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Abstract. Let R be a commutative Noetherian ring, and let C be a semidualizing
R-module. The notion of C-tilting R-modules is introduced as the relative setting of the
notion of tilting R-modules with respect to C. Some properties of tilting and C-tilting
modules and the relations between them are mentioned. It is shown that every finitely gen-
erated C-tilting R-module is C-projective. Finally, we investigate some kernel subcategories
related to C-tilting modules.
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1. Introduction

Throughout this paper R is a commutative Noetherian ring and all modules are

unital. Tilting modules are well-known and are useful in the representation theory

of Artinian algebras, see for example [3] and [8]. Over the past few years, several

mathematicians interested in the representation theory of finite dimensional alge-

bras have developed a technique called “tilting”. Given one algebra, one can take

the endomorphism ring of a tilting module to get a different algebra which, al-

though not Morita equivalent, has a similar module category. The conditions for an

R-module T to be a tilting module are that T should have projective dimension at

most one, Ext1R(T, T
(k)) should be zero for every cardinal k, and there should be

a short exact sequence 0 → R → T0 → T1 → 0 of R-modules, where T0 and T1 are

direct summands of direct sums of copies of T . In [3], the conditions are relaxed

to allow T to have arbitrary finite projective dimension, as long as ExtnR(T, T
(k))

vanishes for all positive n, and for every cardinal k, also any exact sequence of the

form 0 → R → T0 → . . . → Tr → 0 in place of a short exact sequence.
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The notion of a “semidualizing module” is a central notion in relative homological

algebra. This notion was first introduced by Foxby [6]. Then Vasconcelos [19] and

Golod [7] rediscovered these modules using different terminology for different pur-

poses. This notion has been investigated by many authors from different points of

view; see for example [1], [4], [9] and [17].

Among various research areas on semidualizing modules, one sometimes focuses

on extending the “absolute” classical notion of homological algebra to the “relative”

setting with respect to a semidualizing module. For instance, this has been done

for the classical and Gorenstein homological dimensions mainly through the works

of Golod [7], Holm and Jørgensen [9] and White [20], and (co)homological theories

have been extended to the relative setting with respect to a semidualizing module

mainly through the works of Takahashi, White [17], Salimi, Tavasoli, Yassemi [14]

and Salimi, Sather-Wagstaff, Tavasoli, Yassemi [13].

In this paper, we define relative tilting modules with respect to a semidualizing

module and we adduce some examples of these modules. Also, we investigate some

properties of C-tilting R-modules and we get relations between tilting and C-tilting

R-modules, where C is a semidualizing R-module. Also, we show that every finitely

generated C-tilting R-module is C-projective, where C is a semidualizing R-module.

Finally, we investigate some kernel subcategories related to C-tilting modules.

2. Preliminaries

Throughout this paper, M(R) is the category of R-modules. Write P(R), F(R)

and I(R) for the subcategories of projective, flat and injective R-modules, respec-

tively. This section contains definitions and background information which will be

used in the proof of our main results.

Definition 2.1. An R-complex is a sequence of R-module homomorphisms

Y = . . .
∂Y
n+1
−→ Yn

∂Y
n−→ Yn−1

∂Y
n−1
−→ . . .

such that ∂Y
n−1∂

Y
n = 0 for each integer n. When Y is an R-complex, set Hn(Y ) =

Ker(∂Y
n )/ Im(∂Y

n+1) for each n. Given a subcategory X ofM(R), an R-complex Y is

HomR(X ,−)-exact if the complex HomR(X,Y ) is exact for each X in X . The term

HomR(−,X )-exact is defined similarly.

In this paper, resolutions are built from precovers, and coresolutions are built from

preenvelopes, defined next. For more details about precovers and preenvelopes, the

reader may consult [5], Chapters 5 and 6.
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Definition 2.2. Let X be a subcategory ofM(R) and let M be an R-module.

An X -precover of M is an R-module homomorphism ϕ : X → M , where X ∈ X ,

and such that the sequence

HomR(X
′, ϕ) : HomR(X

′, X) → HomR(X
′,M) → 0

is exact for every X ′ ∈ X . If every R-module admits X -precover, then the class X

is precovering. The terms X -preenvelope and preenveloping are defined dually.

Assume that X is precovering. Then each R-module M has an augmented proper

X -resolution, that is, an R-complex

X+ = . . .
∂X
2−→ X1

∂X
1−→ X0

τ
−→ M −→ 0

such that HomR(Y,X
+) is exact for all Y ∈ X . The truncated complex

X = . . .
∂X
2−→ X1

∂X
1−→ X0 −→ 0

is a proper X -resolution of M . The X -projective dimension of M is

X -pdR(M) = inf{sup{n : Xn 6= 0} : X is a proper X -resolution of M}.

Proper X -coresolutions and X - id are defined dually.

When X is the class of projective R-modules, we write pdR(M) for the associated

homological dimension and call it the projective dimension of M . Similarly, the flat

and injective dimensions of M are, respectively, denoted by fdR(M) and idR(M).

Semidualizing modules, defined next, were first introduced by Foxby [6] and their

investigation was furthered by Golod [7] and Vasconcelos [19]. For more details about

semidualizing modules the reader may consult [15].

Definition 2.3. A finitely generated R-module C is semidualizing if the natural

“homothety morphism” R → HomR(C,C) is an isomorphism and ExtiR(C,C) = 0

for i > 1. An R-module D is dualizing if it is semidualizing and has finite injective

dimension.

Let C be a semidualizing R-module. The classes of C-projective, C-flat, and

C-injective modules, denoted respectively by PC(R), FC(R), and IC(R) are de-

fined as
PC(R) = {M ∼= P ⊗R C : P ∈ P(R)},

FC(R) = {M ∼= F ⊗R C : F ∈ F(R)},

IC(R) = {M ∼= HomR(C, I) : I ∈ I(R)}.
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Remark 2.4. Let C be a semidualizing R-module. In [10], Holm and White

proved that the classes PC(R) and FC(R) are closed under coproducts and sum-

mands, and the class IC(R) is closed under products and summands. Also, they

proved that the classes PC(R) and FC(R) are precovering, and the class IC(R) is

preenveloping. Since R is Noetherian and C is finitely generated, it is straightfor-

ward to show that the class FC(R) is closed under products, and IC(R) is closed

under coproducts.

Any semidualizing module defines two important classes of modules, namely the

Auslander and Bass classes:

Definition 2.5. Let C be a semidualizing R-module. The Auslander class with

respect to C is the class AC(R) of R-modules M such that:

(i) TorRi (C,M) = 0 = ExtiR(C,C ⊗R M) for all i > 1, and

(ii) the natural map γC
M : M → HomR(C,C ⊗R M) is an isomorphism.

The Bass class with respect to C is the class BC(R) of R-modules M such that:

(i) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i > 1, and

(ii) the natural evaluation map ξCM : C ⊗R HomR(C,M) → M is an isomorphism.

Remark 2.6. Let C be a semidualizing R-module. The class AC(R) contains

all R-modules of finite flat dimension and the class BC(R) contains all R-modules of

finite injective dimension. Also, Takahashi and White in [17], Corollary 2.9 showed

that for an R-module M , if PC -pdR(M) < ∞ (or IC - idR(M) < ∞), then M ∈

BC(R) (or M ∈ AC(R)).

The following functors are studied in [16] and [17].

Definition 2.7. Let C be a semidualizing R-module and let M and N be

R-modules. Let L be a proper PC -resolution of M and let J be a proper IC -

coresolution of N . For each i set

ExtiPC
(M,N) := H−i(HomR(L,N)),

ExtiIC
(M,N) := H−i(HomR(M,J)).

The following functors are studied in [13].

Definition 2.8. Let C be a semidualizing R-module and let M and N be

R-modules. Let L be a proper PC -resolution of M . For each i set

TorPC

i (M,N) := Hi(L ⊗R N).

Fact 2.9. Let C be a semidualizing R-module, let n > 0 be an integer, and

let M be an R-module. Then the following statements hold:
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(i) FC-pdR(M) 6 n if and only if TorPC

i (M,−) = 0 for all i > n, see [13], Theo-

rem 4.5.

(ii) PC-pdR(M) 6 n if and only if ExtiPC
(M,−) = 0 for all i > n, see [17], Theo-

rem 3.2.

Lemma 2.10. Let C be a semidualizing R-module and let L = (0 → L′ → L →

L′′ → 0) be a complex of R-modules.

(i) If L is HomR(PC ,−)-exact (i.e. if HomR(C,L) is exact, e.g. if L′ ∈ BC(R)

and L is exact), then there is a long exact sequence

0 → Ext0PC
(T, L′) → Ext0PC

(T, L) → Ext0PC
(T, L′′) → Ext1PC

(T, L′) → . . .

that is natural in L and T .

(ii) If L is (PC ⊗R −)-exact (i.e. if C ⊗R L is exact, e.g. if L′′ ∈ AC(R) and L is

exact), then there is a long exact sequence

. . . → TorPC

1 (T, L′′) → TorPC

0 (T, L′) → TorPC

0 (T, L) → TorPC

0 (T, L′′) → 0

that is natural in L and T .

P r o o f. (i) It comes from [5], Theorem 8.2.3.

(ii) By [13], Theorem 3.10, we have TorPC

i (M,N) ∼= TorRi (HomR(C,M), C ⊗R N)

for all R-modules M and N , and for all i > 0. From the long exact sequence in

TorRi (HomR(C, T ),−) associated to the exact sequence 0 → C ⊗R L′ → C ⊗R L →

C ⊗R L′′ → 0, we get the assertion. �

For a semidualizing R-module C and R-module M we have FC-pdR(M) 6

PC -pdR(M), by [13], Proposition 5.2. Therefore Lemma 2.10 and Fact 2.9 imply

the following.

Lemma 2.11. Let C be a semidualizing R-module and let 0 → L′ → L → L′′ → 0

be an exact sequence of R-modules. Assume that T is an R-module. Then the

following statements hold.

(i) If L′ ∈ BC(R) and ExtiPC
(T, L) = 0 for all i > 0, then Exti+1

PC
(T, L′) ∼=

ExtiPC
(T, L′′) for all i > 0. In particular, if PC-pdR(T ) 6 n, then

ExtnPC
(T, L′′) = 0.

(ii) If L′′ ∈ AC(R) and TorPC

i (T, L) = 0 for all i > 0, then TorPC

i+1(T, L
′′) ∼=

TorPC

i (T, L′) for all i > 0. In particular, if PC -pdR(T ) 6 n, then

TorPC

n (T, L′) = 0.

785



Corollary 2.12. Let C be a semidualizing R-module and let T be an R-module

such that PC -pdR(T ) 6 n. Then the following statements hold.

(i) Assume that Xn → Xn−1 → . . . → X1 → Y0 → 0 is an exact sequence of

R-modules such that Y0 ∈ BC(R) and Xj ∈ BC(R) for all 1 6 j 6 n. If

ExtiPC
(T,Xj) = 0 for all i > 0 and 1 6 j 6 n, then ExtiPC

(T, Y0) = 0 for all

i > 0.

(ii) Assume that 0 → Y0 → X1 → X1 → . . . → Xn is an exact sequence of

R-modules such that Y0 ∈ AC(R) and Xj ∈ AC(R) for all 1 6 j 6 n. If

TorPC

i (T,Xj) = 0 for all i > 0 and 1 6 j 6 n, then TorPC

i (T, Y0) = 0 for all

i > 0.

P r o o f. We just prove item (i). The proof of item (ii) is dual.

(i) Consider the following short exact sequences of R-modules:

0 → Y1 → X1 → Y0 → 0

0 → Y2 → X2 → Y1 → 0

...

0 → Yn → Xn → Yn−1 → 0.

Note that Yj ∈ BC(R) for 0 6 j 6 n, by [15], Proposition 3.1.7. By Lemma 2.11,

ExtnPC
(T, Yj) = 0 for 0 6 j 6 n− 1. Since Fact 2.9 implies that ExtrPC

(T,−) = 0 for

r > n, using Lemma 2.10 we find that

0 = Exti+n−1
PC

(T, Yn−1) ∼= Exti+n−2
PC

(T, Yn−2) ∼= . . . ∼= ExtiPC
(T, Y0)

for all i > 0. �

The next lemma follows easily from Lemma 2.10.

Lemma 2.13. Let C be a semidualizing R-module, let r > 1 be an integer and

let T be an R-module. Then the following statements hold.

(i) Assume that 0 → X → V0 → . . . → Vr → 0 is an exact sequence of R-modules

such that X ∈ BC(R) and Vj ∈ BC(R) for all 0 6 j 6 r. If ExtiPC
(T, Vj) = 0

for all i > 0 and 0 6 j 6 r, then ExtiPC
(T,X) = 0 for all i > r + 1.

(ii) Assume that 0 → Vr → Vr−1 → . . . → V0 → X → 0 is an exact sequence

of R-modules such that X ∈ AC(R) and Vj ∈ AC(R) for all 0 6 j 6 r. If

TorPC

i (T, Vj) = 0 for all i > 0 and 0 6 j 6 r, then TorPC

i (T,X) = 0 for all

i > r + 1.
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Proposition 2.14. Let C be a semidualizing R-module, let r > 1 be an integer

and let T be an R-module. Then the following statements hold.

(1) Assume that there exists an exact sequence

0 → X → V0 → . . . → Vr → 0

of R-modules such that X ∈ BC(R), Vj ∈ BC(R) and ExtiPC
(T, Vj) = 0 for all

i > 0 and 0 6 j 6 r. Then the following conditions are equivalent.

(i) ExtiPC
(T,X) = 0 for all i > 0 and i < r.

(ii) The induced sequence

0 → Ext0PC
(T, V0) → . . . → Ext0PC

(T, Vr−1) → Ext0PC
(T, Vr)

is exact.

When these equivalent conditions hold,

ExtrPC
(T,X) ∼= Coker(Ext0PC

(T, Vr−1) → Ext0PC
(T, Vr)).

(2) Assume that there exists an exact sequence

0 → Vr → Vr−1 → . . . → V0 → X → 0

of R-modules such that X ∈ AC(R), Vj ∈ AC(R) and TorPC

i (T, Vj) = 0 for all

i > 0 and 0 6 j 6 r. Then the following conditions are equivalent.

(i) TorPC

i (T,X) = 0 for all i > 0 and i < r.

(ii) The induced sequence

TorPC

0 (T, Vr) → TorPC

0 (T, Vr−1) → . . . → TorPC

0 (T, V0) → 0

is exact.

When these equivalent conditions hold,

TorPC

r (T,X) ∼= Ker(TorPC

0 (T, Vr) → TorPC

0 (T, Vr−1)).

P r o o f. We just prove item (1). The proof of item (2) is dual.

(1) It suffices to prove that item (ii) is equivalent to the fact that ExtiPC
(T,X) = 0

for all 0 6 i 6 r− 1, by Lemma 2.13. Denote by Xi the kernel of the map Vi → Vi+1

and put X = X0. Note that Xi ∈ BC(R) for all 0 6 i 6 r by [15], Proposition 3.1.7.

Then from each exact sequence 0 → Xi → Vi → Xi+1 → 0, we get the following

exact sequence of R-modules

0 → Ext0PC
(T,Xi) → Ext0PC

(T, Vi) → Ext0PC
(T,Xi+1) → Ext1PC

(T,Xi) → 0
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for all 0 6 i 6 r−2. Therefore item (ii) is equivalent to the fact that Ext0PC
(T,X) = 0

and Ext1PC
(T,Xj) = 0 for all 0 6 j 6 r − 2. On the other hand, the condition

ExtiPC
(T, Vj) = 0 for all i > 0 and 0 6 j 6 r implies that

Ext1PC
(T,Xi−1) ∼= Ext2PC

(T,Xi−2) ∼= . . . ∼= ExtiPC
(T,X0)

by Lemma 2.11. Then we get the equivalence of (i) and (ii). Also, when these

equivalent conditions hold, the exact sequence

0 → Ext0PC
(T,Xr−1) → Ext0PC

(T, Vr−1) → Ext0PC
(T,Xr) → Ext1PC

(T,Xr−1) → 0

and the isomorphism ExtrPC
(T,X) ∼= Ext1PC

(T,Xr−1) imply that Ext
r
PC

(T,X) ∼=

Coker(Ext0PC
(T, Vr−1) → Ext0PC

(T, Vr)). �

Convention 2.15. Let M be an R-module. For every cardinal k let M (k) be the

direct sum of k copies ofM and let Add(M) be the collection of all direct summands

of arbitrary direct sums of M .

3. Relative tilting modules

Let C be a semidualizing R-module. In this section, we introduce the notion

of C-tilting R-modules as the relative setting of the notion of tilting R-modules

with respect to C and we adduce some examples of these modules. Also, this section

contains some properties of tilting and C-tilting R-modules and the relations between

them.

Definition 3.1. An R-module T is called generalized tilting when the following

conditions are satisfied.

(1) pdR(T ) < ∞.

(2) ExtiR(T, T
(k)) = 0 for each i, 1 6 i 6 pdR(T ) and every cardinal k.

(3) There exists a long exact sequence 0 → R → T0 → T1 → . . . → Tr → 0, where

r > 0 and Ti ∈ Add(T ) for all 0 6 i 6 r.

Example 3.2. Every finitely generated free module is generalized tilting.

Definition 3.3. Let C be a semidualizing R-module. An R-module T is called

C-tilting when the following conditions are satisfied.

(1) PC-pdR(T ) < ∞.

(2) ExtiPC
(T, T (k)) = 0 for each i, 1 6 i 6 PC -pdR(T ) and every cardinal k.

(3) There exists a long exact sequence 0 → C → T0 → T1 → . . . → Tr → 0, where

r > 0 and Ti ∈ Add(T ) for all 0 6 i 6 r.
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Example 3.4. Let C be a semidualizing R-module and let n ∈ N. Then Cn is

C-tilting. Note that Cn ∈ PC(R), therefore PC-pdR(C
n) = 0 and for all cardinals k

and all i > 1 we have ExtiPC
(Cn, (Cn)(k)) = 0 by [17], Theorem 3.1.

Example 3.5. Let C be a dualizing R-module such that idR(C) 6 n.

(i) Consider the following minimal injective resolution of C:

0 → C → I0 → . . . → In → 0.

Set T =
⊕

i6n

Ii. Then T is a C-tilting R-module. Indeed, since T is an injective

R-module, [12], Proposition 3.3 implies that PC -pdR(T ) 6 n. Note that T

and T (k) belong to BC(R) for all cardinal k. Therefore, by [17], Corollary 4.2,

ExtiPC
(T, T (k)) ∼= ExtiR(T, T

(k)) = 0 for all cardinal k and all i, 1 6 i 6

PC-pdR(T ).

(ii) By [18], Proposition 2.4, IC - idR(R) 6 n. Therefore, by [17], Corollary 2.3,

there exists the long exact sequence

0 → R → HomR(C, I0) → . . . → HomR(C, In) → 0

of R-modules such that Ii is injective for all i = 0, . . . , n. Set

T =
⊕

i6n

HomR(C, Ii).

Then T is a generalized tilting R-module. Indeed, since T is a C-injective

R-module, [12], Proposition 3.3 implies that pdR(T ) 6 n. Note that for all

cardinal k and all i, 1 6 i 6 pdR(T ), we have

ExtiR(T, T
(k)) ∼=

⊕

j6n

⊕

r6n

ExtiR(HomR(C, Ij), (HomR(C, Ir))
(k))

∼=
⊕

j6n

⊕

r6n

ExtiR(Ij , (Ir)
(k)) = 0,

by [15], Lemma 3.1.13.

Remark 3.6. Let C be a semidualizing R-module. Then the following state-

ments hold.

(i) Let T be a generalized tilting R-module. Then pdR(T ) < ∞ and Remark 2.6

implies that T ∈ AC(R).

(ii) Let T be a C-tilting R-module. Then PC -pdR(T ) < ∞ and Remark 2.6 implies

that T ∈ BC(R).
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The functors C ⊗R − : AC(R) → BC(R) and HomR(C,−) : BC(R) → AC(R)

establish an equivalence of categories between the Auslander class and the Bass class.

This is usually called the Foxby equivalence between the two classes. Remark 3.6

leads to the following theorem.

Theorem 3.7. Let C be a semidualizing R-module. Then the following state-

ments hold.

(i) If T is a generalized tilting R-module, then C ⊗R T is a C-tilting R-module.

(ii) If T is a C-tilting R-module, thenHomR(C, T ) is a generalized tilting R-module.

P r o o f. (i) Let T be a generalized tilting R-module. Then pdR(T ) < ∞.

By Remark 3.6, T ∈ AC(R) and by [17], Theorem 2.11, PC -pdR(C ⊗R T ) =

pdR(HomR(C,C ⊗R T )) = pdR(T ) < ∞. By [17], Theorem 2.8, C ⊗R T ∈ BC(R),

and by [15], Proposition 3.1.6, (C ⊗R T )(k) ∈ BC(R) for every cardinal k. So, we

have

ExtiPC
(C ⊗R T, (C ⊗R T )(k)) ∼= ExtiR(C ⊗R T, (C ⊗R T )(k)) ∼= ExtiR(T, T

(k)) = 0

or all i, 1 6 i 6 PC -pdR(C ⊗R T ). In the above sequence, the first isomorphism

follows from [17], Corollary 4.2, and the second isomorphism is induced by [15],

Proposition 3.1.13. Since T is a generalized tilting R-module, there exists a long

exact sequence 0 → R → T0 → . . . → Tr → 0, where r > 0, and Ti ∈ Add(T ) for

all i, 0 6 i 6 r. By [15], Proposition 3.1.6, Ti ∈ AC(R) and therefore TorRj (C, Ti) = 0

for every j > 1 and 0 6 i 6 r. The fact that R ∈ AC(R) and [15], Proposition 3.1.7

imply that there exists a long exact sequence 0 → C → C⊗RT0 → C⊗RT1 → . . . →

C ⊗R Tr → 0, where Ti ∈ Add(T ) and therefore C ⊗R Ti ∈ Add(C ⊗R T ) for all i,

0 6 i 6 r. So, we get the assertion.

(ii) Let T be a C-tilting R-module. Then PC-pdR(T ) < ∞. By [17], Theorem 2.11,

pdR(HomR(C, T )) = PC-pdR(T ) < ∞. Also, [17], Theorem 4.1 implies that

ExtiR(HomR(C, T ), (HomR(C, T ))
(k)) ∼= ExtiPC

(T, T (k)) = 0

for every cardinal k since T ∈ BC(R). Since T is C-tilting, there exists a long exact

sequence 0 → C → T0 → T1 → . . . → Tr → 0, where r > 0 and Ti ∈ Add(T ) for all i,

0 6 i 6 r. By [15], Proposition 3.1.6, Ti ∈ BC(R) and therefore ExtjR(C, Ti) = 0 for

every j > 1 and all i, 0 6 i 6 r. The fact that C ∈ BC(R) and [15], Proposition 3.1.7

imply the following long exact sequence:

0 → HomR(C,C) ∼= R → HomR(C, T0) → . . . → HomR(C, Tr) → 0,

where HomR(C, Ti) ∈ Add(HomR(C, T )). So, we get the assertion. �
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Note that Theorem 3.7 shows that the endomorphism algebras one gets from

C-tilting modules are exactly the endomorphism algebras one gets from the gener-

alized tilting modules, as follows.

First, if T is a generalized tilting module, then C ⊗R T is C-tilting, and we have

EndR(C ⊗R T ) = HomR(C ⊗R T,C ⊗R T ) ∼= HomR(T,HomR(C,C ⊗R T ))

∼= HomR(T, T ) = EndR(T ).

The second isomorphism here is from the condition T ∈ AC(R). Note that the

priori R-isomorphism EndR(C⊗R T ) ∼= EndR(T ) respects the ring structure (i.e. the

composition product) in the endomorphism algebras.

On the other hand, if T is C-tilting, then HomR(C, T ) is generalized tilting and

a similar argument shows that

EndR(HomR(C, T )) = HomR(HomR(C, T ),HomR(C, T ))

∼= HomR(T, T ) = EndR(T ).

Definition 3.8. Let C be a semidualizing R-module, and let T be a C-tilting

R-module. We say that T is a good C-tilting module if the short exact sequence of

condition (3) of Definition 3.3 has the form 0 → C → T0 → T1 → . . . → Tr → 0,

where the Ti’s are direct summands of finite direct sums of copies of T . If C = R,

then we simply say T is a good tilting module, instead of saying T is a good R-tilting

module.

Remark 3.9. Let C be a semidualizing R-module. Using the proof of Theo-

rem 3.7, one can easily check the following statements.

(i) If T is a good tilting R-module, then C ⊗R T is a good C-tilting R-module.

(ii) If T is a good C-tilting R-module, then HomR(C, T ) is a good tilting R-module.

Let T be a good tilting R-module and let S = EndR(T ). In [2], Proposition 1.4,

it is proved that EndS(T ) ∼= R. In the following, we investigate this property for

a good C-tilting R-module.

Proposition 3.10. Let C be a semidualizing R-module and let T be a good

C-tilting R-module. Assume that S = EndR(T ). Then the S-module HomR(C, T )

has a projective resolution 0 → Qr → . . . → Q0 → HomR(C, T ) → 0, where Qi’s are

direct summands of a finite direct sums of copies of S, and ExtiS(HomR(C, T ), T ) = 0

for all i > 0 and EndS(T ) ∼= R.

P r o o f. Let T be a good C-tilting R-module. So, there exists the exact sequence

(†) 0 → C → T0 → T1 → . . . → Tr → 0,
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where Ti’s are direct summands of finite direct sums of copies of T . Therefore

Ti ∈ BC(R) for all 0 6 i 6 r by [15], Proposition 3.1.6 and Remark 3.6. By [17],

Corollary 4.2, ExtjR(Ti, T ) ∼= ExtjPC
(Ti, T ) = 0 for all j > 1, and 0 6 i 6 r. Denote

by Ki the kernel of the map Ti → Ti+1 for 1 6 i 6 r − 1. Applying the functor

HomR(−, T ) to (†), we get by dimension shifting that ExtjR(Ki, T ) = 0 for all j > 1

and 0 6 i 6 r − 1. Therefore we get the following exact sequence of S-modules:

(††) 0 → HomR(Tr, T ) → . . . → HomR(T0, T ) → HomR(C, T ) → 0.

Note that the S-module HomR(Ti, T ) is a direct summand of a finite direct sums

of copies of S. Hence the canonical map δTi
: Ti → HomS(HomR(Ti, T ), T ) is an

isomorphism, and Ext1S(HomR(Ti, T ), T ) = 0 for 0 6 i 6 r. For an R-moduleM , we

denote the S-module HomR(M,T ) byM∗ and the R-module HomS(HomR(M,T ), T )

byM∗∗. Applying the functor HomS(−, T ) to (††), we get the following commutative

diagrams with exact rows:

0 // C / /

δC

��

T0
/ /

δT0

��

K1
//

δK1

� �

0

0 // C∗∗ // T ∗∗
0

/ / K∗∗
1

// Ext1S(HomR(C, T ), T ) // 0

...

0 // Kr−1
/ /

δKr−1

��

C ⊗R Tr−1
//

δTr−1

� �

C ⊗R Tr
//

δTr

��

0

0 // K∗∗
r−1

/ / T ∗∗
r−1

// T ∗∗
r

/ / Ext1S(K
∗
r−1, T )

/ / 0.

Since δTi
’s are isomorphisms, we get

Ext1S(HomR(C, T ), T ) = 0, 0 = Ext1S(K
∗
i , T )

∼= Exti+1
S (HomR(C, T ), T )

for every 0 6 i 6 r − 1. Therefore ExtiS(HomR(C, T ), T ) = 0 for all i > 0 since

pdS(HomR(C, T )) 6 r. Also, C ∼= C∗∗ = HomS(HomR(C, T ), T ). On the other

hand,
R ∼= HomR(C,C) ∼= HomR(C,HomS(HomR(C, T ), T ))

∼= HomS(C ⊗R HomR(C, T ), T ) ∼= HomS(T, T ) = EndS(T ).

So, we get the assertion. �

Fact 3.11. Let C be a dualizing R-module with idR(C) 6 1 and let

P0 = {p ∈ Spec(R) : ht(p) = 0},

P1 = {p ∈ Spec(R) : ht(p) = 1}.
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By [18], Proposition 3.1, the minimal injective coresolution of C has the form

0 → C → G
π

−→
⊕

p∈P1

E(R/p) → 0,

where G =
⊕

p∈P0

E(R/p).

Proposition 3.12. Let C be a dualizing R-module with idR(C) 6 1 and let P0, P1

and π be as in Fact 3.11. Consider a subset P ⊆ P1 and put CP = π−1
(

⊕

p∈P

E(R/p)
)

and TP = CP

⊕

(

⊕

p∈P

E(R/p)
)

. Then TP is a C-tilting R-module.

P r o o f. Note that there is a commutative diagram with exact rows as follows.

(∗) 0 // C //

∼=

��

CP
//

� _

� �

⊕

p∈P

E(R/p) //

��

0

0 / / C // G
π / /

⊕

p∈P1

E(R/p) / / 0.

The exact row (∗) implies that idR(CP ) < ∞. Therefore, idR(TP ) < ∞ and

so PC-pdR(TP ) 6 1, by [12], Proposition 3.3. By the Snake lemma G/CP
∼=

⊕

p∈P1−P

E(R/p), therefore for each cardinal k we have the following exact sequence

of R-modules:

(∗∗) 0 −→ C
(k)
P −→ G(k) −→

⊕

p∈P1−P

E(R/p)(k) −→ 0.

By [5], Theorem 3.3.8, we have HomR(E(R/p), (G/CP )
(k)) = 0 for every p ∈ P and

so the exact sequence (∗∗) implies that Ext1R(E(R/p), C
(k)
P ) = 0 for every p ∈ P .

Therefore, the exact sequence (∗) implies that Ext1R(CP , C
(k)
P ) = 0 for every cardi-

nal k, because idR(CP ) < ∞ implies that C
(k)
P ∈ BC(R). So, we have

Ext1PC
(TP , (TP )

(k)) ∼= Ext1R(TP , (TP )
(k))

∼= Ext1R

(

CP ⊕

(

⊕

p∈P

E(R/p)

)

,

(

CP ⊕

(

⊕

p∈P

E(R/p)

))(k))

∼= Ext1R(CP , (CP )
(k))⊕ Ext1R

(

CP ,

(

⊕

p∈P

E(R/p)

)(k))

⊕ Ext1R

(

⊕

p∈P

E(R/p),

(

⊕

p∈P

E(R/p)

)(k))

⊕ Ext1R

(

⊕

p∈P

E(R/p), (CP )
(k)

)

= 0
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for every cardinal k. In the above sequence, the first isomorphism follows from [17],

Corollory 4.2. Note that CP ∈ Add(TP ) and
⊕

p∈P

E(R/p) ∈ Add(TP ). So, the exact

sequence (∗) is the desired sequence. �

Remark 3.13. In the notation of Proposition 3.12,

HomR(C, TP ) ∼= HomR

(

C,CP ⊕

(

⊕

p∈P

E(R/p)

))

∼= HomR(C,CP )⊕HomR

(

C,
⊕

p∈P

E(R/p)

)

∼= HomR(C,CP )⊕

(

⊕

p∈P

HomR(C,E(R/p))

)

is generalized tilting by Theorem 3.7.

In the sequel, we show that every finitely generated C-tilting R-module is C-

projective, where C is a semidualizing R-module. First we prove the following lemma.

Lemma 3.14. Let M 6= 0 be a finitely generated R-module and let n =

pdR(M) < ∞. Then ExtnR(M,M) 6= 0.

P r o o f. It suffices to prove the statement for a local case since n = pdR(M) < ∞

implies that there is a maximal ideal m such that pdRm

(Mm) = n and 0 6=

ExtnRm

(Mm,Mm) ∼= (ExtnR(M,M))m, as desired. Now assume that (R,m) is a local

ring. If n = 0, then 0 6= M ∼= Rm for some m ∈ N, so HomR(M,M) ∼= Rm2

6= 0.

Therefore, suppose that 1 6 n = pdR(M) < ∞. Consider the projective resolution

of M

0 → Pn → Pn−1 → . . . → P0 → M → 0,

where Pi is a finitely generated projective R-module for all i, 0 6 i 6 n. Let N be

the (n−1)th syzygy ofM . Then pdR(N) = 1. Assume that ExtnR(M,M) = 0. Then

Ext1R(N,M) ∼= ExtnR(M,M) = 0. Since M 6= 0 is a finitely generated R-module,

M contains a maximal submodule K and we have the following short exact sequence

of R-modules:

(∗∗∗) 0 → K → M → R/m → 0.

Applying HomR(N,−) on sequence (∗∗∗), we get that Ext1R(N,R/m) = 0. So N is

a projective R-module, which is contradiction. �

Proposition 3.15. Let C be a semidualizing R-module and let T 6= 0 be a finitely

generated R-module. Then the following statements hold.

(i) If n = PC -pdR(T ) < ∞, then ExtnPC
(T, T ) 6= 0.

(ii) If T is a C-tilting R-module, then T is C-projective.
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P r o o f. (i) It is clear that HomR(C, T ) is a finitely generated R-module and

by [15], Corollary 2.1.17, HomR(C, T ) 6= 0. Also, 1 6 n = pdR(HomR(C, T )) < ∞

by [17], Theorem 2.11. By Lemma 3.14, we have

ExtnR(HomR(C, T ),HomR(C, T )) 6= 0.

On the other hand, ExtnPC
(T, T ) ∼= ExtnR(HomR(C, T ),HomR(C, T )) by [17], Theo-

rem 4.1. So, we get the assertion.

(ii) Using (i) and the definition of C-tilting R-module, we get the assertion. �

Example 3.16. Note that Proposition 3.12 shows that the conclusion of Propo-

sition 3.15 (ii) fails when T is not finitely generated.

4. Kernels of some appropriate subcategories related to

relative tilting modules

An R-module T is called classical tilting, in sense of [11], if the following statements

hold.

(i) T has a projective resolution 0 → Pn → Pn−1 → . . . → P0 → 0, where Pi is

finitely generated.

(ii) ExtiR(T, T ) = 0 for all 1 6 i 6 n.

(iii) There exists an exact sequence 0 → R → T0 → . . . → Tn → 0 such that Ti is

direct summand of finite direct sum copies of T .

In [11], the author proved that if T is a classical tilting R-module, and S =

EndR(T ), then T is a classical tilting S-module. Also, for any r > 0 there is a tilting

category equivalence:

⋂

i>0,i6=r

Ker(ExtiR(T,−))

ExtrR(T,−)
--

⋂

i>0,i6=r

Ker(TorSi (T,−)).

TorSr (T,−)

m m

Now, assume that C is a semidualizing R-module and T is a finitely generated

good C-tilting R-module. Then HomR(C, T ) is a classical tilting R-module by Re-

mark 3.9. Also, EndR(HomR(C, T )) ∼= EndR(T ). Therefore, it is clear that we have

the following tilting category equivalence:

⋂

i>0,i6=r

Ker(ExtiR(HomR(C, T ),−))

ExtrR(HomR(C,T ),−)
..

⋂

i>0,i6=r

Ker(TorSi (HomR(C, T ),−)).

TorSr (HomR(C,T ),−)

nn

However, for a C-tilting R-module T , one can ask the following question.
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Question: Are there other appropriate functors for transfering properties be-

tween R and EndR(T )?

In the sequel, we investigate kernels of some appropriate subcategories related to

C-tilting R-modules.

Lemma 4.1. Let C be a semidualizing R-module, let T be an R-module and

let T ′ be a finitely generated R-module. Assume that S = EndR(T ). Then the

following conditions are equivalent for a fixed integer i > 1.

(i) ExtiPC
(T ′, T ) = 0.

(ii) TorPC

i (T ′,HomS(T, I)) = 0 for all injective S-modules I.

(iii) ExtiPC
(T ′, T ⊗S P ) = 0 for all projective S-modules P .

P r o o f. Let . . . → C⊗RPn → . . . → C⊗RP0 → T ′ → 0 be an augmented proper

PC -resolution of T
′ such that Pi’s are finitely generated projective R-modules. For

i > 1, ExtiPC
(T ′, T ) = 0 if and only if the sequence (∗) : HomR(C ⊗R Pi−1, T ) →

HomR(C ⊗R Pi, T ) → HomR(C ⊗R Pi+1, T ) is exact. And the latter is equivalent

to the fact that for any injective S-module I, HomS(HomR(C ⊗R Pi+1, T ), I) →

HomS(HomR(C ⊗R Pi, T ), I) → HomS(HomR(C ⊗R Pi−1, T ), I) is exact. By [5],

Theorem 3.2.11 HomS(HomR(C ⊗R Pj , T ), I) ∼= (C ⊗R Pj) ⊗R HomS(T, I). Then

(i) ⇔ (ii). Furthermore, the exactness of (∗) is equivalent to the fact that for any

projective S-module P , HomR(C ⊗R Pi−1, T )⊗S P → HomR(C ⊗R Pi, T )⊗S P →

HomR(C ⊗R Pi+1, T )⊗S P is exact. By [5], Therorem 3.2.14, HomR(C⊗R Pj , T )⊗S

P ∼= HomR(C ⊗R Pj , T ⊗S P ) for all j > 0. Then (i) ⇔ (iii). �

Proposition 4.2. Let C be a semidualizing R-module, let T ∈ BC(R) and let

S = EndR(T ). Then the following statements hold.

(i) If I is an injective S-module, then HomS(T, I) ∈ AC(R).

(ii) If Y is an S-module such that idS Y < ∞ and ExtiS(T, Y ) = 0 for all i > 0,

then HomS(T, Y ) ∈ AC(R).

(iii) If P is a projective S-module, then T ⊗S P ∈ BC(R).

(iv) If Y is an S-module such that pdSY < ∞ and TorSi (T, Y ) = 0 for all i > 0,

then T ⊗S Y ∈ BC(R).

P r o o f. We just prove items (i) and (ii). The proof of items (iii) and (iv) is

similar.

(i) For all i > 0,

TorRi (C,HomS(T, I)) ∼= HomS(Ext
i
R(C, T ), I) = 0.
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In the above sequence, the isomorphism follows from [5], Theorem 3.2.13, and the

equality follows from T ∈ BC(R). For all i > 0,

ExtiR(C,C ⊗R HomS(T, I)) ∼= ExtiR(C,HomS(HomR(C, T ), I))

∼= HomS(Tor
R
i (C,HomR(C, T )), I) = 0.

In the above sequence, the first isomorphism follows from [5], Theorem 3.2.11, the

second isomorphism follows from [5], Theorem 3.2.1, and the equality holds since

T ∈ BC(R). Also, it is routine to show that the following diagram commutes:

HomS(T, I)

HomS(ξCT ,I)

��

γC
HomS(T,I)

// HomR(C,C ⊗R HomS(T, I))

f ∼=

��

HomS(C ⊗R HomR(C, T ), I)
g

∼=
/ / HomR(C,HomS(HomR(C, T ), I)).

In the above diagram, f is an isomorphism by [5], Theorem 3.2.11, g is an isomor-

phism by [5], Theorem 2.1.10 and HomS(ξ
C
T , I) is an isomorphism since T ∈ BC(R).

Hence γC
HomS(T,I) is an isomorphism.

(ii) It follows from (i) and [15], Corollary 3.1.8. �

Proposition 4.3. Let C be a semidualizing R-module, let T be a finitely gener-

ated C-tilting R-module and let S = EndR(T ). Assume that Y is an S-module

such that idS Y < ∞ and assume that ExtiS(T, Y ) = 0 for all i > 0. Then

TorRi (T,HomS(T, Y )) = 0 for all i > 0 and T ⊗R HomS(T, Y ) ∼= Y .

P r o o f. Let PC -pdRT = n. Take an augmented injective coresolution of Y ,

0 → Y → I0 → . . . → In−1 → In → . . .

Applying HomS(T,−) to the above sequence, we get the exact sequence of R-modules

0 → HomS(T, Y ) → HomS(T, I
0) → . . . → HomS(T, I

n) → HomS(T, I
n+1) → . . . ,

since ExtiS(T, Y ) = 0 for all i > 0. By Lemma 4.1, TorPC

i (T,HomS(T, I
j)) = 0 for

all i > 0, j > 0, since ExtiPC
(T, T ) = 0. On the other hand, for j > 0

T ⊗R HomS(T, I
j) ∼= HomS(HomR(T, T ), I

j) ∼= Ij ,

by [5], Theorem 3.2.11. Also, HomS(T, Y ) ∈ AC(R) and HomS(T, I
j) ∈ AC(R)

for j > 0, by Proposition 4.2. By [13], Proposition 4.3, TorPC

i (T,HomS(T, Y )) ∼=
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TorRi (T,HomS(T, Y )) and TorPC

i (T,HomS(T, I
j)) ∼= TorRi (T,HomS(T, I

j)) for all i

and j. Also, by Corollary 2.12, TorPC

i (T,HomS(T, Y )) = 0 for all i > 0. Therefore,

we have the following commutative diagram with exact rows:

0 // T ⊗R HomS(T, Y ) / /

��

T ⊗R HomS(T, I
0) / /

∼=

��

T ⊗R HomS(T, I
1)

∼=

��

0 / / Y // I0 // I1.

Hence T ⊗R HomS(T, Y ) ∼= Y . �

Proposition 4.4. Let C be a semidualizing R-module, let T be a finitely gener-

ated C-tilting R-module and let S = EndR(T ). Assume that Y is an S-module

such that pdSY < ∞ and assume that TorSi (T, Y ) = 0 for all i > 0. Then

ExtiR(T, T ⊗S Y ) = 0 for all i > 0 and HomR(T, T ⊗S Y ) ∼= Y .

P r o o f. Let PC-pdRT = n. Take an augmented projective resolution of Y as

follows:

. . . → Pn → Pn−1 → . . . → P0 → Y → 0.

Applying T ⊗S − to the above sequence, we get the exact sequence of R-modules

. . . → T ⊗S Pn → T ⊗S Pn−1 → . . . → T ⊗S Y → 0,

since TorSi (T, Y ) = 0 for all i > 0. By Lemma 4.1, ExtiPC
(T, T ⊗S Pj) = 0 for all

i > 0, j > 0, since ExtiPC
(T, T ) = 0. On the other hand, for j > 0

HomR(T, T ⊗S Pj) ∼= HomR(T, T )⊗S Pj
∼= S ⊗S Pj

∼= Pj ,

by [5], Theorem 3.2.14. Also, T ⊗S Y ∈ BC(R) and T ⊗S Pj ∈ BC(R) for j > 0

by Proposition 4.2. By Corollary 2.12, ExtiPC
(T, T ⊗S Y ) = 0 for all i > 0. Also,

ExtiPC
(T, T ⊗S Pj) ∼= ExtiR(T, T ⊗S Pj) and ExtiPC

(T, T ⊗S Y ) ∼= ExtiR(T, T ⊗S Y )

for all i and j by [17], Corollary 4.2. Therefore, we have the following commutative

diagram with exact rows:

HomR(T, T ⊗S P1) //

∼=

��

HomR(T, T ⊗S P0) / /

∼=

��

HomR(T, T ⊗S Y ) //

��

0

P1
/ / P0

/ / Y // 0.

Hence HomR(T, T ⊗S Y ) ∼= Y . �
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Theorem 4.5. Let C be a semidualizing R-module, let T be a finitely gener-

ated C-tilting R-module and let S = EndR(T ). Assume that r > 0 is an integer

and assume that Y is an S-module such that idS Y < ∞ and ExtiS(T, Y ) = 0

for all i > 0, i 6= r. Then TorRi (T,Ext
r
S(T, Y )) = 0 for all i > 0, i 6= r and

TorRr (T,Ext
r
S(T, Y )) ∼= Y .

P r o o f. By Proposition 4.3, we may assume that r > 1. Take an augmented

injective coresolution of Y ,

0 → Y → I0 → . . . → Ir−1 → Ir → . . . .

Denote by J i the kernel of the map Ii → Ii+1 for all i > 0. Note that ExtiS(T, J
r) = 0

since ExtiS(T, J
r) ∼= Exti+r

S (T, Y ) = 0 for all i > 0. Also, idS Jr < ∞. Hence

Proposition 4.2 implies that HomS(T, J
r) ∈ AC(R). So, TorRi (T,HomS(T, J

r)) = 0

for all i > 0 and T ⊗RHomS(T, J
r) ∼= Jr, by Proposition 4.3. Applying HomS(T,−)

to the injective coresolution, we get the exact sequence of R-modules

0 → HomS(T, I
0) → . . . → HomS(T, I

r−1) → HomS(T, J
r) → X → 0,

where Ext1S(T, J
r−1) ∼= . . . ∼= ExtrS(T, Y ) ∼= X . Note that X ∈ AC(R), by Proposi-

tion 4.2 and [15], Corollary 3.1.8. By Proposition 2.14 and [13], Proposition 4.3, we

have TorPC

i (T,X) ∼= TorRi (T,X) = 0 for all i > 0, i 6= r and

TorPC

r (T,X) ∼= TorRr (T,X) ∼= Ker(T ⊗R HomS(T, I
0) → T ⊗R HomS(T, I

1))

∼= Ker(I0 → I1) ∼= Y.

�

Theorem 4.6. Let C be a semidualizing R-module, let T be a finitely generated

C-tilting R-module and let S = EndR(T ). Assume that r > 0 is an integer and

assume that Y is an S-module such that pdSY < ∞ and ToriS(T, Y ) = 0 for all i > 0,

i 6= r. Then ExtiR(T, T ⊗S Y ) = 0 for all i > 0, i 6= r, and ExtrR(T,Tor
S
r (T, Y )) ∼= Y .

P r o o f. The proof is dual of the proof of Theorem 4.5. �
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