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Abstract. Novikov algebras were introduced in connection with the Poisson brackets of
hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic
Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In
this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate
symmetric bilinear forms are Novikov algebras.
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1. Introduction

Gel’fand and Dikii gave a bosonic formal variational calculus in [5], [6] and Xu

provided a fermionic formal variational calculus in [12]. By combining the bosonic

theory of Gel’fand-Dikii and the fermionic theory, a formal variational calculus of

supervariables was given by Xu in [13]. Fermionic Novikov algebras are related to the

Hamiltonian superoperator in terms of this theory. A fermionic Novikov algebra is

a finite-dimensional vector space A over a field F with a bilinear product (x, y) 7→ xy

satisfying

(xy)z − x(yz) = (yx)z − y(xz),(1.1)

(xy)z = −(xz)y(1.2)

for any x, y, z ∈ A. As described in [13], this algebra corresponds to the Hamiltonian

operator H of type 0, i.e., H0
α,β =

∑

γ∈I

(aγα,βΦγ(2) + b
γ
α,βΦγD), where aγα,β , b

γ
α,β ∈ R.
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According to the identity (1.1), fermionic Novikov algebras are a class of left-

symmetric algebras, which are a class of non-associative algebras arising from

the study of affine manifolds, affine structures and convex homogeneous cones,

see [2], [10]. Novikov algebras, introduced in connection with the Poisson brackets

of hydrodynamic type, see [1], [3], [4] and Hamiltonian operators in the formal

variational calculus, see [5], [6], [7], [11], [12], are another class of left-symmetric

algebras A satisfying

(1.3) (xy)z = (xz)y for any x, y, z ∈ A.

The commutator [x, y] = xy − yx for any x and y in a left-symmetric algebra A

defines a Lie algebra, which is called the underlying Lie algebra of A. A bilinear

form 〈·, ·〉 on a left-symmetric algebra A is invariant if

(1.4) 〈yx, z〉 = 〈y, zx〉

for any x, y, z ∈ A.

Zelmanov in [14] classified real Novikov algebras with invariant positive definite

symmetric bilinear forms. In [8], Guediri gave the classification for the Lorentzian

case. This paper studies real fermionic Novikov algebras admitting invariant non-

degenerate symmetric bilinear forms. Our main result is the following theorem.

Theorem 1.1. Any finite dimensional real fermionic Novikov algebra admitting

an invariant non-degenerate symmetric bilinear form is a Novikov algebra.

2. The proof of Theorem 1.1

Let A be a fermionic Novikov algebra. Given any element x ∈ A, we denote the

left and right multiplication operator by Lx and Rx, respectively, i.e., Lx(y) = xy

and Rx(y) = yx for any y ∈ A. According to identity (1.2), it follows immediately

that for any x, y ∈ A, RxRy = −RyRx. In particular, we have that R
2
x = 0 for any

x ∈ A.

Definition 2.1. A non-degenerate bilinear form 〈·, ·〉 on a vector space V is of

type (n−p, p) if there is a basis {e1, . . . , en} of V such that 〈ei, ei〉 = −1 for 1 6 i 6 p,

〈ei, ei〉 = 1 for p+1 6 i 6 n, and 〈ei, ej〉 = 0 otherwise. Note that the bilinear form

is positive definite if p = 0 and is Lorentzian if p = 1.

A linear operator σ of (V, 〈·, ·〉) is self-adjoint if 〈σ(x), y〉 = 〈x, σ(y)〉 for any

x, y ∈ V.
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Lemma 2.1 ([9], pages 260–261). Let 〈·, ·〉 be a non-degenerate symmetric bilinear

form of type (n − p, p) on V = R
n, then a linear operator σ on V is self-adjoint if

and only if V can be expressed as a direct sum of Vk that are mutually orthogonal

(hence non-degenerate), σ-invariant, and each σ|Vk
has an r × r matrix form either











λ 0 . . . 0

1 λ
. . .

...
...
. . .

. . . 0

0 . . . 1 λ











relative to a basis α1, . . . , αr (r > 1)with all scalar products zero except 〈αi, αj〉 = ±1

when i+ j = r + 1, or

































(

a b

−b a

)

(

1 0

0 1

) (

a b

−b a

)

0

(

1 0

0 1

) (

a b

−b a

)

0
. . .

. . .
(

1 0

0 1

) (

a b

−b a

)

































,

where b 6= 0 relative to a basis β1, α1, . . . , βm, αm with all scalar products zero except

〈βi, βj〉 = 1 = −〈αi, αj〉 when i+ j = m+ 1.

If the algebra A admits an invariant non-degenerate symmetric bilinear form 〈·, ·〉

of type (n−p, p), then −〈·, ·〉 is an invariant non-degenerate symmetric bilinear form

on A of type (p, n− p). Therefore we can assume that p 6 n− p.

Lemma 2.2. Let A be a fermionic Novikov algebra admitting an invariant non-

degenerate symmetric bilinear form 〈·, ·〉 of type (n − p, p), then dim ImRx 6 p for

any x ∈ A.

P r o o f. Recall that R2
x = 0; it follows that ImRx ⊆ KerRx. By the invariance

of 〈·, ·〉, we have 〈Rxy,Rxz〉 = 〈y,R2
xz〉 = 0, which yields 〈ImRx, ImRx〉 = 0. Hence

dim ImRx 6 p. �

Let x0 ∈ A such that dim ImRx 6 dim ImRx0
for any x ∈ A. By Lemma 2.2,

dim ImRx0
6 p. For convenience, assume that dim ImRx0

= k. By Lemma 2.1 and

R2
x0

= 0, there exists a basis {e1, . . . , en} of A such that the operator Rx0
relative to
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this basis has the matrix of the form


























(

0 0

1 0

)

0

. . .

0

(

0 0

1 0

)













2k×2k

02k×(n−2k)

0(n−2k)×2k 0(n−2k)×(n−2k)















,

and the matrix of the metric 〈·, ·〉 with respect to {e1, . . . , en} has the form




C2k 0 0

0 −Ip−k 0

0 0 In−p−k



 ,

where C2k = diag
((

0 1

1 0

)

, . . . ,
(

0 1

1 0

))

and Is denotes the s× s identity matrix. For

any x ∈ A, the matrix of the operator Rx relative to this basis has the form




A1 A2 A3

A4 A5 A6

A7 A8 A9





whose blocks are the same as those of the metric matrix with respect to the basis

{e1, . . . , en}.

First we can prove that
(

A5 A6

A8 A9

)

= 0(n−2k)×(n−2k). In fact, assume that there

exists some nonzero entry d of
(

A5 A6

A8 A9

)

. Consider the matrix form of the operator

Rx + lRx0
with l ∈ R. For any l ∈ R, according to the choice of x0, we know that

dim Im(Rx + lRx0
) = dim Im(Rx+lx0

) 6 k. By taking the 2nd through the 2kth

row, the 1st through the (2k− 1)th column, and the row and column containing the

element d in the matrix of Rx+ lRx0
, we have the (k+1)× (k+1) matrix

(

B+lIk α

β d

)

with the determinant being a polynomial of degree k in a single indeterminate l.

Therefore we can choose an l′ ∈ R such that the above determinant is nonzero. It

follows that

dim Im(Rx + l′Rx0
) = dim Im(Rx+l′x0

) > k + 1,

which is a contradiction.

Secondly, since RxRx0
+Rx0

Rx = 0, we have that A1 = (Mij)16i,j6k with Mij =
(

bij 0

dij −bij

)

,

A2 =















0 . . . 0

a2,1 . . . a2,p−k

...
...

0 . . . 0

a2k,1 . . . a2k,p−k















and A3 =















0 . . . 0

c2,1 . . . c2,n−p−k

...
...

0 . . . 0

c2k,1 . . . c2k,n−p−k















.
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Furthermore, since 〈Rxy, z〉 = 〈y,Rxz〉 according to (1.4), we obtain that

Mij =

(

bij 0

dij −bij

)

, Mji =

(

−bij 0

dij bij

)

,

where bii = 0 for any 1 6 i 6 k, and

A4 = −







a2,1 0 . . . a2k,1 0
...

...
...

...

a2,p−k 0 . . . a2k,p−k 0






,

A7 =







c2,1 0 . . . c2k,1 0
...

...
...

...

c2,n−p−k 0 . . . c2k,n−p−k 0






.

Since R2
x = 0, we have that A2

1+A2A4+A3A7 = 02k×2k. Note that for any 1 6 i 6 k,

(A2
1)i,i = (A2

1 +A2A4 +A3A7)i,i = 0.

It follows that bij = 0 for any i, j. Then we have that Mij = Mji =
(

0 0

dij 0

)

.

Finally, we claim that A2, A3, A4 and A7 are zero matrices. In the following, we

only prove A2 = 02k×(p−k), the proofs of the others are similar. Assume that there

exists a nonzero entry d of A2. Consider the matrix of the operator Rx+ lRx0
. Simi-

larly to the proof of
(

A5 A6

A8 A9

)

= 0(n−2k)×(n−2k), we consider the matrix
(

A′

1
+lIk αT

−α 0

)

,

where d is an entry in the vector α and A′

1 = (dij)16i,j6k is a symmetric matrix.

Therefore there exists an orthogonal matrix P such that PTA′

1P =

(

λ1 0. . .
0 λk

)

.

We can choose an l > max{|λ1|, . . . , |λk|}. It follows that the matrix A′

1 + lIk is

invertible. We have

∣

∣

∣

∣

A′

1 + lIk αT

−α 0

∣

∣

∣

∣

=

∣

∣

∣

∣

(

PT 0

0 1

)(

A′

1 + lIk αT

−α 0

)(

P 0

0 1

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣







λ1 + l 0
. . .

0 λk + l






βT

−β 0

∣

∣

∣

∣

∣

∣

∣

∣

=

( k
∏

i=1

(λi + l)

) k
∑

i=1

1

λi + l
b2i 6= 0,

where β = αP = (b1, . . . , bk) is a nonzero vector. It follows that

dim Im(Rx + lRx0
) = dim Im(Rx+lx0

) > k + 1,

which is a contradiction. Therefore we proved that A2 = 02k×(p−k).
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Now, we know that the matrix of Rx has the form

(

A1 02k×(n−2k)

0(n−2k)×2k 0(n−2k)×(n−2k)

)

,

where A1 = (Mij)16i,j6k with Mij = Mji =
(

0 0

dij(x) 0

)

. Hence RxRy = 0 for any

x, y ∈ A, which implies Theorem 1.1.
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