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GENERALIZED TILTING MODULES OVER RING EXTENSION
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Abstract. Let Γ be a ring extension of R. We show the left Γ-module U = Γ⊗R C with
the endmorphism ring EndΓU = ∆ is a generalized tilting module when RC is a generalized
tilting module under some conditions.
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1. Introduction

Let ξ : R → Γ be a ring homomorphism, then the ring Γ is called a ring exten-

sion of R. So every Γ-module has a natural structure as R-module through ξ; and

there are two canonical ways to obtain a Γ-module from an R-module V , namely,

Γ⊗RV and HomR(Γ, V ). Many properties of V which involve the functor −⊗RV are

known to be inherited by Γ⊗R V : some of these, as projective, generator, are inher-

ited without further conditions, others, for example, tilting module, ∗-module and

quasi-progenerator, require various conditions on V and/or Γ⊗R V , cf. [1], [5], [10].

Dually, many properties of V which involve the functor HomR(−, V ) are known to

be inherited by HomR(Γ, V ): some of these, as injective, cogenerator, are inherited

without further conditions, others, for example, cotilting module and quasi-duality

module require various conditions on V and/or HomR(Γ, V ), cf. [6].

The generalized tilting module is a kind of generalization of the tilting module

(see [7], Definition 5.1.1), and it was first introduced by Wakamatsu in [17] over an

Artin algebra. In [18], the notion of the generalized tilting module was generalized
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to any associative rings and many results on generalized tilting modules over Artin

algebras were naturally generalized. Note that (generalized) tilting modules in [18]

are known as Wakamatsu tilting modules now. Recently, the relations between the

tilting modules of finite projective dimensions and extensions of rings were inves-

tigated by several authors (cf. [14], [19]). In particular, very recently, Tonolo [14]

investigated more generally when an n-tilting module RV extends to an n-tilting

module TorRm>0(Γ, V ) over a ring extension Γ of R, but with a restriction on the

projective dimension of the module.

Naturally, we want to consider the tilting modules with infinite projective dimen-

sions over the ring extension ξ : R → Γ.

For every left R-module C, we denote by AddC (addC) the class of modules

isomorphic to direct summands of (finite) direct sums of copies of C and by Res(RC)

the class of left R-modules M which admit a proper AddC-projective resolution,

i.e., there exists an exact sequence . . . → C1 → C0 → M → 0 with each Ci ∈ AddC

and the sequence stays exact under the functor HomR(C,−).

For a left R-module X , we denote by X⊥ the subcategory of left R-modules M

such that ExtiR(X,M) = 0 for all i > 1 and similarly, ⊥X denotes the subcategory

of left R-modules N such that ExtiR(N,X) = 0 for all i > 1.

Note that the proper AddC-projective resolution was called a dominant right

RC-resolution in [18] and was called an RC-resolution in [17] if C ∈ C⊥.

We denote by CX the class of left R-modules in C⊥ which admit the proper

AddC-projective resolutions, i.e., CX = C⊥ ∩ Res(RC).

In the third section, we prove our main results after we prove several important

lemmas which generalize [19], Theorem 4.6 and [14], Corollary 2.5 in case RΓ
∗ has

C-grade 0, where RΓ
∗ is the left R-module HomR(Γ, D), where RD is an injective

cogenerator in the category of all left R-modules (see Theorem 3.6).

Let RCS be a generalized tilting module with End(RC) = S and Γ a ring extension

of R. Denote by U the left Γ-module Γ ⊗R C such that End(ΓU) = ∆ and U∆ has

degreewise finitely generated projective resolution. Assuming that RU ∈ Res(RC)

and TorR>1(C,Γ) = 0, we prove that ΓU is a generalized tilting module if and only if

RU ∈ CX and RHomR(Γ, D) ∈ CX , where D is an injective cogenerator of ModR.

To the end, we give applications of our results to split extension rings.

On the other hand, semidualizing modules are common generalizations of dualizing

modules and free modules of rank one over commutative Noetherian local rings.

This module was first defined by Foxby in [4] as a generalization of a projective

module and a Gorenstein module, while Vasconcelos [15] (using spherical modules)

and Golod [8] (using suitable modules) initiated the study of semidualizing modules

under different names. Recently, Holm and White [9] defined the semidualizing

(R,S)-bimodule RCS over a pair of associative rings R and S. Relative algebra with
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respect to a semidualizing module has caught many authors’ attention. For this

topic, we refer the readers to Holm and White’s work [9], but also to [11], [12], [13].

In Section 3, we investigate the relation between semidualizing bimodules and ring

extensions, which is a non-commutative module version of [2], Theorem 5.1 and

Proposition 5.3.

2. Preliminaries

In this section, we introduce a number of notions and results which will be used

throughout this work. For unexplained concepts and notation, we refer the readers

to [16], [17], [18].

Let R be any ring. We denote by gen∗(R) the class of left (right) R-modules

which admit degreewise finitely generated left (right) R-projective resolutions, i.e.,

gen∗(R) = {M : there exists an exact resolution . . . → P1 → P0 → M → 0, where

Pi is finitely generated projective left (right) R-module for each i}.

Definition 2.1. Let R and S be any rings. An (R,S)-bimodule RCS is called

faithfully balanced if End(RC) = S and End(CS) = R. RCS is called self-orthogonal

if ExtiR(C,C) = 0 = ExtiS(C,C) for each i > 1.

Definition 2.2 ([18]). A left R-module C is called a (generalized) tilting module if

(1) RC ∈ gen∗(R);

(2) ExtiR(C,C) = 0 for all i > 1;

(3) there exists an exact sequence: 0 → R
f0
−→ C0

f1
−→ C1

f2
−→ . . ., where Ci ∈ addC

and cokerfi ∈
⊥C for any i > 0.

By [18], Corollary 3.2, we have the following equivalent characterization of the

generalized tilting modules.

Lemma 2.3. The following conditions are equivalent for a bimodule RCS :

(1) RC is a generalized tilting module with End(RC) = S;

(2) CS is a generalized tilting module with End(CS) = R;

(3) RC ∈ gen∗(R) and CS ∈ gen∗(S) and RCS is a faithfully balanced, self-

orthogonal bimodule.

3. Generalized tilting modules over ring extensions

In this section, we prove our main results. First, we give some characterization

of the class Res(RC) for some left R-module C. Note that the class Res(RC) is the

class of left R-modules which admit proper AddRC-resolutions.
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Let R and S be two associative rings, the following result generalizes [17], Propo-

sition 2.4.

Lemma 3.1. Let RC be a generalized tilting module with End(RC) = S. The

following two statements are equivalent.

(1) M ∈ Res(RC);

(2) TorS>1(C,HomR(C,M)) = 0 and νM : C ⊗S HomR(C,M) → M is an isomor-

phism.

P r o o f. (1) ⇒ (2): Since M ∈ Res(RC), there exists an exact sequence of

left R-modules: . . . → C1 → C0 → M → 0 with Ci ∈ AddR C. Applying the

functor HomR(C,−), we get another exact sequence of left S-modules: (∗) = . . . →

HomR(C,C1) → HomR(C,C0) → HomR(C,M) → 0. Since HomR(C,C) ∼= S and

RC is finitely generated, HomR(C,Ci) is a projective S-module for each i > 0.

Thus (∗) is a projective resolution of the left S-module HomR(C,M). Note that

C ⊗S HomR(C,Ci) ∼= Ci for all i > 0. Hence applying the functor C ⊗S − to (∗), we

obtain that C ⊗S HomR(C,M) ∼= M and TorS>1(C,HomR(C,M)) = 0.

(2) ⇒ (1): Consider the S-projective resolution of HomR(C,M), X = . . . → P1 →

P0 → HomR(C,M) → 0. By (2), TorS>1(C,HomR(C,M)) = 0. So C ⊗S X is exact.

Also C ⊗S HomR(C,M) ∼= M , and we get an exact sequence . . . → C ⊗S P1 →

C ⊗S P0 → C ⊗S HomR(C,M) ∼= M → 0. Clearly, C ⊗S Pi ∈ AddRC. Apply the

functor HomR(C,−) to C⊗S X. Since Pi
∼= HomR(C,C⊗S Pi) for each i, we deduce

the sequence HomR(C,C ⊗S X) is exact. So M ∈ Res(RC). �

Remark 3.2. When RC is a generalized tilting module, it is easy to see the class

Res(RC) is closed under direct sums by the definition. By Lemma 3.1, we can show

the class Res(RC) is closed under direct summands. In fact, let M ∈ Res(RC) and

letM ′ be a direct summand forM , then TorS>1(C,HomR(C,M)) = 0 and νM : C⊗S

HomR(C,M)→M is an isomorphism by Lemma 3.1. So TorS>1(C,HomR(C,M
′))=0.

Consider the two split exact sequences 0 → M ′ → M → M ′′ → 0 and 0 → M ′′ →

M → M ′ → 0. Then νM ′ : C⊗SHomR(C,M
′) → M is an isomorphism by the snake

lemma.

Lemma 3.3. Let D be an injective cogenerator of R-Mod and RC a finitely

generated left R-module with End(RC) = S. If D ∈ Res(RC) and CS ∈ gen∗(S),

then RCS is a faithfully balanced bimodule and Ext
>1

S (C,C) = 0.

P r o o f. By Lemma 3.1, C⊗SHomR(C,D) ∼= D and TorS>1(C,HomR(C,D)) = 0.

So we have the following isomorphisms:

HomR(R,D) ∼= D ∼= C ⊗S HomR(C,D) ∼= HomR(HomS(C,C), D)
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and

0 = TorSi (C,HomR(C,D)) ∼= HomR(Ext
i
S(C,C), D)

by [3], Theorems 3.2.11 and 3.2.13. Since D is an injective cogenerator of R-modules,

End(CS) = HomS(C,C) ∼= R and ExtiS(C,C) = 0 for i > 1. �

In the following, in order to facilitate the writing, we use U to denote Γ ⊗R C

and ∆ to denote End(ΓU). We always assume that U∆ ∈ gen∗(∆). Given an R− S-

bimodule H , we denote by H∗ the left S-module HomR(H,D), where RD is an

injective cogenerator in the category of all left R-modules.

Similarly to [5], Lemmas 1.2 and 1.3, we have the following lemmas:

Lemma 3.4. Let ξ : R → Γ be a ring homomorphism and RC a generalized

tilting module with End(RC) = S. Then RU ∈ Res(RC) if and only if Res(ΓU) =

{ΓM : RM ∈ Res(RC)}.

P r o o f. (⇐): Clearly ΓU ∈ Res(ΓU), so RU ∈ Res(RC).

(⇒): For any ΓM ∈ Res(ΓU), there exists an exact sequence of Γ-modules, . . . →

U1 → U0 → M → 0 with ΓUi ∈ Add ΓU for each i, which is HomΓ(U,−)-exact. Then

we obtain an exact sequence of induced R-modules X = . . . → U1 → U0 → M → 0,

which stays exact under the functor HomR(C,−) by [5], Lemma 1.2. Note that

RUi ∈ AddR(Γ ⊗R C). As RU ∈ Res(RC), we get RUi ∈ Res(RC) by Remark 3.2.

We have the following commutative diagram, where the first row is obtained by

applying the functor C ⊗S − to the exact sequence HomR(C,X):

C ⊗S HomR(C,U1) //

ν
U1

��

C ⊗S HomR(C,U0) / /

ν
U0

��

C ⊗S HomR(C,M) //

ν
M

��

0

U1
// U0

/ / M // 0.

Since RC is a generalized tilting module, both νU1
and νU0

are isomorphisms and

TorS>1(C,HomR(C,Ui)) = 0 for each i > 0 by Lemma 3.1. So νM is an isomorphism

and the sequence C⊗SHomR(C,X) is exact. Moreover, Tor
S
>1(C,HomR(C,M)) = 0.

In fact, let Ki = Coker(HomR(C,Ui+2),HomR(C,Ui+1)) for each i > 0 and K−1 =

HomR(C,M). Consider the short exact sequences

0 → Ki → HomR(C,Ui) → Ki−1 → 0.

Applying the functor C ⊗S −, we get a long exact sequence

TorS1 (C,HomR(C,Ui)) → TorS1 (C,Ki−1) → C ⊗S Ki → C ⊗S HomR(C,Ui).
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Since C⊗SHomR(C,X) is exact, C⊗SKi → C⊗SHomR(C,Ui) is a monomorphism.

Thus TorS1 (C,Ki−1) = 0 for each i > 0. But TorSi+1(C,K−1) ∼= TorSi (C,K0) ∼= . . . ∼=

TorS1 (C,Ki−1) = 0 for each i > 1. Hence RM ∈ Res(RC) also by Lemma 3.1.

On the other hand, take any ΓM such that RM ∈ Res(RC). By the assumption,

RU ∈ Res(RC) and Res(RC) ⊆Gen(RC). We deduce that ΓM ∈Gen(ΓU) by [5],

Lemma 1.3. So there exists an exact sequence of Γ-modules 0 → M1 → U0 → M → 0

which stays exact under the functor HomΓ(U,−), where ΓU0 ∈ AddΓ U . We obtain

the exact sequence of induced R-modules (†) = 0 → M1 → U0 → M → 0, which

stays exact under the functor HomR(C,−) by [5], Lemma 1.2. Since RM ∈ Res(RC),

C ⊗S HomR(C,M) ∼= M and TorS>1(C,HomR(C,M)) = 0 by Lemma 3.1. So the

sequence C ⊗S HomR(C, (†)) is exact. Also RU0 ∈ Res(RC) by Remark 3.2, and

we can deduce C ⊗S HomR(C,M1) ∼= M1 and TorS>1(C,HomR(C,M1)) = 0. Thus

RM1 ∈ Res(RC) by Lemma 3.1. It follows that M1 is also an Γ-module such that

RM1 ∈ Res(RC). Now by repeating the process with ΓM1, and so on, we get that

ΓM ∈ Res(ΓU). �

Lemma 3.5. Let ξ : R → Γ be a ring homomorphism and RC a left R-module.

Then RΓ
∗ ∈ C⊥ if and only if Ext>1

Γ (U,N) ∼= Ext>1

R (C,N) for any Γ-module N .

P r o o f. (⇐): By [18], Lemma 4.2, ΓΓ
∗ is injective. Thus ΓΓ

∗ ∈Γ U⊥. So

RΓ
∗ ∈ C⊥.

(⇒): By [3], Theorem 3.2.1, RΓ
∗ ∈ C⊥ if and only if TorR>1(Γ, C) = 0. Take

an R-projective resolution of C, P = . . . → P1 → P0 → C → 0 with each Pi

finitely generated projective. Then the sequence Γ ⊗R P is exact. Note that Γ ⊗R

Pi is a finitely generated projective Γ-module for each i. Hence Γ ⊗R P is a Γ-

projective resolution of U . By [5], Lemma 1.2, for each i > 1, we have ExtiΓ(U,N) =

H−i(HomΓ(Γ⊗R P, N)) ∼= H−i(HomR(P, N)) = ExtiR(C,N). �

Now, we investigate the generalized tilting modules over a ring extension Γ of R

using the above lemmas.

Theorem 3.6. Let ξ : R → Γ be a ring homomorphism and RC a generalized

tilting module with End(RC) = S. The following are equivalent.

(1) RΓ
∗ ∈ CX and RU ∈ CX ;

(2) ΓU is a generalized tilting module and RU ∈ ResRC and TorR>1(Γ, C) = 0.

When they are satisfied, for any Γ-module M and ∆-module N , we have

ΓM ∈ UX ⇔ RM ∈ CX .
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P r o o f. (1) ⇒ (2): Since CX = C⊥ ∩ Res(RC), RΓ
∗ ∈ C⊥. By [3], Theo-

rem 3.2.1, TorR>1(Γ, C) = 0. Since RC is a generalized tilting module, RC ∈ gen∗(R).

So ΓU = Γ(Γ ⊗R C) ∈ gen∗(Γ). On the other hand, as RΓ
∗ ∈ Res(RC) and

RU ∈ Res(RC), we have ΓΓ
∗ ∈ Res(ΓU) by Lemma 3.4. Note that ΓΓ

∗ is an in-

jective cogenerator of Γ-Mod by [19], Lemma 4.2. By Lemma 3.3, Hom∆(U,U) ∼= Γ

and Ext>1

∆
(U,U) = 0. As RΓ

∗ ∈ C⊥, we get Ext>1

Γ
(U,U) ∼= Ext>1

R (C,U) = 0 by

Lemma 3.5 and (1). Hence ΓU is a generalized tilting module by Lemma 2.3.

(2) ⇒ (1): Since ΓU is a generalized tilting module, Ext
>1

Γ
(U,U) = 0. So

Ext>1

R (C,U) ∼= Ext>1

Γ (U,U) = 0 by Lemma 3.5. Thus RU ∈ C⊥ and RU ∈ CX .

On the other hand, ΓΓ
∗ is injective by [19], Lemma 4.2. So ΓΓ

∗ ∈ Res(ΓU) by [3],

Theorem 3.2.13 and Lemma 3.1. Also RU ∈ Res(RC), and we get RΓ
∗ ∈ ResRC by

Lemma 3.4. Hence RΓ
∗ ∈ CX .

By the assumption and Lemmas 3.4 and 3.5, we can get ΓM ∈ UX ⇔ RM ∈ CX .

�

Remark 3.7. By [18], Corollary 2.16, if the projective dimensions of the gener-

alized tilting module RC is finite, then CX = C⊥. So we have that C⊥ ⊆ Res(RC).

Hence we can easily show [19], Theorem 4.6 and [14], Corollary 2.5 in case RΓ
∗ has

C-grade 0 by Theorem 3.6.

To end this section, we consider the split extension rings.

If Γ = R ⋉Q is a split extension of R by Q, i.e., Γ = R ⊕Q, of course Γ and R

are ring extensions of each other via the ring homomorphisms R → Γ, r 7→ (r, 0) and

Γ → R, (r, q) 7→ r. And Theorem 3.6 can be improved as follows.

Theorem 3.8. Let Γ = R⋉Q be a split extension of R by Q and let RC be a left

R-module with EndRC ∼= S. Assume that CS ∈ gen∗(S), then ΓU is a generalized

tilting module such that R(Q ⊗R C) ∈ Res(RC) and TorR>1(Q,C) = 0 if and only

if RC is a generalized tilting module with RQ
∗ ∈ CX and R(Q⊗R C) ∈ CX .

P r o o f. (⇒): Since Γ is a split extension of R, there exists a ring homomorphism

Γ → R. So R is also a ring extension of Γ and R ⊗Γ U ∼= R ⊗Γ (Γ ⊗R C) ∼= C. By

Theorem 3.6, we only need to show ΓR
∗ = ΓHomΓ(R,HomR(Γ, D)) ∼= ΓD ∈ UX and

Γ(R ⊗Γ U) ∈ UX . In fact, since ΓΓ
∗ is injective, ΓΓ

∗ ∈ UX . But Γ ∼= R ⊕ Q and

ΓΓ
∗ ∼= D⊕HomR(Q,D), so ΓD ∈ UX by Remark 3.2. On the other hand, since ΓU

is a generalized tilting module, ΓU ∈ UX . But ΓU ∼= (R⊕Q)⊗R C ∼= ΓC ⊕Q⊗R C.

So Γ(R⊗ΓU) ∼= ΓC ∈ UX . Hence RC is a generalized tilting module and RQ
∗ ∈ CX

and R(Q⊗R C) ∈ CX by Theorem 3.6.

(⇐): By the assumption, RU ∼= (R ⊕ Q) ⊗R C ∼= RC ⊕ Q ⊗R C. Since RC is

a generalized tilting module, RC ∈ CX . Also R(Q⊗RC) ∈ CX , so we get RU ∈ CX .

On the other hand, RΓ ∼= RR⊕ RQ. Since RR
∗ ∼= RD is injective, RR

∗ ∈ CX . Also
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RQ
∗ ∈ CX , which yields RΓ

∗ ∈ CX . By Theorem 3.6, ΓU is a generalized tilting

module. Clearly R(Q ⊗R C) ∈ Res(RC) and TorR>1(Q,C) = 0. �

4. Applications to semidualizing bimodules

Definition 4.1 ([9], Definition 2.1). An (R,S)-bimodule RCS is called semidu-

alizing if

(1) RC ∈ gen∗(R);

(2) CS ∈ gen∗(S);

(3) the natural homothety map RRR → HomS(C,C) is an isomorphism;

(4) the natural homothety map SSS → HomR(C,C) is an isomorphism;

(5) Ext>1

R (C,C) = 0 = Ext>1

S (C,C).

Over any rings R and S, Holm and White [9], Definition 4.1 also defined the

Auslander class AC(S) and the Bass class BC(R) induced by a semidualizing

bimodule RCS .

Definition 4.2. The Bass class BC(R) with respect to SCR consists of all right

R-modules N satisfying

(1) ExtiR(C,N) = 0 for all i > 1;

(2) TorSi (HomR(C,N), C) = 0 for all i > 1;

(3) the natural evaluation homomorphism νN : HomR(C,N) ⊗S C → N is an iso-

morphism.

The Auslander class AC(S) with respect to SCR consists of all left S-modules M

satisfying

(1) TorSi (C,M) = 0 for all i > 1;

(2) ExtiR(C,C ⊗S M) = 0 for all i > 1;

(3) the natural evaluation homomorphism µN : M → HomR(C,C ⊗S M) is an

isomorphism.

Following from [9], Definition 4.1 and Lemma 3.1, we know that BC(R) = C⊥ ∩

Res(RC) = CX . Hence we can get a semidualizing (Γ,∆)-bimodule Γ⊗R C over the

ring extension by Theorem 3.6.

Corollary 4.3. Let ξ : R → Γ be a ring homomorphism and RCS a semidualizing

bimodule. The following conditions are equivalent:

(1) RΓ
∗ ∈ BC(R) and RU ∈ BC(R);

(2) ΓU∆ is a semidualizing bimodule and RU ∈ ResRC and TorR>1(Γ, C) = 0.
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When they are satisfied, for any Γ-module M and ∆-module N we have

ΓM ∈ BU (Γ) ⇔ RM ∈ BC(R) and N∆ ∈ AU (∆) ⇔ NS ∈ AC(S).

When both R and Γ are commutative noetherian rings, Christensen studied the

semidualizing complexes and Auslander categories under base change in [2], Theo-

rem 5.1. He proved that when C is a semidualizing complex over R, the complex

C ⊗R Γ is semidualizing over Γ if and only if Γ ∈ CA(R), where CA(R) is the

C-Auslander class.

By Corollary 4.3, we can easily prove the module version of [2], Theorem 5.1

generally.

Corollary 4.4. Let R and Γ be two commutative rings, ξ : R → Γ a ring ho-

momorphism and C a semidualizing module over R. The following conditions are

equivalent:

(1) RΓ
∗ ∈ BC(R);

(2) U = Γ⊗R C is a semidualizing Γ-module and TorR>1(C,Γ) = 0.

P r o o f. (1) ⇒ (2): By [9], Definition 4.1 and [3], Theorems 3.2.1 and 3.2.13,

we can easily show RΓ
∗ ∈ BC(R) if and only if RΓ ∈ AC(R). On the other hand,

U = Γ ⊗R C ∼= C ⊗R Γ, as R is commutative. Thus U ∈ BC(R) by [9], Proposi-

tion 4.1. Hence ΓU∆ is a semidualizing bimodule by Corollary 4.3. Also we have

∆ = HomΓ(U,U) = HomΓ(Γ ⊗R C,Γ ⊗R C) ∼= HomR(C,Γ ⊗R C) ∼= Γ, where the

first isomorphism follows from the Hom-tensor adjointness and the second from the

fact that RΓ ∈ AC(R). Hence U = Γ⊗R C is a semidualizing Γ-module.

(2) ⇒ (1): Since TorR>1(C,Γ) = 0 and U is semidualizing, Ext>1

R (C,U) ∼=

Ext>1

Γ
(U,U) = 0 by Lemma 3.5. Also Γ ∼= HomΓ(U,U) ∼= HomR(C,C ⊗R Γ) and

TorR>1(C,Γ) = 0, which yields RΓ ∈ AC(R) and Γ∗ ∈ BC(R). �

Particularly, if Γ is a flat R-module, then clearly Γ ∈ AC(R) and TorR>1(C,Γ) = 0.

So Γ⊗RC is a semidualizing Γ-bimodule in case C is a semidualizing module over R

by Corollary 4.4, which is also proved by Holm and White in [9], Proposition 3.2.
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