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THE RELATION BETWEEN THE NUMBER OF LEAVES
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Abstract. Let L(n, d) denote the minimum possible number of leaves in a tree of order n
and diameter d. Lesniak (1975) gave the lower bound B(n, d) = ⌈2(n − 1)/d⌉ for L(n, d).
When d is even, B(n, d) = L(n, d). But when d is odd, B(n, d) is smaller than L(n, d) in
general. For example, B(21, 3) = 14 while L(21, 3) = 19. In this note, we determine L(n, d)
using new ideas. We also consider the converse problem and determine the minimum
possible diameter of a tree with given order and number of leaves.
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A leaf in a graph is a vertex of degree 1. For a real number r, ⌊r⌋ denotes the

largest integer less than or equal to r, and ⌈r⌉ denotes the least integer larger than

or equal to r. Let L(n, d) denote the minimum possible number of leaves in a tree of

order n and diameter d. In 1975 Lesniak in [1], Theorem 2, page 285 gave the lower

bound B(n, d) = ⌈2(n − 1)/d⌉ for L(n, d). When d is even, B(n, d) = L(n, d). But

when d is odd, B(n, d) is smaller than L(n, d) in general. For example, B(21, 3) = 14

while L(21, 3) = 19. The proof in [1] uses two lemmas, treating the even case and

odd case of the number of leaves separately and showing that in both cases there

exists a set of paths with certain special properties.

In this note we first determine L(n, d). We use ideas different from those in [1].

The proof also makes it clear why L(n, d) has such an expression. We then determine

the minimum possible diameter of a tree with given order and number of leaves.
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We remark that the corresponding maximum problems are trivial. The maximum

possible number of leaves in a tree of order n and diameter d is n − d + 1 and the

maximum possible diameter of a tree of order n with exactly f leaves is n− f + 1.

We make the necessary preparation. For terminology and notation we follow the

books [2] and [3]. We denote by V (G) the vertex set of a graph G and by d(u, v) the

distance between two vertices u and v. For vertices x and y, an (x, y)-path is a path

with end vertices x and y. We denote by deg(v) the degree of a vertex v.

Let P be a path in a tree T and we call P the stem of T. For every vertex

x ∈ V (T ) there is a unique (x, y)-path Q such that V (Q) ∩ V (P ) = {y}. We say

that x originates from y. Note that by definition, a vertex on the stem originates

from itself. A diametral path of a tree T is a path of length equal to the diameter of T.

A spider is a tree with at most one vertex of degree larger than 2 and this vertex,

if it exists, is called the branch vertex. If no vertex has degree larger than 2, then

any vertex may be specified as the branch vertex. Thus, a spider is a subdivision of

a star. A leg of a spider is a path from the branch vertex to a leaf.

We will need the following lemma.

Lemma 1 ([2], page 63). A path P = v0v1v2 . . . vk in a tree is a diametral path

if and only if for every vertex x,

d(x, vi) 6 min{i, k − i},

where x originates from vi with P as the stem.

The case d = 1 for L(n, d) is trivial, since the only tree of diameter 1 is K2 which

has two leaves. Thus, it suffices to consider the case d > 2.

Theorem 2. Let L(n, d) denote the minimum possible number of leaves in a tree

of order n and diameter d with d > 2. Then

L(n, d) =















⌈2(n− 1)

d

⌉

if d is even,

⌈2(n− 2)

d− 1

⌉

if d is odd.

P r o o f. The idea is to show that for any tree T there is a corresponding spider

with the same order, diameter and number of leaves as T. Hence, to determine L(n, d)

it suffices to consider spiders.

If d = n − 1, then the tree must be a path which has two leaves. In this case

the formula for L(n, d) is true. Note also that a path is a spider. Next we assume

d 6 n− 2.
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Let T be a tree of order n and diameter d. Choose a diametral path P =

v0v1v2 . . . vd as the stem. Suppose that x is a leaf of T outside P originating from y.

There is a unique (x, y)-path Q. Since P is a diametral path, y 6= v0, vd. Hence,

deg(y) > 3.We define the first big vertex of x, denoted by b(x), to be the first vertex

of degree at least 3 from x to y on Q.

Denote c = ⌊ 1

2
d⌋. Then c = 1

2
d if d is even and c = 1

2
(d − 1) if d is odd. Let

z = vc. If T has a leaf u outside P with b(u) 6= z, let w be the neighbor of b(u) on the

(b(u), u)-path. Since T is a tree, w and z are not adjacent. We delete the edge wb(u)

and add the edge wz to obtain a new tree T1. Since min{i, d − i} 6 min{c, d − c}

for any 0 6 i 6 d, by Lemma 1 we deduce that P remains a diametral path of T1.

Clearly T1 and T have the same set of leaves. Hence, T1 and T have the same order,

diameter and number of leaves. We still designate P as the stem of T1. If T1 has

a leaf outside P whose first big vertex is not z, perform the above operation on T1 to

obtain a tree T2. Repeating this operation in the resulting trees successively finitely

many times, we obtain a tree in which every leaf outside P originates from z and

with z as its first big vertex. Such a tree is a spider. An example of the above

transformations is depicted in Figure 1.

Figure 1. Transforming a general tree to a spider

The above analysis shows that L(n, d) can be attained at a spider S with a diame-

tral path P = v0v1v2 . . . vd, where z = vc is the branch vertex. Clearly, the number

of leaves in S is equal to the number of legs of S. To make the number of legs as

small as possible, we need to make each leg as long as possible. Since the diameter

of S is d, except the leg vcvc+1 . . . vd when d is odd, every other leg has length at

most c. Thus, the minimum possible number of legs of such a spider is ⌈(n − 1)/c⌉

when d is even and ⌈(n− 2)/c⌉ when d is odd. This completes the proof. �
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Next we consider the converse problem: Determine the minimum possible diameter

of a tree of order n with exactly f leaves. It suffices to treat the case when n > f+1,

since K2 is the only tree with n 6 f.

Theorem 3. Let D(n, f) be the minimum possible diameter of a tree of order n

with exactly f leaves. Then

D(n, f) =











2 if n = f + 1,

2k + 1 if n = kf + 2,

2k + 2 if kf + 3 6 n 6 (k + 1)f + 1.

P r o o f. In the proof of Theorem 2, we showed that for any tree T there is a cor-

responding spider with the same order, diameter and number of leaves as T. Thus,

it suffices to consider spiders. Note that the number of leaves of a spider is equal to

its number of legs, which is also true for the case when the spider is a path (corre-

sponding to f = 2) if we take a central vertex of the path as its branch vertex. Let S

be a spider of order n with exactly f legs whose lengths are x1 > x2 > . . . > xf

arranged in nonincreasing order. Then the diameter of S is x1 + x2. Hence, our

problem is equivalent to minimizing x1 + x2 under the constraint

(1) x1 + x2 + x3 + . . .+ xf = n− 1,

where x1 > x2 > . . . > xf are positive integers.

If n = f + 1, then (1) becomes x1 + x2 + x3 + . . . + xf = f, which has the only

solution x1 = x2 = x3 = . . . = xf = 1. Hence, x1 + x2 = 2. Let n = kf + 2. If

x1 + x2 6 2k, then x2 6 k and consequently xi 6 k for each i = 3, . . . , f. It follows

that

x1 + x2 + x3 + . . .+ xf 6 (x1 + x2) + (f − 2)k 6 2k + (f − 2)k = fk = n− 2,

contradicting (1). This shows that D(n, f) > 2k + 1. On the other hand, the values

x1 = k+1, x2 = . . . = xf = k satisfy (1) and x1+x2 = 2k+1.Hence, D(n, f) = 2k+1.

Now consider the third case kf +3 6 n 6 (k+1)f +1.We have kf +2 6 n− 1 6

kf + f. Thus, there exists an integer r with 2 6 r 6 f such that n− 1 = kf + r. We

first show D(n, f) > 2k+ 2. If x1 + x2 6 2k+ 1, then x2 6 k and consequently each

xi 6 k for i = 3, . . . , f. It follows that

x1 + x2 + x3 + . . .+ xf 6 (x1 + x2) + (f − 2)k 6 2k + 1 + (f − 2)k = fk + 1

< fk + r = n− 1,

contradicting (1). Hence, D(n, f) > 2k + 2. On the other hand, the values x1 =

x2 = . . . = xr = k + 1 and xr+1 = . . . = xf = k satisfy (1) and x1 + x2 = 2k + 2,

which shows D(n, f) = 2k + 2. This completes the proof. �
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