.
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will determine the rate of washout of the anaes-
thetic and hence the time required for recovery
from anaesthesia. Although some studies have
shown that the time required for recovery is signif-
icantly shorter with sevoflurane than with isoflur-
ane,[102] enflurane[103] or halothane,[104] our own
data have demonstrated that these differences are
relatively minor. In our own study with premedi-
cated patients who received titrated inhalation an-
aesthesia according to clinical parameters, recov-
ery after sevoflurane was as fast as that after
isoflurane.

8. Conclusions

The lower blood solubility of sevoflurane in
comparison with isoflurane, enflurane and halo-
thane leads to more rapid pharmacokinetics, so that
wash-in, wash-out and control of anaesthesia are
facilitated. Its pleasant odour, together with its
pharmacokinetics, make mask induction feasible in
paediatric and adult anaesthesia. World wide, there
have been no case reports of sevoflurane-associ-
ated renal failure. As a result, sevoflurane can be
used with greater safety than the older agents.
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