
Czechoslovak Mathematical Journal, 72 (147) (2022), 1167–1174

ON AN ADDITIVE PROBLEM OF UNLIKE POWERS
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Abstract. We prove that almost all positive even integers n can be represented as p22 +
p33 + p44 + p55 with |pkk − 1

4
N | 6 N1−1/54+ε for 2 6 k 6 5. As a consequence, we show

that each sufficiently large odd integer N can be written as p1 + p22 + p33 + p44 + p55 with
|pkk − 1

5
N | 6 N1−1/54+ε for 1 6 k 6 5.
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1. Introduction

In 1951, Roth in [9] proved that almost all positive integers n can be written as

m2
2 + m3

3 + m4
4 + m5

5 with mi (2 6 i 6 5) being positive integers. Prachar in [6]

improved the above result by showing that almost all positive even integers n can be

represented in the form

(1.1) n = p22 + p33 + p44 + p55,

where pi (2 6 i 6 5) are prime numbers. Denote by E(N) the number of positive

even integers n up to N that cannot be written in the form (1.1). Prachar in [6]

proved that E(N) ≪ N(logN)−30/47+ε, where ε > 0 is arbitrarily small. Bauer

in [1] improved Prachar’s result to E(N) ≪ N1−θ+ε with θ = 1
2742 . Ren and Tsang

improved this result to θ = 1
66 in [7], and to θ = 1

48 in [8]. Bauer in [2] further proved

that θ = 47
1680 is acceptable. The best known result is θ = 1

16 proved by Zhao, see [11].
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In this note, we investigate this problem in short intervals, i.e.,

(1.2)







n = p22 + p33 + p44 + p55,
∣

∣

∣
pkk −

N

4

∣

∣

∣
6 U, 2 6 k 6 5,

where U = N1−δ+ε with δ > 0. Let E(N,U) be the number of all positive even

integers n ∈ [N − 4U,N + 4U ] that cannot be expressed by (1.2). We want to show

that there exists a δ such that E(N,U) ≪ U1−ε. As is known, the quality of this

problem is described by δ. In 2012, Li and Tang in [4] considered this problem firstly

and proved that δ = 1
264 is acceptable. In 2016, Zhang in [10] improved their result

to δ = 4
325 . In this paper, we establish the following theorem.

Theorem 1.1. For U = N1−δ+ε with δ = 1
54 , we have

E(N,U) ≪ U1−ε.

As a consequence, we give the following result.

Corollary 1.1. For each sufficiently large odd positive integer N , the equation






N = p1 + p22 + p33 + p44 + p55,
∣

∣

∣
pkk −

N

5

∣

∣

∣
6 U, 1 6 k 6 5,

is solvable for U = N1−1/54+ε.

We use the circle method to establish Theorem 1.1. For the integrals on the

major arc, we cite Proposition 1 in [10] and give a slight modification. For the

treatment of the integrals on the minor arc, we prove an estimate for the integral
∫

m
|f2

2 (α)f
1/2
3 (α)f2

4 (α)f
2
5 (α)| dα and then apply the estimates for the exponential

sum over primes in short intervals in [5].

Throughout this paper, the letter ε denotes an arbitrarily small positive number

which may be different at different occurrences. In what follows, we use N to denote

a large positive number and set L = logN . As usual, we write e(x) = e2πix.

2. Proof of Theorem 1.1

Let 1 < P < 1
2Q. By Dirichlet’s rational approximation theorem, each α ∈

[1/Q, 1 + 1/Q] may be written in the form

(2.1) α =
a

q
+ λ, |λ| 6

1

qQ
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for some integers a, q with 1 6 a 6 q 6 Q and (a, q) = 1. Let I(q, a) be the set of α

satisfying (2.1). Define the major arc M and minor arc m as

(2.2) M =
⋃

q6P

⋃

16a6q
(a,q)=1

I(q, a), m =
[ 1

Q
, 1 +

1

Q

]

\M.

For 1 < U < N , write

Y =
N

4
− U, X =

N

4
+ U.

Put

R(n, U) =
∑

n=p2

2
+p3

3
+p4

4
+p5

5

Y6pk

k
6X

(log p2) . . . (log p5)

and

(2.3) fk(α) =
∑

Y6pk6X

(log p)e(pkα).

Then

R(n, U) =

∫ 1

0

( 5
∏

k=2

fk(α)

)

e(−nα) dα.

By orthogonality of the exponential functions, we have

(2.4) R(n, U) =

∫ 1+1/Q

1/Q

( 5
∏

k=2

fk(α)

)

e(−nα) dα

=

(
∫

M

+

∫

m

)( 5
∏

k=2

fk(α)

)

e(−nα) dα.

To describe the contribution from the major arc, we introduce some notations. Let

Ck(q, a) =

q
∑

h=1
(h,q)=1

e
(ahk

q

)

and B(n, q) =

q
∑

a=1
(a,q)=1

e
(

−
an

q

)

5
∏

k=2

Ck(q, a).

Define the singular series

(2.5) S(n) =

∞
∑

q=1

B(n, q)

ϕ4(q)
.

In the following argument, we set

(2.6) P = U2N−23/12−3ε, Q = N11/12+2ε, U = N1−1/54+ε.
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Proposition 2.1. Let the major arcM be defined in (2.2) with P , Q, U defined

in (2.6). Then for N − 4U 6 n 6 N + 4U , one has

∫

M

( 5
∏

k=2

fk(α)

)

e(−nα) dα =
1

120
S(n)J(n, U) +O(U3N−163/60L−A),

where J(n, U) is defined as

J(n, U) =
∑

n=m2+m3+m4+m5

Y6m2,...,m56X

{ 5
∏

k=2

m
1/k−1
k

}

and satisfies J(n) ≍ U3N−163/60. Moreover, the singular series S(n) defined in (2.5)

is absolutely convergent and satisfies S(n) ≫ (log logn)−c for some absolute positive

constant c.

P r o o f. This is a slight modification of Proposition 1 in [10]. Actually, the re-

quirements for the parameters in Proposition 1 of [10] are the following:

(2.7) P 1+ε ≪ U2N−23/12, Q ≫ N11/12, PQ ≪ U1−ε.

One can easily check that for P , Q, U defined in (2.6), the conditions (2.7) are

satisfied. Hence, the argument of Proposition 1 in [10] is true for our choice of

parameters. �

Proposition 2.2. Let the minor arcm be defined as in (2.2) with P and Q defined

in (2.6). Then we have

∫

m

|f2
2 (α)f

2
3 (α)f

2
4 (α)f

2
5 (α)| dα ≪ U19/4+εN−129/40.

Remark 2.1. The above bound is O(U589/112+εN−6239/1680) by [10], Proposi-

tion 2. It is easy to see that the bound in Proposition 2.2 is a slight improvement.

We will prove Proposition 2.2 in the next section. With Propositions 2.1 and 2.2

ready, we can establish Theorem 1.1 and Corollary 1.1 in the remaining part of this

section.

P r o o f of Theorem 1.1. Let E(n, U) be the set of positive integers n ∈ [N − 4U,

N + 4U ] which cannot be represented as (1.2) and E(n, U) = |E(n, U)|. Then,

R(n, U) = 0 for n ∈ E(n, U). By (2.4) we have

(2.8)
∑

n∈E(n,U)

(
∫

M

+

∫

m

)( 5
∏

k=2

fk(α)

)

e(−nα) dα = 0.
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Thus, by Proposition 2.1

(2.9)

∣

∣

∣

∣

∑

n∈E(n,U)

∫

M

( 5
∏

k=2

fk(α)

)

e(−nα) dα

∣

∣

∣

∣

≫ U3N−163/60(log logN)−cE(n, U).

On the other hand, by Cauchy’s inequality, we have

∣

∣

∣

∣

∑

n∈E(n,U)

∫

m

( 5
∏

k=2

fk(α)

)

e(−nα) dα

∣

∣

∣

∣

6

(
∫

m

∣

∣

∣

∣

5
∏

k=2

f2
k (α)

∣

∣

∣

∣

dα

)1/2(∫ 1

0

∣

∣

∣

∣

∑

n∈E(n,U)

e(−nα)

∣

∣

∣

∣

2

dα

)1/2

= I1/2(2)E1/2(n, U),

where

I(2) =

∫

m

|f2
2 (α)f

2
3 (α)f

2
4 (α)f

2
5 (α)| dα.

This together with (2.8) and (2.9) gives

E(n, U) ≪ U−6+εN163/30I(2).

It follows from Proposition 2.2 and the definition of U in (2.6) that

E(n, U) ≪ U−5/4+εN53/24 ≪ U1−ε.

This completes the proof of Theorem 1.1. �

P r o o f of Corollary 1.1. Let N = 4
5N , U = N1−δ+ε. By Theorem 1.1, all but

O(U 1−ε) exceptions of n in [N − 4U,N + 4U ] can be written as p22 + p33 + p44 + p55,

where 1
4N − U 6 pii 6

1
4N + U , i.e., 1

5N − U 6 pii 6
1
5N + U . Consider the subset

of primes

P =
{

p :
∣

∣

∣
p−

N

5

∣

∣

∣
6 U

}

.

By the prime number theorem in short intervals [3], Chapter 7, Theorem 2, one has

|P| ≫ U/L. Thus, # {N − p : p ∈ P} ≫ U/L. There are ≫ U/L even integers n

such that n = N − p and N − U 6 n 6 N + U . Note that U/L ≫ U1−ε, so

Theorem 1.1 implies that there exists p ∈ P such that the equation

N − p = p22 + p33 + p44 + p55,
∣

∣

∣
pkk −

N

5

∣

∣

∣
6 U, k = 2, . . . , 5,

has solutions. Then Corollary 1.1 follows by noticing that U 6 U . �
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3. Proof of Proposition 2.2

Lemma 3.1. Let m be the minor arc defined as in (2.2) with P , Q in (2.6). Then,

for 8
9 < θ 6 1 and 0 < ̺ 6 min

{

1
12 (3θ − 2), 1

6 (9θ − 8)
}

, one has

sup
α∈m

∣

∣

∣

∣

∑

x<n6x+xθ

Λ(n)e(n3α)

∣

∣

∣

∣

≪ xθ−̺+ε + xθ+εP−1/2.

P r o o f. See [5], Theorem 1. �

Lemma 3.2. Let fk(α) be defined as in (2.3). Then for U ≫ N1−1/30, we have

∫ 1

0

|f2
2 (α)f

2
3 (α)f

2
5 (α)| dα ≪ U4+εN−44/15.

P r o o f. See [4], Lemma 8. �

Lemma 3.3. Let fk(α) be defined as in (2.3). Then for U = o(N) we have

(3.1)

∫ 1

0

|f2
2 (α)f

4
4 (α)| dα ≪ U3+εN−2

and

(3.2)

∫ 1

0

|f2
2 (α)f

6
5 (α)| dα ≪ U9/2+εN−33/10.

P r o o f. The integral in (3.1) counts the number of integer solutions of the equa-

tion

(3.3) x2
1 − x2

2 = y41 + y42 − y43 − y44

with Y 1/2 6 x1, x2 6 X1/2 and Y 1/4 6 yi 6 X1/4 for i = 1, . . . , 4. For any

fixed (y1, y2, y3, y4) if y
4
1 + y42 6= y43 + y44 , then the number of (x1, x2) is at most

d(y41 + y42 − y43 − y44). So in this case, the number of solutions of (3.3) is

≪ (X1/4 − Y 1/4)4+ε ≪ (UN−3/4)4+ε ≪ U4+εN−3.

If y41 + y42 = y43 + y44 , then x1 = x2. Hence, the number of solutions of (3.3) is

bounded by

≪ (X1/2 − Y 1/2)

∫ 1

0

|f4
4 (α)| dα ≪ (X1/2 − Y 1/2)(X1/4 − Y 1/4)2+ε

≪ UN−1/2(UN−3/4)2+ε ≪ U3+εN−2.
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Thus, we get
∫ 1

0

|f2
2 (α)f

4
4 (α)| dα ≪ U4+εN−3 + U3+εN−2 ≪ U3+εN−2.

Treating the integral in (3.2) similarly we get
∫ 1

0

|f2
2 (α)f

6
5 (α)| dα ≪ (X

1

5 − Y
1

5 )6+ε + (X1/2 − Y 1/2)

∫ 1

0

|f6
5 (α)| dα

≪ (X1/5 − Y 1/5)6+ε + (X1/2 − Y 1/2)

×

(
∫ 1

0

|f4
5 (α)| dα

)1/2(∫ 1

0

|f8
5 (α)| dα

)1/2

≪ (X1/5 − Y 1/5)6+ε + (X1/2 − Y 1/2)(UN−4/5)7/2+ε

≪ U6+εN−24/5 + U9/2+εN−33/10 ≪ U9/2+εN−33/10.

This completes the proof of Lemma 3.3. �

P r o o f of Proposition 2.2. To estimate I(2), we firstly have

I(2) ≪ sup
α∈m

|f3(α)|
3/2I(1/2).

where I(12 ) =
∫

m
|f2

2 (α)f
1/2
3 (α)f2

4 (α)f
2
5 (α)| dα. By Lemma 3.1 with x = (14N−U)1/3

and xθ = (14N + U)1/3 − (14N − U)1/3 ≍ UN−2/3 with U defined in (2.6), we have

̺ = 1
12 (3θ − 2). Therefore, we obtain

sup
α∈m

|f3(α)| ≪ xθ−̺+ε + xθ+εP−1/2 = x3θ/4+1/6+ε + xθ+εP−1/2

≪ (UN−2/3)3/4
((N

4
− U

)1/3)1/6+ε

+ (UN−2/3)1+ε(U2N−23/12−3ε)−1/2

≪ U3/4+εN−4/9

for U > N53/54. By Hölder’s inequality, we have

I(1/2) 6

(
∫ 1

0

|f2
2 (α)f

4
4 (α)| dα

)1/2(∫ 1

0

|f2
2 (α)f

2
3 (α)f

2
5 (α)| dα

)1/4

×

(
∫ 1

0

|f2
2 (α)f

6
5 (α)| dα

)1/4

≪

(

U3+εN−2

)1/2(

U4+εN−44/15

)1/4(

U9/2+εN−33/10

)1/4

≪ U29/8+εN−307/120.

Thus, we get

I(2) ≪ (U3/4+εN−4/9)3/2(U29/8+εN−307/120) ≪ U19/4+εN−129/40.

This completes the proof of Proposition 2.2. �

1173



References

[1] C.Bauer: An improvement on a theorem of the Goldbach-Waring type. Rocky Mt. J.
Math. 31 (2001), 1151–1170. zbl MR doi

[2] C.Bauer: A Goldbach-Waring problem for unequal powers of primes. Rocky Mt. J.
Math. 38 (2008), 1073–1090. zbl MR doi

[3] A.A.Karatsuba: Basic Analytic Number Theory. Springer, Berlin, 1993. zbl MR doi
[4] T.Li, H.Tang: On a theorem of Prachar involving prime powers. Integers 12 (2012),
321–344. zbl MR doi

[5] T.Li, Y.Yao: Exponentional sums over cubes of primes in short intervals and its appli-
cations. Math. Z. 299 (2021), 83–99. zbl MR doi

[6] K.Prachar: Über ein Problem vom Waring-Goldbach’schen Typ. Monatsh. Math. 57
(1953), 66–74. (In German.) zbl MR doi

[7] X.M.Ren, K.M.Tsang: Waring-Goldbach problem for unlike powers. Acta Math. Sin.,
Engl. Ser. 23 (2007), 265–280. zbl MR doi

[8] X.M.Ren, K.M.Tsang: Waring-Goldbach problems for unlike powers. II. Acta Math.
Sin., Chin. Ser. 50 (2007), 175–182. (In Chinese.) zbl MR

[9] K.F.Roth: A problem in additive number theory. Proc. Lond. Math. Soc., II. Ser. 53
(1951), 381–395. zbl MR doi

[10] M.Zhang: Waring-Goldbach problems for unlike powers with almost equal variables.
Front. Math. China 11 (2016), 449–460. zbl MR doi

[11] L.L. Zhao: The exceptional set for sums of unlike powers of primes. Acta Math. Sin.,
Engl. Ser. 30 (2014), 1897–1904. zbl MR doi

Author’s address: Q i n g q i n g Z h a n g, School of Mathematics, Shandong Univer-
sity, 27 Shanda Nanlu, Jinan, Shandong 250100 , P. R. China, e-mail: qingqingzhang@
mail.sdu.edu.cn.

1174

https://zbmath.org/?q=an:1035.11047
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1895291
http://dx.doi.org/10.1216/rmjm/1021249436
https://zbmath.org/?q=an:1232.11101
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2435914
http://dx.doi.org/10.1216/RMJ-2008-38-4-1073
https://zbmath.org/?q=an:0767.11001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1215269
http://dx.doi.org/10.1007/978-3-642-58018-5
https://zbmath.org/?q=an:1282.11136
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2955518
http://dx.doi.org/10.1515/integ.2011.097
https://zbmath.org/?q=an:07402879
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4311596
http://dx.doi.org/10.1007/s00209-020-02649-8
https://zbmath.org/?q=an:0050.04003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0061626
http://dx.doi.org/10.1007/BF01319081
https://zbmath.org/?q=an:1128.11043
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2286920
http://dx.doi.org/10.1007/s10114-005-0733-z
https://zbmath.org/?q=an:1121.11312
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2305808
https://zbmath.org/?q=an:0044.03601
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0041874
http://dx.doi.org/10.1112/plms/s2-53.5.381
https://zbmath.org/?q=an:1335.11083
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3473745
http://dx.doi.org/10.1007/s11464-016-0512-4
https://zbmath.org/?q=an:1302.11080
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3266786
http://dx.doi.org/10.1007/s10114-014-3661-y
mailto:qingqingzhang@mail.sdu.edu.cn
mailto:qingqingzhang@mail.sdu.edu.cn

